Drinking Water Disinfection by In-line Electrolysis: Product and Inorganic By-Product Formation

  • M. E. Henry Bergmann


This section covers peculiarities of so-called in-line electrolysis when drinking water is electrolysed to produce disinfection species killing microorganisms. Mainly mixed oxide electrodes (MIO) based on IrO2 and/or RuO2 coatings and boron-doped diamond electrodes were used in the studies. Artificial and real drinking water systems were electrolysed in continuous and discontinuous operating mode, varying water composition, current density and electrode materials. Results show, besides the ability of producing active chlorine, risks of inorganic disinfection by-products (DBPs) such as chlorate, perchlorate, nitrite, ammonium, chloramines, hydrogen peroxide and others. DBPs are responsible for analysis errors using DPD method for active chlorine measurements. Geometry may influence by-product yield. As a conclusion, the necessity of developing test routines for practical cell applications must be underlined.


Active Chlorine Chlorine Dioxide High Chloride Concentration Active Chlorine Species Electrochemical Quartz Crystal Nanobalance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author wishes to thank all colleagues and co-workers, which were involved in experiments and discussions. In particular, these thanks are directed to Prof. Johanna Rollin, Dr. Andreas Rittel, Dr. Tatiana Iourtchouk, Dr. Kristin Schoeps, Christine Hummel, Karsten Kresse, Thomas Kadyk, Christian Czichos, Uta M. Borutzky and Renate Zinke (all from Anhalt University Koethen), Prof. Ü. Öütveren, Dr. A. Savas Koparal, Dr. A. Tansu Koparal and Özge Tümöz (Anadolu University Eskisehir), Prof. Karel Bouzek, and Roman Kodym (Institute of Chemical Technology Prague), Dr. F. Ehrig (BAFZ Quedlinburg), to DAAD and Anhalt University for financial support and to German BMBF/AIF Cologne for project organisation – FKZ 1721X04.


  1. Adam, L.C. and Gordon, G. (1995) Direct and sequential potentiometric determination of hypochlorite, chlorite, and chlorate ions when hypochlorite ion is present in large excess. Anal. Chem. 67, 535–540.CrossRefGoogle Scholar
  2. Adam, L.C., Fabian, I., Suzuki, K. and Gordon, G. (1992) Hypochlorous acid decomposition in the pH 5–8 region. Inorg. Chem. 31, 3534–3541.CrossRefGoogle Scholar
  3. Adams, L. and Gordon, G. (1999) Hypochlorite ion decomposition: Effects of temperature, ionic strength, and chloride ion. Inorganic. Chem. 38, 1299–1304.CrossRefGoogle Scholar
  4. Arikawa, T., Murakami, Y. and Takasu, Y. (1998) Simultaneous determination of chlorine and oxygen evolving at RuO2 ∕ Ti and RuO2–TiO2 ∕ Ti anodes by different electrochemical mass spectroscopy. J. Appl. Electrochem. 28, 511–516.CrossRefGoogle Scholar
  5. Babak, A.A., Amadelli, R., De Battisti, A. and Fateev, V.N. (1994) Influence of anions on oxygen/ozone evolution on PbO2/spe and PbO2/Ti electrodes in neutral pH media. Electrochim. Acta 39, 1597–1602.CrossRefGoogle Scholar
  6. Barchiche, Ch., Deslouis, C., Festy, D., Gil, O., Refait, Ph., Touzain, S. and Tribollet, B. (2003) Characterization of calcareous deposits in artificial seawater by impedance techniques. 3-Deposit of CaCO3 in the presence of Mg(II). Electrochim. Acta 48, 1645–1654.Google Scholar
  7. Beach, M.W. and Margerum, D.W. (1990) Kinetics of oxidation of tetracyanonickelate(II) by chlorine monoxide, chlorine, and hypochlorous acid and kinetics of chlorine monoxide formation. Inorg. Chem. 29, 1225–1232.CrossRefGoogle Scholar
  8. Behar, D., Czapski, G. and Duchovny, I. (1970) Carbonate radical in flash photolysis and pulse radiolysis of aqueous carbonate solutions. J. Phys. Chem. 74, 2206–2210.CrossRefGoogle Scholar
  9. Bergmann, M.E.H. (2005a) About the chlorine dioxide formation during electrochemical drinking water disinfection (in German). GWF Wasser Abwasser 146, 126–133.Google Scholar
  10. Bergmann, H., Iourtchouk, T., Schoeps, K. and Ehrig, F. (2001) What is the so-called anodic oxidation and what can it do? (in German). GWF Wasser Abwasser 142, 856–869.Google Scholar
  11. Bergmann, H., Iourtchouk, T., Schoeps, K. and Bouzek, K. (2002) New UV irradiation and direct electrolysis-promising methods for water disinfection. J. Chem. Eng. 85, 111–117.CrossRefGoogle Scholar
  12. Bergmann, H. and Koparal, A.S. (2004) The flow-through technology of disinfecting drinking and technical waters (in German) part 2. Galvanotechnik 95, 3037–3043.Google Scholar
  13. Bergmann, M.E.H. (2005a) On the chlorine dioxide formation during electrochemical drinking water disinfection (in German). GWF Wasser Abwasser 146, 126–133.Google Scholar
  14. Bergmann, M.E.H. (2005b) The formation of H2O2 in drinking water electrolysis. 56th Annual Meeting of the International Society of Electrochemistry – Busan, Korea, September 26–30, Book of Abstracts, p. 892.Google Scholar
  15. Bergmann, H. and Koparal, A.S. (2005c) Problems of chlorine dioxide formation during electrochemical disinfection. Electrochim. Acta 50, 5218–5228.CrossRefGoogle Scholar
  16. Bergmann, M.E.H. and Koparal A.S. (2005d) Studies on electrochemical disinfectant production using anodes containing RuO2. J. Appl. Electrochem. 35, 1321–1329 and Erratum (2006) 36, 845–846.Google Scholar
  17. Bergmann,M.E.H. and Koparal, A.S. (2006a) Chlorine dioxide formation from chloride and chlorite solutions of very low concentrations. Industrial Water, Frankfurt, 6–8 February 2006, Book of Abstracts, pp. 181–185.Google Scholar
  18. Bergmann, M.E.H., Rollin, J., Koparal, A.S. and Kresse, K. (2006b) What is the ominous chlorine consumption in the disinfectant production from drinking water electrolysis? Proceedings 57th Annual Meeting of the International Society of Electrochemistry, 27 Aug. to 1 Sept., Edinburgh/UK, p. S5.O-4.Google Scholar
  19. Bergmann, H. and Rollin, J. (2006c) Product and by-product formation using doped diamond anodes in disinfection electrolysis of drinking water. 1. European Conference on Environmental Application of Advanced Oxidation Processes (EAAOP), Chania/Greece, Conference Materials Full text version P198, pp. 1–6 and Book of Abstracts, p. 218.Google Scholar
  20. Bergmann, M.E.H. (2006d) On DPD method application for drinking water disinfection analysis (in German). GWF Wasser Abwasser 147, 780–786.Google Scholar
  21. Bergmann, M.E.H. (2007a) On the electrochemical flow-through electrolysis for the production of waters with disinfecting ability (in German). In: Suchentrunk, R. (ed.) Jahrbuch fuer Oberflaechentechnik, Leuze, Saulgau, pp. 315–330.Google Scholar
  22. Bergmann, H., Rollin, J., Czichos, C. and Roemer, D. (2007b) Perchlorate analysis in drinking water electrolysis-a new application for Ion Chromatography (in German). Labo, 26–28.Google Scholar
  23. Bergmann, M.E.H., Koparal, A.T., Koparal, A.S., Schoeps, K., Iourtchouk, T. and Ehrig, F. (2008) The influence of products and by-products obtained by drinking water electrolysis on microorganisms. Microchem. Journ. 89, 98–107.CrossRefGoogle Scholar
  24. Bergmann, M.E.H., Rollin, J. and Iourtchouk, T. (2009) The occurrence of perchlorate during drinking water electrolysis using BDD electrodes. Electrochim. Acta 54, 2102–2107.CrossRefGoogle Scholar
  25. Bernarde, M.A., Snow, W.B. and Olivieri, P. (1967) Kinetics and mechanism of bacterial disinfection by chlorine dioxide. Appl. Microbiol. 15, 257–265.Google Scholar
  26. Blum, E. (1989) Studies on chemical disinfection reactions using hydrogen peroxide and chlorine in drinking water treatment, PhD Thesis, KfK 4619, Kernforschungszentrum Karlsruhe.Google Scholar
  27. Borutzky, U., Bergmann, H. and Junghannss, U. (2006) Disinfection ability of drinking water treated by electrolysis using doped diamond electrodes, Proceedings 1. European Conference on Environmental Application of Advanced Oxidation Processes (EAAOP), Chania/Crete (Greece), Book of Abstracts, p. 229 and CD full text version P207, pp. 1–6.Google Scholar
  28. Bouzek, K., Bergmann, H. and Paidar (2003) Nitrate removal from drinking and process water (in German). In ALPHA Informationsgesellschaft GmbH (ed.) Handbuch Umweltwissenschaften, Ausgabe 2003/2004, Lampertheim, pp. 81–89.Google Scholar
  29. Burke, M., Tenney, J., Indu, B., Hoq, M.F., Carr, S. and Ernst, W.R. (1993) Kinetics of hydrogen peroxide-chlorate reaction in the formation of chlorine dioxide. Ind. Eng. Chem. Res. 32, 1449–1456.CrossRefGoogle Scholar
  30. Carlson, S. (1991) Fundamentals of water disinfection, J. Water SRT-Aqua 40, 346–356.Google Scholar
  31. Cheng, C.Y. and Kelsall, G.H. (2007) Models of hypochlorite production in electrochemical reactors with plate and porous electrode. J. Appl. Electrochem. 37, 1203–1217.CrossRefGoogle Scholar
  32. Cho, J., Choi, H., Kim, I.S. and Amy, G. (2001) Chemical aspects and by-products of electrolyser. Water Sci. Technol. Water Supply 1, 159–167.Google Scholar
  33. Cho, E.-I., Kim, G.-S., Park, J.-E. and Park, S.-G. (2005) Ozone generation with boron-doped diamond electrodes and its application. In: Fushima, A. and co-ed. Diamond Electrochemistry, Elsevier, Amsterdam, pp. 502–524.Google Scholar
  34. Christensen, E. and Giese, A.C. (1954) Changes in absorption spectra of nucleic acids and derivatives following exposure to ozone and ultraviolet radiation. Arch. Biochem. Biophys. 51, 208–216.CrossRefGoogle Scholar
  35. Crayton, C., Camper, A. and Warwood, B. (1997) Evaluation of mixed oxidants for the disinfection and removal of biofilms from distribution systems, Proceedings of the American Water Eorks Association Water Quality Technology Conference, 3A6/1–3A6/17.Google Scholar
  36. Damjanovic, A. (1992) Progress in the studies of oxygen reduction during the last thirty years. In: Murphy, O.J., Srinivasan, S. and Conway, B.E. (eds.) Electrochemistry in Transition, Plenum, New York, NY, pp.107–146.Google Scholar
  37. D’Ans, J. and Freund, H.E. (1957) Kinetic studies 1. About the formation of chlorate from hypochlorite (in German). Zeitschrift fuer Elektrochemie 61, 10–18.Google Scholar
  38. Dasgupta, P.K., Martinelango, P.K., Jackson, W.A., Anderson, T.A., Tian, K., Tock, R.W. and Rajagopalan, S. (2005) The origin of naturally occurring perchlorate: The role of atmospheric processes. Environ. Sci. Technol. 39, 1569–1575.CrossRefGoogle Scholar
  39. Deslouis, C., Festy, D., Gil, O., Ruis, G., Touzain, S. and Tribollet, E. (1998) Characterization of calcereous deposits in artificial sea water by impedance techniques-I. Deposit of CaCO3 without Mg(OH)2. Electrochim. Acta 43, 1891–1901.Google Scholar
  40. Diao, H.F., Li, X.Y., Gu, J.D., Shi, H.C. and Xie, Z.M. (2004) Electron microscopic investigation of the bactericidal action of electrochemical disinfection in comparison with chlorine, ozonation and Fenton reaction. Process Biochem. 39, 1421–1426.CrossRefGoogle Scholar
  41. Drogui, P., Elmaleh, S., Rumeau, M., Bernard, C. and Rambaud, A. (2001) Hydrogen peroxide production by water electrolysis: Application to disinfection. J. Appl. Electrochem. 31, 877–882.CrossRefGoogle Scholar
  42. Duo, I. (2003) Control of electron transfer kinetics at boron-doped diamond electrodes by surface modification, PhD Thesis, Ecole Polytechnique Federale Lausanne.Google Scholar
  43. Duo, I., Michaud, P.A., Haenni, W., Perret, A. and Comninellis, Ch. (2000) Activation of boron-doped diamond with IrO2 clusters. Electrochem. Solid-State Lett. 3, 325–326.CrossRefGoogle Scholar
  44. Emmenegger, F. and Gordon, G. (1967) The rapid interaction between sodium chlorite and dissolved chlorine. Inorg. Chem. 6, 633–635.CrossRefGoogle Scholar
  45. Ferro, S., De Battisti, A., Duo, I., Comninellis, Ch., Haenni, W. and Perret, A. (2000) Chlorine evolution at highly boron-doped diamond electrodes. J. Electrochem. Soc. 147, 2614–2619.CrossRefGoogle Scholar
  46. Flanagan, J., Jones, D.P., Griffith, W.P., Skapski, A.C. and West, A.P. (1986) On the existence of peroxocarbonates in aqueous solution. J. Chem. Soc. Chem. Commun. 1, 20–21.CrossRefGoogle Scholar
  47. Foerster, H.J., Thiele, W., Fassler, D. and Guenter, K. (2002) Comparative investigation on hypochlorite formation on platinum and diamond electrodes. New Diam. Front. Carbon Technol. 12, 99–105.Google Scholar
  48. Foti, G., Gandini, D., Comninellis, Ch., Perret, A. and Haenni, W. (1999) Production of oxidants on diamond electrodes. Electrochem. Solid-State Lett. 2, 228.CrossRefGoogle Scholar
  49. Fryda, M., Matthee, T., Mulcahy, S., Hampel, A., Schaefer, L. and Troester, I. (2003) Fabrication and application of Diachem{ $Ⓡ$} electrodes. Diam. Relat. Mater. 12, 1950–1965.CrossRefGoogle Scholar
  50. Gabrielli, C., Maurin, G., Perrot, H., Poindessous, G. and Rosset, R. (2002) Investigation of electrochemical calcareous scaling potentiostatic current- and mass–time transients. J. Electroanal. Chem. 538/539, 133–143.Google Scholar
  51. Gainer, J.L., Kirwan, D.L. and Stoner, G.E. (1975) Enzymatic and electrochemical disinfection of pathogens in air and water. Technical Report, Nat Sci. Found. Res. Appl. Nat. Needs NSFR/RA (U.S.), pp. 48–54.Google Scholar
  52. Gates, D.J. (1998) The Chlorine Dioxide Handbook, American Water Works Association, Denver.Google Scholar
  53. Gordon, G. (2001) Is all chlorine dioxide created equal? J. AWWA 93, 163–174.Google Scholar
  54. Gordon, G. and Emmenegger, F. (1966) Complex ion formation between ClO2 and ClO2–. Inorg. Nucl. Chem. Lett. 2, 395–398.CrossRefGoogle Scholar
  55. Gordon, G. and Tachiyashiki, S. (1991) Kinetics and mechanism of formation of chlorate ion from the hypochlorous acid/chlorite ion reaction at pH 6–10. Environ. Sci. Technol. 25, 468–474.CrossRefGoogle Scholar
  56. Gordon, G., Gauw, R., Emmer, G. and Bubnis, B. (1998) The kinetics and mechanism of ClO3- formation following the electrolysis of salt brine: What role do ClO2 and/or O3 play? ACH-Models Chem. 135, 799–809.Google Scholar
  57. Gordon, G., Bolden, R. and Emmert, G. (2002) Measuring oxidant species in electrolysed salt brine solutions. J. AWWA 94, 111–120.Google Scholar
  58. Gottschalk, C., Libra, J.A. and Saupe, A. (2000) Ozonation of water and waste water, Wiley-VCH, Weinheim.Google Scholar
  59. Grebenjuk, V.D., Korchak, G.I., Sobolevskaja, T.T., Konovalova, I.D., Aksilenko, H.D. and Atamanov, M.Yu. (1990) Electrochemical detoxification (in Russian). Khim. Technol. Vody 12, 78–80.Google Scholar
  60. Gu, B., Coates, J. D. (Eds.), Perchlorate, Environmental Occurrence, Interactions and Treatment. Springer, Berlin 2006.Google Scholar
  61. Gutknecht, J., Hartmann, F., Kirmaier, N., Reis, A. and Schoeberl, M. (1981) Anodic Oxidation as a water disinfecting process in food plants and breweries (in German). GIT Fachz. Lab. 25, 472–481.Google Scholar
  62. Gyürek, B.L. and Finch, G.R. (1998) Modeling water treatment chemical disinfection kinetics. J. Environ. Eng. 124, 783–793.CrossRefGoogle Scholar
  63. Haas, C.N. (1990) Disinfection. In: Pontius FA (ed.), Water Quality and Treatment, A Handbook of Community Water Supplies, 4th ed., Chapter 14, Technical editor, American Water Works Association, New York, NY.Google Scholar
  64. Haenni, W., Gobet, J., Perret, A., Pupunat, L., Rychen, P., Comninellis, C. and Corea, B. (2002) Loop-controlled production of chlorine for disinfection of pool water using boron-doped diamond electrodes. New Diam. Front. Carbon Technol. 12, 83–88.Google Scholar
  65. Hamelin, C. and Chung, Y.S. (1978) Role of the pol, rec, and dna gene products in the repair of lesions produced Escherichia coli DNA by ozone. Stud. Biophys. 68, 229–235.Google Scholar
  66. Hamelin, C. and Chung, Y.S. (1989) Repair of ozone-induced DNA lesions in Escherichia coli B cells. Water Res. 214, 253–255.Google Scholar
  67. Hamm, B. (2002) Disinfection by-product reduction using on-site generated mixed oxidants in groundwater treatment. Water Cond. Purif. 44, 24–27.Google Scholar
  68. Held, A.M., Halko, D.J. and Hurst, J.K. (1978) Mechanisms of chlorine oxidation of hydrogen peroxide. J. Am. Chem. Soc. 100, 5732–5740.CrossRefGoogle Scholar
  69. Hernlem, B.J. and Tsai, L.-S. (2000) Chlorine generation and disinfection by electroflotation. J. Food Sci. 65, 834–837.CrossRefGoogle Scholar
  70. Hickling, A. (1947) Some anomalies in the concept of electrode potential as the determining factor in the occurrence of anodic reactions. Disc. Faraday Soc. 1, 227–229.Google Scholar
  71. Hoell, K.(ed.) (2002) Wasser, Walter de Gruyter, Berlin, p. 610.Google Scholar
  72. Hoigne, J. and Bader, H. (1977) Influence of Carbonate on the oxidation ability of ozone and OH radicals (in Germ). Vom Wasser 48, 283–304.Google Scholar
  73. Hong, C.C. and Rapson, W.H. (1968) Analysis of chlorine dioxide, chlorous acid, chlorite, chlorate, and chloride in composite mixtures. Can. J. Chem. 46, 2061–2064.CrossRefGoogle Scholar
  74. Hsu, S.-Y. and Kao, H.-Y. (2004) Effects of storage conditions on chemical and physical properties of electrolysed oxidizing water. J. Food Eng. 65, 465–471.CrossRefGoogle Scholar
  75. Huie, R.E., Poskrebyshev, G.A. and Neta, P. (2005) Reactions of monochloramine with *OH and e-aqu and subsequent reactions of *NH2 and *NHCl with O2. Proceedings Annual Meeting of the ACS, Division of Environmental Chemistry, Washington, pp. 472–474.Google Scholar
  76. Hupert, M., Muck, A., Wang, J., Stotter, J., Cvackova, Z., Haymond, S., Show, Y. and Swain, G.M. (2003) Conductive diamond thin-films in electrochemistry. Diam. Relat. Mater. 12, 1940–1949.CrossRefGoogle Scholar
  77. Internet presentation (2005) Advanced systems for substrate sterilization. (access 21. Feb. 2005).
  78. Ishizaki, K., Sawadaishi, K., Miura, K. and Shinriki, N. (1987) Effect of ozone on plasmid DNA of Eschericha coli in situ. Water Res. 21, 823–827.CrossRefGoogle Scholar
  79. Izumi, H. (1999) Electrolysed water as a disinfectant for fresh-cut vegetables. J. Food Sci. 64, 536–539.CrossRefGoogle Scholar
  80. Jackson, A., Arunagiri, S., Tock, R., Anderson, T. and Rainwater, K. (2004) Technical note: Electrochemical generation of perchlorate in municipal drinking water systems. J. AWWA 96, 103–108.Google Scholar
  81. Jeong, J., Kim, C. and Yoon, J. (2009) The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes. Wat. Res. 43, 895–901.CrossRefGoogle Scholar
  82. Junli, H., Li., Nanqi, R. and Fang, M.A. (1997) Disinfection effect of chlorine dioxide on bacteria in water. Water. Res. 31, 607–613.Google Scholar
  83. Kadyk, T. (2005) Diploma thesis: Comparative analysis of measuring techniques to investigate the scaling of the cathode indirect water disinfection electrolysis, Department 6, Anhalt University, Koethen/Germany.Google Scholar
  84. Kadyk, T., Bergmann, M.E.H. and Bouzek, K. (2006) Comparative analysis of measuring techniques to investigate the scaling of the cathode in direct water disinfection electrolysis, Proceedings 57th Annual Meeting of the International Society of Electrochemistry, 27 Aug. to 1 Sept., Edinburgh, UK.Google Scholar
  85. Katsuki, N., Takahashi, E., Toyoda, M., Kurosu, T., Iida, M., Wakita, S., Nishiki, Y. and Shimamumune (1998) Water electrolysis using diamond thin-film electrodes. J. Electrochem. Soc. 145, 2358–3262.Google Scholar
  86. Kerwick, M.I., Reddy, S.M., Chamberlain, A.H.L. and Holt, D.M. (2005) Electrochemical disinfection, an environmentaly acceptable method of drinking water disinfection? Electrochim. Acta 50, 5270–5277.Google Scholar
  87. Kim, K.-W., Lee, E.-E., Kim, J.-S., Shin, K.-H. and Jung, B.-I. (2002) Material and organic destruction characteristics of high temperature-sintered RuO2 and IrO2 electrodes. J. Electrochem. Soc. 149, D187–D192.CrossRefGoogle Scholar
  88. Kim, K.-W., Kim, Y.-J., Kim, I.-T., Park, G.-I. and Lee, E.-H. (2005) The electrolytic decomposition mechanism of ammonia to nitrogen at an IrO2 anode. Electrochim. Acta 50, 4356–4364.CrossRefGoogle Scholar
  89. Kirk-Othmer (1979) Encyclopedia of Chemical Technology, 3.ed., vol. 5, Wiley, New York, NY.Google Scholar
  90. Kirmaier, N. and Schoberl, M. (1980) The anodic oxidation a new practical method for water disinfection (in German). GIT Fachz. Lab. 24, 443–455.Google Scholar
  91. Kirmaier, N., Hose, G.H. and Reis, A. (1984) Theory, process engineering and practical results of anodic oxidation, Neue Deliwa-Zeitschrift 35, 260–266.Google Scholar
  92. Klaening, U.K. and Wolff, T. (1985) Laser flash photolysis of HOCl, ClO-, HBrO and BrO- in aqueous solution. Reaction of Cl- and Br- ions. Ber. Bunsenges. Phys. Chem. 89, 243–245.Google Scholar
  93. Kodym, R., Bergmann M.E.H. and Bouzek, K. (2005) First results of modelling geometry factors in electrolysis cells for direct drinking water disinfection. Proceedings 56th Annual Meeting of the International Society of Electrochemistry, September 26–30, Busan/Korea, p. 896.Google Scholar
  94. Kodym, R., Bergmann, H. and Bouzek, K. (2006) Results of modelling electrodes and reactors for the direct electrochemical drinking water electrolysis. Proceedings 57th Annual Meeting of the International Society of Electrochemistry, 27 Aug. to 1 Sept., Edinburgh/UK, p. S5-P16.Google Scholar
  95. Kraft, A., Stadelmann, M., Blaschke, M., Kreysig, D., Sandt, B. and Schroeder, F. (1999a) Electrochemical water disinfection, part I: Hypochlorite production from very dilute chloride solutions. J. Appl. Electrochem. 29, 861–868.Google Scholar
  96. Kraft, A., Blaschke, M., Kreysig, D., Sandt, B., Schroeder, F. and Rennau, J. (1999b) Electrochemical water disinfection. Part II: Hypochlorite production from potable water, chlorine consumption and the problem of calcareous deposits. J. Appl. Electrochem. 29, 895–902.CrossRefGoogle Scholar
  97. Kraft, A., Wuensche, M., Stadelmann, M. and Blaschke, M. (2003) Electrochemical water disinfection. Recent Res. Dev. Electrochem. (India) 6, 27–55.Google Scholar
  98. Krasner, S.W., McGuire, M.J., Jacangelo, J.G. and Patania, N.L. (1989) The occurrence of disinfection by-products in U.S. drinking water. J. AWWA 81, 41–53.Google Scholar
  99. Krstajic, N., Nakic, V. and Spasojevic, M. (1987) Hypochlorite production. I. A model of the cathodic reactions. J. Appl. Electrochem. 17, 77–81.Google Scholar
  100. Kuhn, A.T. (1971) Industrial Electrochemical Processes, Elsevier, Amsterdam.Google Scholar
  101. Kuhn, A.T., Hamzah, H. and Collins, G.C.S. (1980) The inhibition of the cathodic reduction of hypochlorite by films deposited at the cathode surface. J. Chem. Technol. Biotechnol. 30, 423–428.CrossRefGoogle Scholar
  102. Langlais, B., Reckhow, D.A. and Brink, D.R. (1991) Ozone in Water Treatment-Application and Engineering, Lewis Publishers, Boca Raton, FL.Google Scholar
  103. Lehmann, T. (2002) DE-OS 102 58 652 A1 (German Patent Application).Google Scholar
  104. Le Truong, G., De Laat, J. and Legube, B. (2004) Effect of chloride and sulfate on the rate of oxidation of ferrous ion by H2O2. Water Res. 38, 2384–2394.CrossRefGoogle Scholar
  105. Leyer, G.J. and Johnson, E.A. (1997) Acid adaptation sensitizes Salmonella typhimurium to hypochlorous acid. Appl. Environ. Microbiol. 63, 461–467.Google Scholar
  106. Markitanova, L.I. and Zenin, G.S. (1990) Mechanism of inactivation of coliform bacteria during electrochemical treatment of water (in Russ.). Khim. Technol. Vody (Leningrad) 12, 658–661.Google Scholar
  107. Marselli, B., Garcia-Gomez, J., Michaud, P.-A., Rodrigo, M.A. and Comninellis, Ch. (2003) Electrogeneration of hydroxyl radicals on boron doped diamond electrodes. J. Electrochem. Soc. 150, D79–D83.CrossRefGoogle Scholar
  108. Matsunaga, T., Namba, Y. and Nakajima, T. (1984) Electrochemical sterilization of microbial cells. Bioelectrochem. Bioenerg. 13, 393–400.CrossRefGoogle Scholar
  109. Matsunaga, T., Nakasono, S., Takamura, T., Burgess, J.G., Nakamura, N. and Sode, K. (1992a) Disinfection of drinking water by using a novel electrochemical reactor employing carbon-cloth electrodes. Appl. Environ. Microbiol. 58, 686–689.Google Scholar
  110. Matsunaga, T., Nakasono, S. and Masuda, S. (1992b) Electrochemical sterilization of bacteria adsorbed on granular activated carbon. FEMS Microbiol. Lett. 93, 255–260.CrossRefGoogle Scholar
  111. Matsunaga, T., Nakasono, S., Kitajima, Y. and Horiguchi, K. (1994) Electrochemical disinfection of bacteria in drinking water using activated carbon fibers. Biotechnol. Bioeng. 43, 429–433.CrossRefGoogle Scholar
  112. Matsunaga, T., Okochi, M., Takahashi, M., Nakayama, T., Wake, H. and Nakamura, N. (2000) TiN electrode reactor for disinfection of drinking water Water Res. 34, 3117–3122.Google Scholar
  113. Michaud, P.-A., Mahe, E., Haenni, W., Perret, A. and Comninellis, Ch. (2000) Preparation of peroxodisulfuric acid using boron-doped diamond thin film electrodes. Electrochem. Solid-State Lett. 3, 77–79.CrossRefGoogle Scholar
  114. Michaud, P.-A., Panniza, M., Quattara, L., Diaco, T., Foti, G. and Comninellis, Ch. (2003) Electrochemical oxidation of water on boron-doped diamond thin film electrodes. J. Appl. Electrochem. 33, 151–154.CrossRefGoogle Scholar
  115. Natishan, P.M. (1984) The use of composite electrodes for the electrochemical disinfection of recirculating fluids. PhD thesis, Faculty of the School of Engineering and Applied Science, University of Virginia.Google Scholar
  116. Oloman, C. (1996) Electrochemical Processing for the Pulp and Paper Industry, The Electrochemical Consultancy, Underhill.Google Scholar
  117. Palacios, M., Pampillon, J.F. and Rodriguez, M.E. (2000) Organohalogenated compounds levels in chlorinated drinking water and current compliance with quality standards throughout the European Union. Water Res. 34, 1002–1016.CrossRefGoogle Scholar
  118. Pareilleux, A. and Sicard, N. (1970) Lethal effects of electric current on Echerichia coli. Appl. Environ. Microbiol. 19, 421–424.Google Scholar
  119. Patermarakis, G. and Fountoukides, E. (1990) Disinfection of water by electrochemical treatment, Water Res. 24, 1491–1496.CrossRefGoogle Scholar
  120. Peintler, G., Nagypal, I. and Epstein, I.R. (1990) Kinetics and mechanism of the reaction between chlorite ion and hypochlorous acid. J. Phys. Chem. 94, 2954–2958.CrossRefGoogle Scholar
  121. Pillai, K.C., Kwon, T.O., Park, B.B. and Moon, I.S. (2009) Studies on process parameters for chlorine dioxide production using IrO2 anode in an un-divided electrochemical cell. J. Haz. Mat. 164, 812–819.CrossRefGoogle Scholar
  122. Pleskov, Y.V. (2003) The electrochemistry of diamond. In: Alkire, R.C. and Kolb, D.M. (eds.) Advances in Electrochemical Science and Engineering, vol. 8, Wiley-VCH, Weilheim, pp. 209–269.Google Scholar
  123. Polcaro, A.M., Vacca, A., Maskia, M., Palmas, S., Pompej, R. and Laconi, S. (2007) Characterization of a stirred tank electrochemical cell for water disinfection processes. Electrochim. Acta 52, 2595–2602.CrossRefGoogle Scholar
  124. Porta, A. and Kulhanek, A. (1986) Process for the electrochemical decontamination of water polluted by pathogenic germs with peroxide formed in situ. US Patent No. 4.619.745.Google Scholar
  125. Reis, A. (1951) The anodic oxidation as an inactivator of pathogenic substances and processes (in German). Klin. Wschr. 29, 484–485.CrossRefGoogle Scholar
  126. Reis, A. (1976) Sterilization and decomposition of noxious organic substances by anodic oxidation (in German) GIT Fachz. Lab. 20, 197–204.Google Scholar
  127. Reis, A. (Editor) (1981) Anodische Oxidation in der Wasser- und Lufthygiene, GIT Verlag, Darmstadt.Google Scholar
  128. Reis, A. and Henninger, T. (1953) Destruction of malignant growth energy by anodic oxidation (in German). Klin. Wschr. 31, 39–40.CrossRefGoogle Scholar
  129. Rosenberg, B., van Camp, L. and Krigas, T. (1965) Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 209, 698–699.CrossRefGoogle Scholar
  130. Rovan E. and Simonsberger P. (1974) The mini-agar-tube method for electronmicroscopic preparation of cell suspensions and small tissue samples (in German). Mikroskopie 30, 129–134.Google Scholar
  131. Saha, M.S., Furutu, T. and Nishiki Y. (2004) Conversion of carbon dioxide to peroxycarbonate at boron-doped diamond electrode. Electrochem. Commun. 6, 201–204.CrossRefGoogle Scholar
  132. Schmidt, W., Boehme, U., Sacher, F. and Brauch, H.-J. (1999) Formation of chlorate by disinfection of drinking water (in German). Vom Wasser 93, 109–126.Google Scholar
  133. Schultze, J.W., Khan, W., Woolfaardt, G.M., Rohns, H.-P., Irmscher, R. and Schoening, J. (2003) High resolution gravimetric, optical and electrochemical investigations of microbial biofilm formation in aqueous systems. Electrochim. Acta 48, 3363–3372.CrossRefGoogle Scholar
  134. Scott, D.B.M. and Lesher, E.C. (1963) Effect of ozone on survival and permeability of Escherichia coli. J. Bacteriol. 85, 567–576.CrossRefGoogle Scholar
  135. Serrano, K., Michaud, P.A., Comninellis, Ch. and Savall, A. (2002) Electrochemical preparation of peroxodisulfuric acid using boron doped diamond thin film electrodes. Electrochim. Acta 48, 431–436.CrossRefGoogle Scholar
  136. Sharma, A.K. and Venkobachar, C. (1979) Effect of prechlorination on coagulation of algae. J. Environ. Health 21, 16–22.Google Scholar
  137. Shimizu, Y. and Sugawara, H. (1996) Virucidal and bactericidal effects of electrolyzed oxidizing water and hypochlorous acid. Jpn. J. Oral Biol. 38, 564–571.Google Scholar
  138. Shimmura, S., Matsumoto, K., Yaguchi, H., Okuda, T., Miyajima, S., Negi, A., Shimazaki, J. and Tsubota, K. (2000) Acidic electrolyse water in the disinfection of the ocular surface. Exp. Eye Res. 70, 1–6.CrossRefGoogle Scholar
  139. Siddiqui, M.S. (1996) Chlorine-ozone interactions: Formation of chlorate. Wat. Res. 30, 2160–2170.CrossRefGoogle Scholar
  140. Son, H., Cho, M., Kim, J., Oh, B., Chung, H. and Yoon, J. (2005) Enhanced disinfection efficiency of mechanically mixed oxidants with free chlorine. Water Res. 39, 721–727.CrossRefGoogle Scholar
  141. Stoner, G.E., Cahen, G.L., Sachyani, M. and Gileadi, E. (1982) The mechanism of low frequency AC electrochemical disinfection. Bioelectrochem. Bioenerg. 9, 229–243.CrossRefGoogle Scholar
  142. Tasaka, A. and Tojo T. (1985) Anodic oxidation mechanism of hypochlorite ion on platinum electrode in alkaline solution. J. Electrochem. Soc. 132, 1855–1859.CrossRefGoogle Scholar
  143. Thiele, W. and Foerster, H.-J. (2006) Progress in electrochemical ozone generation and disinfection of ultra-pure water using new electrochemical cell with polymer membrane separators (in German). Proceedings of the Annual GDCh Meeting, Bayreuth 2006.Google Scholar
  144. Trasatti, S. (ed.) (1981) Studies in Physical and Theoretical Chemistry 11-Electrodes of Conductive Metallic Oxides, Part B, Elsevier, Amsterdam.Google Scholar
  145. Trasatti, S. (2000) Electrocatalysis: Understanding the success of DSA. Electrochim. Acta 45, 2377–2385.CrossRefGoogle Scholar
  146. Tsai, L.S., Hernlem, B. and Huxsoll, C.C. (2002) Disinfection and solids removal of poultry chiller water by electroflotation. J. Food Sci. 67, 2160–2164.CrossRefGoogle Scholar
  147. Urbansky, E.T. and Schock, M.R. (1999) Issues in managing the risks associated with perchlorate in drinking water. J. Environ. Manage. 56, 79–95.CrossRefGoogle Scholar
  148. Von Gunten, U. (2003) Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res. 37, 1469–1487.CrossRefGoogle Scholar
  149. Von Sonntag, C. (1987) The Chemical Basis of Radiation Biology, Taylor and Francis, London.Google Scholar
  150. Wardman, P. (1989) Reduction potentials of one-electron couples involving free radicals in aqueous solution. J. Phys. Chem. Ref. Data 18, 1637–1755.CrossRefGoogle Scholar
  151. White, G.C. (1999) Handbook of Chlorination and Alternative Disinfectants, 4.ed., Wiley, New York, NY.Google Scholar
  152. Zhang, J. and Oloman, C.W. (2005) Electro-oxidation of carbonate in aqueous solution on a platinum rotating disk electrode. J. Appl. Electrochem. 35, 945–953.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Departments 6/7Anhalt University of Applied Sciences06366Koethen/Anh.Germany

Personalised recommendations