Techniques of Electrode Fabrication

  • Liang Guo
  • Xinyong Li
  • Guohua Chen


Electrochemical applications using many kinds of electrode materials as an advanced oxidation/reduction technique have been a focus of research by a number of groups during the last two decades. The electrochemical approach has been adopted successfully to develop various environmental applications, mainly including water and wastewater treatment, aqueous system monitoring, and solid surface analysis. In this chapter, a number of methods for the fabrication of film-structured electrode materials were selectively reviewed. Firstly, the thermal decomposition method is briefly described, followed by introducing chemical vapor deposition (CVD) strategy. Especially, much attention was focused on introducing the methods to produce diamond novel film electrode owing to its unique physical and chemical properties. The principle and influence factors of hot filament CVD and plasma enhanced CVD preparation were interpreted by refereeing recent reports. Finally, recent developments that address electro-oxidation/reduction issues and novel electrodes such as nano-electrode and boron-doped diamond electrode (BDD) are presented in the overview.


Chemical Vapor Deposition Diamond Film Chemical Vapor Deposition Process Chemical Vapor Deposition Method Thermal Decomposition Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ager, J. W. and Drory, M. D. (1993), Quantitative measurement of residual biaxial stress by Raman-spectroscopy in diamond grown on a Ti alloy by chemical-vapor-deposition. Phys. Rev. B, 48(4): 2601–2607.CrossRefGoogle Scholar
  2. Agui, L., Vega-Montenegro, D., Yanez-Sedeno, P. and Pingarron, J. M. (2005), Rapid voltammetric determination of nitroaromatic explosives at electrochemically activated carbon-fibre electrodes. Anal. Bioanal. Chem., 382(2): 381–387.CrossRefGoogle Scholar
  3. Alves, V. A., Silva, L. A. D., Oliveira, E. D. and Boodts, J. F. C. (1998), Investigation under conditions of accelerated anodic corrosion of the effect of TiO2 substitution by CeO2 on the stability of Ir-based ceramic coatings. Mater. Sci. Forum, 289–292: 655–666.CrossRefGoogle Scholar
  4. Angelinetta, C., Trasatti, S., Atanasoska, L. D., Minevski, Z. S. and Atanasoski, R. T. (1989), Effect of preparation on the surface and electrocatalytic properties of RuO2 + IrO2 mixed oxide electrodes. Mater. Chem. Phys., 22(1–2): 231–247.CrossRefGoogle Scholar
  5. Angus, J. C. and Hayman, C. C. (1988), Low-pressure, metastable growth of diamond and “diamondlike” phases. Science, 241(4868): 913–921.CrossRefGoogle Scholar
  6. Angus, J. C., Argoitia, A., Gat, R., Li, Z., Sunkara, M., Wang, L. and Wang, Y. (1993), Chemical vapour deposition of diamond. Philos. Trans. Phys. Sci. Eng., 342(1664): 195–208.CrossRefGoogle Scholar
  7. Arca, M., Mirkin, M. V. and Bard, A. J. (1995), Polymer-films on electrodes. 26. Study of ion-transport and electron-transfer at polypyrrole films by scanning electrochemical microscopy. J. Phys. Chem., 99(14): 5040–5050.Google Scholar
  8. Arribas, A. S., Bermejo, E., Chicharro, M. and Zapardiel, A. (2006), Voltammetric detection of the herbicide metamitron at a bismuth film electrode in nondeaerated solution. Electroanalysis, 18(23): 2331–2336.CrossRefGoogle Scholar
  9. Awad, H. S. and Galwa, N. A. (2005), Electrochemical degradation of acid blue and basic brown dyes on Pb ∕ PbO2 electrode in the presence of different conductive electrolyte and effect of various operating factors. Chemosphere, 61(9): 1327–1335.CrossRefGoogle Scholar
  10. Bachmann, P. K., Leers, D. and Lydtin, H. (1991), Towards a general concept of diamond chemical vapour deposition. Diam. Relat. Mater., 1(1): 1–12.CrossRefGoogle Scholar
  11. Balasubramanian, K. and Burghard, M. (2006), Biosensors based on carbon nanotubes. Anal. Bioanal. Chem., 385(3): 452–468.CrossRefGoogle Scholar
  12. Banholzer, W. (1992), Understanding the mechanism of CVD diamond. Surf. Coat. Technol., 53(1): 1–12.CrossRefGoogle Scholar
  13. Baranauskas, V., Ceragioli, H. J., Peterlevitz, A. C., Tosin, M. C. and Durrant, S. F. (2000), Effects of argon dilution of an ethanol/hydrogen gas feed on the growth of diamond by hot-filament chemical vapor deposition. Thin Solid Films, 377–378: 303–308.CrossRefGoogle Scholar
  14. Bard, A. J., Fan, F. R. F., Pierce, D. T., Unwin, P. R., Wipf, D. O. and Zhou, F. M. (1991), Chemical imaging of surfaces with the scanning electrochemical microscope. Science, 254(5028): 68–74.CrossRefGoogle Scholar
  15. Barker, A. L., Gonsalves, M., MacPherson, J. V., Slevin, C. J. and Unwin, P. R. (1999), Scanning electrochemical microscopy: Beyond the solid/liquid interface. Anal. Chim. Acta, 385(1–3): 223–240.CrossRefGoogle Scholar
  16. Beer, H. B., Belgian, Patent 710751 (1968).Google Scholar
  17. Beer, H. B., British, Patent 1147442 (1969).Google Scholar
  18. Beer, H. B., US, Patent 3632498 (1972).Google Scholar
  19. Beer, H. B., US, Patent 3711385 (1973).Google Scholar
  20. Beer, H. B. (1980), The invention and industrial development of metal anodes. J. Electrochem. Soc., 127(8): 303C–307C.CrossRefGoogle Scholar
  21. Bejan, D., Sagitova, F. and Bunce, N. J. (2005), Evaluation of electrolysis for oxidative deodorization of hog manure. J. Appl. Electrochem., 35(9): 897–902.CrossRefGoogle Scholar
  22. Ben Mansour, L. and Chalbi, S. (2006), Removal of oil from oil/water emulsions using electroflotation process. J. Appl. Electrochem., 36(5): 577–581.CrossRefGoogle Scholar
  23. Bergmann, M. E. H. and Koparal, A. S. (2005), Studies on electrochemical disinfectant production using anodes containing RuO2. J. Appl. Electrochem., 35(12): 1321–1329.CrossRefGoogle Scholar
  24. Bergmann, H., Iourtchouk, T., Schops, K. and Bouzek, K. (2002), New UV irradiation and direct electrolysis – promising methods for water disinfection. Chem. Eng. J., 85(2–3): 111–117.CrossRefGoogle Scholar
  25. Bruckner, J. and Mantyla, T. (1993), Diamond chemical vapour deposition using tantalum filaments in H2–CH4–O2 gas mixtures. Diam. Relat. Mater., 2(2–4 pt 1): 373–377.CrossRefGoogle Scholar
  26. Bruhne, K., Kumar, K. V., Fecht, H. J., Gluche, P. and Floter, A. (2005), Nanocrystalline HFCVD-grown diamond and its industrial applications. Rev. Adv. Mater. Sci., 10(3): 224–228.Google Scholar
  27. Brunsteiner, R., Haubner, R. and Lux, B. (1996), Influence of carbon monoxide – addition to the reaction gas on the hot-filament diamond deposition. Int. J. Refract. Met. Hard Mater., 14(1–3 SPEC. ISS.): 127–135.Google Scholar
  28. Campari, M., Tavares, A. C. and Trasatti, S. (2002), Thermally prepared Ti ∕ RhOx electrodes – II; H2 evolution in acidic solution. Chem. Ind. J., 56(6): 231–237.Google Scholar
  29. Canizares, P., Martinez, F., Diaz, M., Garcia-Gomez, J. and Rodrigo, M. A. (2002), Electrochemical oxidation of aqueous phenol wastes using active and nonactive electrodes. J. Electrochem. Soc., 149(8): D118–D124.CrossRefGoogle Scholar
  30. Canizares, P., Lobato, J., Paz, R., Rodrigo, M. A. and Saez, C. (2005), Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes. Water Res., 39(12): 2687–2703.CrossRefGoogle Scholar
  31. Cardarelli, F., Taxil, P., Savall, A., Comninellis, C., Manoli, G. and Leclerc, O. (1998), Preparation of oxygen evolving electrodes with long service life under extreme conditions. J. Appl. Electrochem., 28(3): 245–250.CrossRefGoogle Scholar
  32. Carrington, N. A., Yong, L. and Xue, Z. L. (2006), Electrochemical deposition of sol–gel films for enhanced chromium(VI) determination in aqueous solutions. Anal. Chim. Acta, 572(1): 17–24.CrossRefGoogle Scholar
  33. Casella, I. G., Contursi, M. and Desimoni, E. (2002), Amperometric detection of sulfur-containing compounds in alkaline media. Analyst, 127(5): 647–652.CrossRefGoogle Scholar
  34. Cassidy, W. D., Evans, E. A., Wang, Y., Angus, J. C., Bachmann, P. K., Hagemann, H.-J., Leers, D. and Wiechert, D. U. (1994), Diamond growth rates and quality: Dependence on gas phase composition. Materials Research Society Symposium – Proceedings. Case Western Reserve University, Cleveland, OH.Google Scholar
  35. Chandra, L., Chhowalla, M., Amaratunga, G. A. J. and Clyne, T. W. (1996), Residual stresses and debonding of diamond films on titanium alloy substrates. Diam. Relat. Mater., 5(6–8): 674–681.CrossRefGoogle Scholar
  36. Chang, C. P., Flamm, D. L., Ibbotson, D. E. and Mucha, J. A. (1988), Diamond crystal growth by plasma chemical vapor deposition. J. Appl. Phys., 63(5): 1744.Google Scholar
  37. Chatzisymeon, E., Xekoukoulotakis, N. P., Coz, A., Kalogerakis, N. and Mantzavinos, D. (2006), Electrochemical treatment of textile dyes and dyehouse effluents. J. Hazard. Mater., 137(2): 998–1007.CrossRefGoogle Scholar
  38. Chein, T. H. and Tzeng, Y. (1999), CVD diamond grown by microwave plasma in mixtures of acetone/oxygen and acetone/carbon dioxide. Diam. Relat. Mater., 8(8–9): 1393–1401.CrossRefGoogle Scholar
  39. Chen, X. and Chen, G. (2005a), Investigation of Ti∕IrO2 − b2O5 − SnO2 electrodes for O2 evolution calcination temperature and precursor composition effects. J. Electrochem. Soc., 152(7).Google Scholar
  40. Chen, X. and Chen, G. (2005b), Stable Ti∕RuO2 − Sb2O5 − SnO2 electrodes for O2 evolution. Electrochim. Acta, 50(20): 4155–4159.CrossRefGoogle Scholar
  41. Chen, Q. J. and Lin, Z. D. (1995), Diamond growth on thin Ti wafers via chemical-vapor-deposition. J. Mater. Res., 10(11): 2685–2688.CrossRefGoogle Scholar
  42. Chen, C.-F., Huang, Y. C., Hosomi, S. and Yoshida, I. (1989), Effect of oxygen addition on microwave plasma CVD of diamond from CH4–H2 mixture. Mater. Res. Bull., 24(1): 87–94.CrossRefGoogle Scholar
  43. Chen, C.-F., Chen, S.-H., Ko, H.-W. and Hsu, S. E. (1994), Low temperature growth of diamond films by microwave plasma chemical vapor deposition using CH4 + CO2 gas mixtures. Diam. Relat. Mater., 3(4–6): 443–447.CrossRefGoogle Scholar
  44. Chen, G. H., Chen, X. M. and Yue, P. L. (2000), Electrocoagulation and electroflotation of restaurant wastewater. J. Environ. Eng. -ASCE, 126(9): 858–863.CrossRefGoogle Scholar
  45. Chen, X., Chen, G. and Yue, P. L. (2001), Stable Ti ∕ IrOx–Sb2O5–SnO2 anode for O2 evolution with low Ir content. J. Phys. Chem. B, 105: 4623–4628.CrossRefGoogle Scholar
  46. Chen, G., Chen, X. and Yue, P. L. (2002a), Electrochemical behavior of novel Ti ∕ IrOx–Sb2O5–SnO2 anodes. 106: 4364–4369.Google Scholar
  47. Chen, X., Chen, G. and Yue, P. L. (2002b), Novel electrode system for electroflotation of wastewater. Environ. Sci. Technol., 36(4): 778–783.CrossRefGoogle Scholar
  48. Chen, X., Chen, G., Gao, F. and Yue, P. L. (2003), High-performance Ti/BDD electrodes for pollutant oxidation. Environ. Sci. Technol., 37(21): 5021–5026.CrossRefGoogle Scholar
  49. Chen, X., Gao, F. and Chen, G. (2005), Comparison of Ti/BDD and Ti ∕ SnO2–Sb2O5 electrodes for pollutant oxidation. J. Appl. Electrochem., 35(2): 185–191.CrossRefGoogle Scholar
  50. Chen, J. C., Shih, J. L., Liu, C. H., Kuo, M. Y. and Zen, J. M. (2006), Disposable electrochemical sensor for determination of nitroaromatic compounds by a single-run approach. Anal. Chem., 78(11): 3752–3757.CrossRefGoogle Scholar
  51. Chopra, K. L., Major, S. and Pandya, D. K. (1983), Transparent conductors – a status review. Thin Solid Films, 102(1): 1–46.CrossRefGoogle Scholar
  52. Codognoto, L., Tanimoto, S. T., Pedrosa, V. A., Suffredini, H. B., Machado, S. A. S. and Avaca, L. A. (2006), Electroanalytical determination of carbaryl in natural waters on boron doped diamond electrode. Electroanalysis, 18(3): 253–258.CrossRefGoogle Scholar
  53. Comninellis, C. (1994), Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim. Acta, 39(11–12): 1857–1862.CrossRefGoogle Scholar
  54. Comninellis, C. and Pulgarin, C. (1993), Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes. J. Appl. Electrochem., 23(2): 108–112.CrossRefGoogle Scholar
  55. Comninellis, C. and Vercesi, G. P. (1991a), Characterization of DSA-type oxygen evolving electrodes: Choice of a coating. J. Appl. Electrochem., 21(4): 335–345.CrossRefGoogle Scholar
  56. Comninellis, C. and Vercesi, G. P. (1991b), Problems in DSA®; coating deposition by thermal decomposition. J. Appl. Electrochem., 21(2): 136–142.CrossRefGoogle Scholar
  57. Cooper, J. B., Pang, S., Albin, S., Zheng, J. and Johnson, R. M. (1998), Fabrication of boron-doped CVD diamond microelectrodes. Anal. Chem., 70(3): 464–467.CrossRefGoogle Scholar
  58. Corat, E. J., Trava-Airoldi, V. J., Leite, N. F., Pena, A. F. V. and Baranauskas, V. (1994), Low temperature diamond growth with CF4 addition in a hot filament reactor. Materials Research Society Symposium – Proceedings. Spring Meeting, San Fransisco, CA.Google Scholar
  59. Correa-Lozano, B., Comninellis, C. and De Battisri, A. (1996), Physicochemical properties of SnO2–Sb2O5 films prepared by the spray pyrolysis technique. J. Electrochem. Soc., 143(1): 203–209.CrossRefGoogle Scholar
  60. Correa-Lozano, B., Comninellis, C. and De Battisti, A. (1997), Service life of Ti ∕ SnO2–Sb2O5 anodes. J. Appl. Electrochem., 27(8): 970–974.CrossRefGoogle Scholar
  61. Coteiro, R. D., Teruel, F. S., Ribeiro, J. and De Andrade, A. R. (2006), Effect of solvent on the preparation and characterization of DSA-type anodes containing RuO2–TiO2–SnO2. J. Braz. Chem. Soc., 17(4): 771–779.CrossRefGoogle Scholar
  62. Cui, X. L., Liu, G. D., Li, L. Y., Yantasee, W. and Lin, Y. H. (2005), Electrochemical sensor based on carbon paste electrode modified with nanostructured cryptomelane-type manganese oxides for detection of heavy metals. Sensor Lett., 3(1): 16–21.CrossRefGoogle Scholar
  63. Da Silva, L. M., Franco, D. V., Forti, J. C., Jardim, W. F. and Boodts, J. F. C. (2006), Characterisation of a laboratory electrochemical ozonation system and its application in advanced oxidation processes. J. Appl. Electrochem., 36(5): 523–530.CrossRefGoogle Scholar
  64. Dai, X. and Compton, R. G. (2006), Detection of As(III) via oxidation to As(V) using platinum nanoparticle modified glassy carbon electrodes: Arsenic detection without interference from copper. Analyst, 131(4): 516–521.CrossRefGoogle Scholar
  65. Davis, R. F. (1993), Diamond Films and Coatings: Development, Properties, and Applications. Noyes Publications, Park Ridge, NJ.Google Scholar
  66. De Souza and Machado, S. A. S. (2006), Study of the electrochemical behavior and sensitive detection of pesticides using microelectrodes allied to square-wave voltammetry. Electroanalysis, 18(9): 862–872.CrossRefGoogle Scholar
  67. De Souza, D., De Toledo, R. A., Suffredini, H. B., Mazo, L. H. and Machado, S. A. S. (2006), Characterization and use of copper solid amalgam electrode for electroanalytical determination of triazines-based herbicides. Electroanalysis, 18(6): 605–612.CrossRefGoogle Scholar
  68. Deguchi, M., Kitabatake, M. and Hirao, T. (1996), Electrical properties of boron-doped diamond films prepared by microwave plasma chemical vapour deposition. Thin Solid Films, 281–282(1–2): 267–270.CrossRefGoogle Scholar
  69. Devilliers, D., Devos, B. and Groult, H. (2007), Dimensionally stable PbO2 electrodes for lead acid batteries. J. New Mater. Electrochem. Sys., 10(3): 187–193.Google Scholar
  70. Dikonimos Makris, T., Giorgi, R., Lisi, N., Pilloni, L., Salernitano, E., Sarto, F. and Alvisi, M. (2004), Carbon nanotubes growth by HFCVD: Effect of the process parameters and catalyst preparation. Diam. Relat. Mater., 13(2): 305–310.CrossRefGoogle Scholar
  71. Drory, M. D. and Hutchinson, J. W. (1994), Diamond coating of titanium alloys. Science, 263(5154): 1753–1755.CrossRefGoogle Scholar
  72. Duby, P. (1993), The history of progress in dimensionally stable anodes. J. Miner. Met. Mater. Soc., 45(3): 41–43.Google Scholar
  73. Erdem, A., Pividori, M. I., Lermo, A., Bonanni, A., del Valle, M. and Alegret, S. (2006), Genomagnetic assay based on label-free electrochemical detection using magneto-composite electrodes. Sensor Actuator B Chem., 114(2): 591–598.CrossRefGoogle Scholar
  74. Fang, Q., Shang, C. and Chen, G. H. (2006), MS2 inactivation by chloride-assisted electrochemical disinfection. J. Environ. Eng., 132(1): 13–22.CrossRefGoogle Scholar
  75. Faouzi, A. M., Nasr, B. and Abdellatif, G. (2007), Electrochemical degradation of anthraquinone dye alizarin reds by anodic oxidation on boron-doped diamond. Dyes Pigments, 73(1): 86–89.CrossRefGoogle Scholar
  76. Fayette, L., Mermoux, M. and Marcus, B. (1994), Role of the nucleation step in the growth rate of diamond films. Diam. Relat. Mater., 3(4–6): 480–485.CrossRefGoogle Scholar
  77. Feng, K. J., Yang, Y. H., Wang, Z. J., Jiang, J. H., Shen, G. L. and Yu, R. Q. (2006), A nano-porous CeO2/Chitosan composite film as the immobilization matrix for colorectal cancer DNA sequence-selective electrochemical biosensor. Talanta, 70(3): 561–565.CrossRefGoogle Scholar
  78. Ferrer, J. E. and Victori, L. (1994), Oxygen evolution reaction on the iridium electrode in basic medium studied by electrochemical impedance spectroscopy. Electrochim. Acta, 39(4): 581–588.CrossRefGoogle Scholar
  79. Fierro, J. L. G. (2006), Metal Oxides: Chemistry and Applications. CRC, Boca Raton, FL.Google Scholar
  80. Foti, G., Gandini, D., Comninellis, C., Perret, A. and Haenni, W. (1999), Oxidation of organics by intermediates of water discharge on IrO2 and synthetic diamond anodes. Electrochem. Solid State Lett., 2(5): 228–230.CrossRefGoogle Scholar
  81. Frohlich, K., Machajdik, D., Cambel, V., Luptak, R., Pignard, S., Weiss, F., Baumann, P. and Lindner, J. (2001), Substrate dependent growth of highly conductive RuO2 films. J. De Phys., 11: Pr11-77-81.Google Scholar
  82. Fu, Y. Q., Du, H. J. and Sun, C. Q. (2003), Interfacial structure, residual stress and adhesion of diamond coatings deposited on titanium. Thin Solid Films, 424(1): 107–114.CrossRefGoogle Scholar
  83. Galizzioli, D., Tantardini, F. and Trasatti, S. (1974), Ruthenium dioxide: A new electrode material. I. Behaviour in acid solutions of inert electrolytes. J. Appl. Electrochem., 4(1): 57–67.Google Scholar
  84. Galizzioli, D., Tantardini, F. and Trasatti, S. (1975), Ruthenium dioxide: A new electrode material. II. Non-stoichiometry and energetics of electrode reactions in acid solutions. J. Appl. Electrochem., 5(3): 203–214.Google Scholar
  85. Gao, P., Chen, X. M., Shen, F. and Chen, G. H. (2005), Removal of chromium(VI) from wastewater by combined electrocoagulation – electroflotation without a filter. Purif. Technol., 43(2): 117–123.CrossRefGoogle Scholar
  86. Gerger, I., Haubner, R., Kronberger, H. and Fafilek, G. (2004), Investigation of diamond coatings on titanium substrates for electrochemical applications. Diam. Relat. Mater., 13(4–8): 1062–1069.CrossRefGoogle Scholar
  87. Ghasemi, S., Mousavi, M. F. and Shamsipur, M. (2007), Electrochemical deposition of lead dioxide in the presence of polyvinylpyrrolidone. A morphological study. Electrochim. Acta, 53(2): 459–467.CrossRefGoogle Scholar
  88. Gilbert, D. R., Singh, R. K. and Huang, M. (1999), Chemical vapor deposition of diamond from alcohol precursors at 1.0 torr. Mater. Res. Soc. Symp. Proc., 555: 227–232.Google Scholar
  89. Gooding, J. J. (2005), Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing. Electrochim. Acta, 50(15): 3049–3060.CrossRefGoogle Scholar
  90. Gopal Ganesan, P. and Eizenberg, M. (2003), Chemical vapor deposited RuOx films: Interfacial adhesion study. Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol., 103(3): 213–218.Google Scholar
  91. Gun, J., Salaun, P. and van den Berg, C. M. G. (2006), Advantages of using a mercury coated, micro-wire, electrode in adsorptive cathodic stripping voltammetry. Anal. Chim. Acta, 571(1): 86–92.CrossRefGoogle Scholar
  92. Guo, L. and Chen, G. (2007a), High-quality diamond film deposition on a titanium substrate using the hot-filament chemical vapor deposition method. Diam. Relat. Mater., 16(8): 10.Google Scholar
  93. Guo, L. and Chen, G. (2007b), Long-term stable Ti/BDD electrode fabricated with HFCVD method using two-stage substrate temperature. J. Electrochem. Soc., 154(12).Google Scholar
  94. Guzsvany, V., Kaddar, M., Gaal, F., Bjelica, L. and Toth, K. (2006), Bismuth film electrode for the cathodic electrochemical determination of thiamethoxam. Electroanalysis, 18(13–14): 1363–1371.CrossRefGoogle Scholar
  95. Hattori, S., Doi, M., Takahashi, E., Kurosu, T., Nara, M., Nakamatsu, S., Nishiki, Y., Furuta, T. and Iida, M. (2003), Electrolytic decomposition of Amaranth dyestuff using diamond electrodes. J. Appl. Electrochem., 33(1): 85–91.CrossRefGoogle Scholar
  96. Haubner, R. and Lux, B. (1993), Diamond growth by hot-filament chemical vapor deposition: State of the art. Diam. Relat. Mater., 2(9): 1277–1294.CrossRefGoogle Scholar
  97. Haubner, R., Bohr, S. and Lux, B. (1999), Comparison of P, N and B additions during CVD diamond deposition. Diam. Relat. Mater., 8(2–5): 171–178.Google Scholar
  98. He, D. L. and Mho, S. I. (2004), Electrocatalytic reactions of phenolic compounds at ferric ion co-doped SnO2 : Sb5 + electrodes. J. Electroanal. Chem., 568(1–2): 19–27.CrossRefGoogle Scholar
  99. Heinze, J. (1993), Ultramicroelectrodes in electrochemistry. Angew. Chem., 32(9): 1268–1288.Google Scholar
  100. Hian, L. C., Grehan, K. J., Compton, R. G., Foord, J. S. and Marken, F. (2003), Nanodiamond thin films on titanium substrates growth and electrochemical properties. J. Electrochem. Soc., 150(1): E59–E56.CrossRefGoogle Scholar
  101. Hirakuri, K. K., Kobayashi, T., Nakamura, E., Mutsukura, N., Friedbacher, G. and Machi, Y. (2001), Influence of the methane concentration on hf-cvd diamond under atmospheric pressure. Vacuum, 63(3): 449–454.CrossRefGoogle Scholar
  102. Hitchman, M. L. and Jensen, K. F. (1993), Chemical Vapor Deposition: Principles and Applications. Academic, London.Google Scholar
  103. Hong, F. C.-N., Hsieh, J.-C., Wu, J.-J., Liang, G.-T. and Hwang, J.-H. (1993), Low temperature deposition of diamond using chloromethane in a hot-filament chemical vapor deposition reactor. Diam. Relat. Mater., 2(2–4 pt 1): 365–372.CrossRefGoogle Scholar
  104. Horrocks, B. R., Schmidtke, D., Heller, A. and Bard, A. J. (1993), Scanning electrochemical microscopy.24. Enzyme ultramicroelectrodes for the measurement of hydrogen-peroxide at surfaces. Anal. Chem., 65(24): 3605–3614.Google Scholar
  105. Hrapovic, S., Majid, E., Liu, Y., Male, K. and Luong, J. H. T. (2006), Metallic nanoparticle-carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds. Anal. Chem., 78(15): 5504–5512.CrossRefGoogle Scholar
  106. Hrussanova, A., Guerrini, E. and Trasatti, S. (2004), Thermally prepared Ti ∕ RhOx electrodes IV: O2 evolution in acid solution. J. Electroanal. Chem., 564(1–2): 151–157.CrossRefGoogle Scholar
  107. Huang, H., Tan, O. K., Lee, Y. C. and Tse, M. S. (2006), Preparation and characterization of nanocrystalline SnO2 thin films by PECVD. J. Cryst. Growth, 288(1): 70–74.CrossRefGoogle Scholar
  108. Hutton, E. A., Ogorevc, B., Hocevar, S. B. and Smyth, M. R. (2006), Bismuth film microelectrode for direct voltammetric measurement of trace cobalt and nickel in some simulated and real body fluid samples. Anal. Chim. Acta, 557(1–2): 57–63.CrossRefGoogle Scholar
  109. Ivandini, T. A., Rao, T. N., Fujishima, A. and Einaga, Y. (2006a), Electrochemical oxidation of oxalic acid at highly boron-doped diamond electrodes. Anal. Chem., 78(10): 3467–3471.CrossRefGoogle Scholar
  110. Ivandini, T. A., Sato, R., Makide, Y., Fujishima, A. and Einaga, Y. (2006b), Electrochemical detection of arsenic(III) using iridium-implanted boron-doped diamond electrodes. Anal. Chem., 78(18): 6291–6298.CrossRefGoogle Scholar
  111. Iwakura, C., Inai, M., Uemura, T. and Tamura, H. (1981), Anodic evolution of oxygen and chlorine on foreign metal-doped SnO2 film electrodes. Electrochim. Acta, 26(4): 579–584.CrossRefGoogle Scholar
  112. Jasmin Shah, E. W. (2003), Electrochemical biosensors for detection of biological warfare agents. Electroanalysis, 15: 157–167.CrossRefGoogle Scholar
  113. Jeong, J., Kim, J. Y. and Yoon, J. (2006), The role of reactive oxygen species in the electrochemical inactivation of microorganisms. Environ. Sci. Technol., 40(19): 6117–6122.CrossRefGoogle Scholar
  114. Ji, X. B., Banks, C. E. and Compton, R. G. (2005), The electrochemical oxidation of ammonia at boron-doped diamond electrodes exhibits analytically useful signals in aqueous solutions. Analyst, 130(10): 1345–1347.CrossRefGoogle Scholar
  115. Kawagoe, K. T., Zimmerman, J. B. and Wightman, R. M. (1993), Principles of voltammetry and microelectrode surface states. J. Neurosci. Methods, 48(3): 225–240.CrossRefGoogle Scholar
  116. Kefala, G. and Economou, A. (2006), Polymer-coated bismuth film electrodes for the determination of trace metals by sequential-injection analysis/anodic stripping voltarnmetry. Anal. Chim. Acta, 576(2): 283–289.CrossRefGoogle Scholar
  117. Khelifa, A., Moulay, S. and Naceur, A. W. (2005), Treatment of metal finishing effluents by the electroflotation technique. Desalination, 181(1–3): 27–33.CrossRefGoogle Scholar
  118. Kilbey, G., Karousos, N. G., Eglin, D. and Davis, J. (2006), Laser etched carbon fibre composites: Disposable detectors for flow analysis applications. Electrochem. Commun., 8(8): 1315–1320.CrossRefGoogle Scholar
  119. Kim, S. D. (2007), Thermal stabilities of metal bottom electrodes for Ta2O5 metal-oxide-metal capacitor structure. Curr. Appl. Phys., 7(2): 124–134.CrossRefGoogle Scholar
  120. Kim, Y. K., Jung, J. H., Lee, J. Y. and Ahn, H. J. (1995), The effects of oxygen on diamond synthesis by hot-filament chemical vapor deposition. J. Mater. Sci. Mater. Electron., 6(1): 28–33.CrossRefGoogle Scholar
  121. Kim, K. W., Lee, E. H., Kim, J. S., Shin, K. H. and Kim, K. H. (2001), Study on the electro-activity and non-stochiometry of a Ru-based mixed oxide electrode. Electrochim. Acta, 46(6): 915–921.CrossRefGoogle Scholar
  122. Kim, K. W., Lee, E. H., Kim, J. S., Shin, K. H. and Jung, B. I. (2002), A study on performance improvement of Ir oxide-coated titanium electrode for organic destruction. Electrochim. Acta, 47(15): 2525–2531.CrossRefGoogle Scholar
  123. Kim, S., Kim, T. H., Park, C. and Shin, E. B. (2003a), Electrochemical oxidation of polyvinyl alcohol using a RuO2/Ti anode. Desalination, 155(1): 49–57.CrossRefGoogle Scholar
  124. Kim, Y. S., Park, Y. C., Ansari, S. G., Lee, B. S. and Shin, H. S. (2003b), Effect of substrate temperature on the bonded states of indium tin oxide thin films deposited by plasma enhanced chemical vapor deposition. Thin Solid Films, 426(1–2): 124–131.CrossRefGoogle Scholar
  125. Kinoshita, K. (1992), Electrochemical Oxygen Technology. Wiley, New York.Google Scholar
  126. Knight, D. S. and White, W. B. (1989), Characterization of diamond films by Raman spectroscopy. J. Mater. Res., 4(2): 385–393.CrossRefGoogle Scholar
  127. Koizumi, S., Kamo, M., Sato, Y., Mita, S., Sawabe, A., Reznik, A., Uzan-Saguy, C. and Kalish, R. (1998), Growth and characterization of phosphorus doped n-type diamond thin films. Diam. Relat. Mater., 7(2–5): 540–544.CrossRefGoogle Scholar
  128. Kondoh, E., Ohta, T., Mitomo, T. and Ohtsuka, K. (1994), Effect of gas-phase composition on the surface morphology of polycrystalline diamond films. Diam. Relat. Mater., 3(3): 270–276.CrossRefGoogle Scholar
  129. Kong, J., Shi, S., Kong, L., Zhu, X. and Ni, J. (2007), Preparation and characterization of PbO2 electrodes doped with different rare earth oxides. Electrochim. Acta, 53(4): 2048–2054.CrossRefGoogle Scholar
  130. Kotz, R. and Stucki, S. (1986), Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media. Electrochim. Acta, 31(10): 1311–1316.CrossRefGoogle Scholar
  131. Kotz, R., Stucki, S. and Carcer, B. (1991), Electrochemical waste-water treatment using high overvoltage anodes.1. Physical and electrochemical properties of SnO2 anodes. J. Appl. Electrochem., 21(1): 14–20.Google Scholar
  132. Ku, C. H. and Wu, J. J. (2004), Effects of CCl4 concentration on nanocrystalline diamond film deposition in a hot-filament chemical vapor deposition reactor. Carbon, 42(11): 2201–2205.CrossRefGoogle Scholar
  133. Lee, Y. and Bard, A. J. (2002), Fabrication and characterization of probes for combined scanning electrochemical/optical microscopy experiments. Anal. Chem., 74(15): 3626–3633.CrossRefGoogle Scholar
  134. Lee, C., Miller, C. J. and Bard, A. J. (1991), Scanning electrochemical microscopy – preparation of submicrometer electrodes. Anal. Chem., 63(1): 78–83.CrossRefGoogle Scholar
  135. Lee, S. T., Lam, Y. W., Lin, Z., Chen, Y. and Chen, Q. (1997), Pressure effect on diamond nucleation in a hot-filament CVD system. Phys. Rev. B –Condens. Matter Mater. Phys., 55(23): 15937–15941.Google Scholar
  136. Leyens, C. and Peters, M. (2003), Titanium and Titanium Alloys: Fundamentals and Applications. Wiley-VCH, Weinheim.Google Scholar
  137. Li, D. M., Hernberg, R. and Mantyla, T. (1998), Diamond nucleation under high CH4 concentration and high filament temperature. Diam. Relat. Mater., 7(2–5): 188–192.CrossRefGoogle Scholar
  138. Li, X. Y., Diao, H. F., Fan, F. X. J., Gu, J. D., Ding, F. and Tong, A. S. F. (2004), Electrochemical wastewater disinfection: Identification of its principal germicidal actions. J. Environ. Eng., 130(10): 1217–1221.CrossRefGoogle Scholar
  139. Li, X. Y., Cui, Y. H., Feng, Y. J., Xie, Z. M. and Gu, J. D. (2005), Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Res., 39(10): 1972–1981.CrossRefGoogle Scholar
  140. Li, C. Y., Zhan, G. Q., Yang, Q. D. and Lu, J. J. (2006a), Electrochemical investigation of acetaminophen with a carbon nano-tube composite film electrode. Bull. Korean Chem. Soc., 27(11): 1854–1860.CrossRefGoogle Scholar
  141. Li, X., Sun, C. and Zhou, F. (2006b), A novel nitrite sensor based on poly-1-naphthylamine doped by a ferrocenesulfonic-acid-modified electrode. J. Anal. Chem., 61(9): 896–901.CrossRefGoogle Scholar
  142. Li, Z. F., Chen, J. H., Pan, D. W., Tao, W. Y., Nie, L. H. and Yao, S. Z. (2006c), A sensitive amperometric bromate sensor based on multi-walled carbon nanotubes/phosphomolybdic acid composite film. Electrochim. Acta, 51(20): 4255–4261.CrossRefGoogle Scholar
  143. Liang, W. Y., Qu, J. H., Chen, L. B., Liu, H. J. and Lei, P. J. (2005), Inactivation of microcystis aeruginosa by continuous electrochemical cycling process in tube using Ti ∕ RuO2 electrodes. Environ. Sci. Technol., 39(12): 4633–4639.CrossRefGoogle Scholar
  144. Li Tolt, Z., Heatherly, L., Clausing, R. E. and Feigerle, C. S. (1997a), Hot filament assisted diamond growth at low temperatures with oxygen addition. J. Mater. Res., 12(5): 1344–1350.CrossRefGoogle Scholar
  145. Li Tolt, Z., Heatherly, L., Clausing, R. E. and Feigerle, C. S. (1997b), The role of H2O in enhancing hot filament assisted diamond growth at low temperatures. J. Appl. Phys., 81(3): 1536–1545.CrossRefGoogle Scholar
  146. Lipp, L. and Pletcher, D. (1997), The preparation and characterization of tin dioxide coated titanium electrodes. Electrochim. Acta, 42(7): 1091–1099.CrossRefGoogle Scholar
  147. Lissens, G., Verhaege, M., Pinoy, L. and Verstraete, W. (2003), Electrochemical decomplexing and oxidation of organic (chelating) additives in effluents from surface treatment and metal finishing. J. Chem. Technol. Biotechnol., 78(10): 1054–1060.CrossRefGoogle Scholar
  148. Liu, Y. K., Tzeng, Y., Liu, C., Tso, P. and Lin, I. N. (2004), Growth of microcrystalline and nanocrystalline diamond films by microwave plasmas in a gas mixture of 1% methane/5% hydrogen/94% argon. Diam. Relat. Mater., 13(10): 1859–1864.CrossRefGoogle Scholar
  149. Liu, Z. H., Huan, S. Y., Jiang, J. H., Shen, G. L. and Yu, R. Q. (2006), Molecularly imprinted TiO2 thin film using stable ground-state complex as template as applied to selective electrochemical determination of mercury. Talanta, 68(4): 1120–1125.CrossRefGoogle Scholar
  150. Lodowicks, E. and Beck, F. (1994), Basic characteristics of spinel type manganese mixed oxide/titanium composite anodes for electroorganic redox catalysis. Chem. Eng. Technol., 17(5): 338–347.CrossRefGoogle Scholar
  151. Louhichi, B., Bensalash, N. and Gadri, A. (2006), Electrochemical oxidation of benzoic acid derivatives on boron doped diamond: Voltammetric study and galvanostatic electrolyses. Chem. Eng. Technol., 29(8): 944–950.CrossRefGoogle Scholar
  152. Lu, P., He, S., Li, F. X. and Jia, Q. X. (1999), Epitaxial growth of RuO2 thin films by metal-organic chemical vapor deposition. Thin Solid Films, 340(1): 140–144.CrossRefGoogle Scholar
  153. Luz, R. D. S., Damos, F. S., Tanaka, A. A. and Kubota, L. T. (2006), Dissolved oxygen sensor based on cobalt tetrasulphonated phthalocyanine immobilized in poly-L-lysine film onto glassy carbon electrode. Sensor Actuator B Chem., 114(2): 1019–1027.CrossRefGoogle Scholar
  154. Lyons, M. E. G., Lyons, C. H., Michas, A. and Bartlett, P. N. (1993), Heterogeneous redox catalysis at hydrated oxide layers. J. Electroanal. Chem., 351(1–2): 245–258.CrossRefGoogle Scholar
  155. Majid, E., Hrapovic, S., Liu, Y. L., Male, K. B. and Luong, J. H. T. (2006), Electrochemical determination of arsenite using a gold nanoparticle modified glassy carbon electrode and flow analysis. Anal. Chem., 78(3): 762–769.CrossRefGoogle Scholar
  156. Malhotra, B. D., Chaubey, A. and Singh, S. P. (2006), Prospects of conducting polymers in biosensors. Anal. Chim. Acta, 578(1): 59–74.CrossRefGoogle Scholar
  157. Manisankar, P., Selvanathan, G. and Vedhi, C. (2006), Determination of pesticides using heteropolyacid montmorillonite clay-modified electrode with surfactant. Talanta, 68(3): 686–692.CrossRefGoogle Scholar
  158. Martin, H. B., Argoitia, A., Landau, U., Anderson, A. B. and Angus, J. C. (1996), Hydrogen and oxygen evolution on boron-doped diamond electrodes. J. Electrochem. Soc., 143(6).Google Scholar
  159. Martinez-Huitle, C. A., Ferro, S. and De Battisti, A. (2004), Electrochemical incineration of oxalic acid – role of electrode material. Electrochim. Acta, 49(22–23): 4027–4034.CrossRefGoogle Scholar
  160. Mashazi, P. N., Ozoemena, K. I. and Nyokong, T. (2006), Tetracarboxylic acid cobalt phthalocyanine sam on gold: Potential applications as amperometric sensor for H2O2 and fabrication of glucose biosensor. Electrochim. Acta, 52(1): 177–186.CrossRefGoogle Scholar
  161. Matsumoto, S. (2000), Development of diamond synthesis techniques at low pressures. Thin Solid Films, 368(2): 231–236.CrossRefGoogle Scholar
  162. Matsunaga, M., Morimitsu, M., Meng, H., Kunihiro, T. and Otogawa, R. (1998), Proceedings of AESF/SFSJ Advanced Surface Technology Forum. AESF, Orlando, FL.Google Scholar
  163. Mcgaw, E. A. and Swain, G. M. (2006), A comparison of boron-doped diamond thin-film and hg-coated glassy carbon electrodes for anodic stripping voltammetric determination of heavy metal ions in aqueous media. Anal. Chim. Acta, 575(2): 180–189.CrossRefGoogle Scholar
  164. McNamara, K. M. and Gleason, K. K. (1993), Comparison of tantalum and rhenium filaments in diamond CVD using selective carbon-13 labeling. J. Electrochem. Soc., 140(2): L22–L24.CrossRefGoogle Scholar
  165. Mehta Menon, P., Edwards, A., Feigerle, C. S., Shaw, R. W., Coffey, D. W., Heatherly, L., Clausing, R. E., Robinson, L. and Glasgow, D. C. (1999), Filament metal contamination and Raman spectra of hot filament chemical vapor deposited diamond films. Diam. Relat. Mater., 8(1): 101–109.CrossRefGoogle Scholar
  166. Menon, V. P. and Martin, C. R. (1995), Fabrication and evaluation of nanoelectrode ensembles. Anal. Chem., 67(13): 1920–1928.CrossRefGoogle Scholar
  167. Menon, P. M., Clausing, R. E., Heatherly, L. and Feigerle, C. S. (1998), The morphology of diamond grown by hot filament chemical vapor deposition. Diam. Relat. Mater., 7(8): 1201–1206.CrossRefGoogle Scholar
  168. Mirkin, M. V. and Bard, A. J. (1992), Scanning electrochemical microscopy 18 – thin-layer cell-formation with a mercury pool substrate. J. Electrochem. Soc., 139(12): 3535–3539.CrossRefGoogle Scholar
  169. Mirkin, M. V., Fan, F. R. F. and Bard, A. J. (1992), Direct electrochemical measurements inside a 2000-Angstrom thick polymer film by scanning electrochemical microscopy. Science, 257(5068): 364–366.CrossRefGoogle Scholar
  170. Mohan, N. and Balasubramanian, N. (2006), In situ electrocatalytic oxidation of acid violet 12 dye effluent. J. Hazard. Mater., 136(2): 239–243.CrossRefGoogle Scholar
  171. Mohd, Y. and Pletcher, D. (2005), The influence of deposition conditions and dopant ions on the structure, activity, and stability of lead dioxide anode coatings. J. Electrochem. Soc., 152(6): D97–D102.CrossRefGoogle Scholar
  172. Montenegro, M. I., Queirâos, M. A., Daschbach, J. L. and North Atlantic Treaty Organization. Scientific Affairs Division. (1991), Microelectrodes: Theory and Applications. Kluwer, Dordrecht.Google Scholar
  173. Morimitsu, M., Otogawa, R. and Matsunaga, M. (2000), Effects of cathodizing on the morphology and composition of IrO2–Ta2O5 ∕ Ti anodes. Electrochim. Acta, 46(2–3): 401–406.CrossRefGoogle Scholar
  174. Muna, G. W., Tasheva, N. and Swain, G. M. (2004), Electro-oxidation and amperometric detection of chlorinated phenols at boron-doped diamond electrodes: A comparison of microcrystalline and nanocrystalline thin films. Environ. Sci. Technol., 38(13): 3674–3682.CrossRefGoogle Scholar
  175. Murphy, L. (2006), Biosensors and bioelectrochemistry. Curr. Opin. Chem. Biol., 10(2): 177–184.CrossRefGoogle Scholar
  176. Nagano, T. and Shibata, N. (1993), Diamond synthesis by microwave-plasma chemical vapor deposition using CH3Cl and CH2Cl2 as carbon source. Part 1: Regular papers and short notes and review papers Jpn. J. Appl. Phys., 32(11A): 5067–5071.Google Scholar
  177. Nasr, B., Abdellatif, G., Canizares, P., Saez, C., Lobato, J. and Rodrigo, M. A. (2005), Electrochemical oxidation of hydroquinone, resorcinol, and catechol on boron-doped diamond anodes. Environ. Sci. Technol., 39(18): 7234–7239.CrossRefGoogle Scholar
  178. Nebel, C. E. and Ristein, J. (2004), Thin-Film Diamond II. Elsevier, Amsterdam.Google Scholar
  179. Niu, S. Y., Zhang, S. S., Wang, L. and Li, X. M. (2006), Hybridization biosensor using di(1,10-phenanthroline) (imidazo[f]1, 10-phenanthroline) cobalt(II) as electrochemical indicator for detection of human immunodeficiency virus DNA. Electroanal. Chem., 597(2): 111–118.CrossRefGoogle Scholar
  180. Notsu, H., Yagi, I., Tatsuma, T., Tryk, D. A. and Fujishima, A. (1999), Introduction of oxygen-containing functional groups onto diamond electrode surfaces by oxygen plasma and anodic polarization. Electrochem. Solid State Lett., 2(10): 522–524.CrossRefGoogle Scholar
  181. Notsu, H., Yagi, I., Tatsuma, T., Tryk, D. A. and Fujishima, A. (2000), Surface carbonyl groups on oxidized diamond electrodes. J. Electroanal. Chem., 492(1): 31–37.CrossRefGoogle Scholar
  182. Okano, K., Kiyota, H., Kurosu, T. and Iida, M. (1994), Doping of diamond. Diam. Relat. Mater., 3(1–2): 35–40.CrossRefGoogle Scholar
  183. Okoli, S., Haubner, R. and Lux, B. (1991), Carburization of tungsten and tantalum filaments during low-pressure diamond deposition. Surf. Coat. Technol., 47(1–3): 585–599.CrossRefGoogle Scholar
  184. Pai, M. P., Musale, D. V. and Kshirsagar, S. T. (1998), Low-pressure chemical vapour deposition of diamond films in a radio-frequency plasma-assisted hot-filament reactor. Diam. Relat. Mater., 7(10): 1526–1533.CrossRefGoogle Scholar
  185. Panizza, M. and Cerisola, G. (2005), Application of diamond electrodes to electrochemical processes. Electrochim. Acta, 51(2): 191–199.CrossRefGoogle Scholar
  186. Panizza, M., Zolezzi, M. and Nicolella, C. (2006), Biological and electrochemical oxidation of naphthalenesulfonates. J. Chem. Technol. Biotechnol., 81(2): 225–232.CrossRefGoogle Scholar
  187. Papadatos, F., Consiglio, S., Skordas, S., Eisenbraun, E. T., Kaloyeros, A. E., Peck, J., Thompson, D. and Hoover, C. (2004), Chemical vapor deposition of ruthenium and ruthenium oxide thin films for advanced complementary metal-oxide semiconductor gate electrode applications. J. Mater. Res., 19(10): 2947–2955.CrossRefGoogle Scholar
  188. Park, S. G., Park, J. E., Cho, E. I., Hwang, J. H. and Ohsaka, T. (2006), Electrochemical detection of ascorbic acid and serotonin at a boron-doped diamond electrode modified with poly(N, N-dimethylaniline). Res. Chem. Intermed., 32(5–6): 595–601.CrossRefGoogle Scholar
  189. Pauliukaite, R., Paquim, A. M. C., Brett, A. M. O. and Brett, C. M. A. (2006), Electrochemical, EIS and AFM characterisation of biosensors: Trioxysilane sol–gel encapsulated glucose oxidase with two different redox mediators. Electrochim. Acta, 52(1): 1–8.CrossRefGoogle Scholar
  190. Pedrosa, V. A., Miwa, D., Machado, S. A. S. and Avaca, L. A. (2006), On the utilization of boron dope diamond electrode as a sensor for parathion and as an anode for electrochemical combustion of parathion. Electroanalysis, 18(16): 1590–1597.CrossRefGoogle Scholar
  191. Pereira, F. C., Moretto, L. M., De Leo, M., Zanoni, M. V. B. and Ugo, P. (2006), Gold nanoelectrode ensembles for direct trace electroanalysis of iodide. Anal. Chim. Acta, 575(1): 16–24.CrossRefGoogle Scholar
  192. Pierce, D. T., Unwin, P. R. and Bard, A. J. (1992), Scanning electrochemical microscopy.17. Studies of enzyme mediator kinetics for membrane-immobilized and surface-immobilized glucose-oxidase. Anal. Chem., 64(17): 1795–1804.Google Scholar
  193. Pierson, H. O. (1999), Handbook of Chemical Vapor Depostion (CVD): Principles, Technology, and Applications. Noyes Publications, Norwich, NY.Google Scholar
  194. Pleskov, Y. V. (1999), Synthetic diamond in electrochemistry. Russ Chem Rev, 68(5): 381–392.CrossRefGoogle Scholar
  195. Rahman, M. A., Won, M. S., Wei, P. H. and Shim, Y. B. (2006), Electrochemical detection of ClO3 −, BrO3 −, and IO3 − at a phosphomolybdic acid linked 3-aminopropyl-trimethoxysilane modified electrode. Electroanalysis, 18(10): 993–1000.CrossRefGoogle Scholar
  196. Rajkumar, D. and Kim, J. G. (2006), Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment. J. Hazard. Mater., 136(2): 203–212.CrossRefGoogle Scholar
  197. Rajkumar, D., Song, B. J. and Kim, J. G. (2007), Electrochemical degradation of reactive blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds. Dyes Pigments, 72(1): 1–7.CrossRefGoogle Scholar
  198. Ralchenko, V., Sychov, I., Vlasov, I., Vlasov, A., Konov, V., Khomich, A. and Voronina, S. (1999), Quality of diamond wafers grown by microwave plasma CVD: Effects of gas flow rate. Diam. Relat. Mater., 8(2–5): 189–193.CrossRefGoogle Scholar
  199. Ramesham, R. and Rose, M. F. (1997), Electrochemical characterization of doped and undoped CVD diamond deposited by microwave plasma. Diam. Relat. Mater., 6(1): 17–27.CrossRefGoogle Scholar
  200. Ran, J. G., Gou, L., Liu, Y., Zheng, C. Q. and Tang, F. Q. (1998), The process of immobilizing enzyme of glucose sensor based on diamond film. Supramol. Sci., 5(5–6): 699–700.Google Scholar
  201. Ribeiro, J. and De Andrade, A. R. (2004), Characterization of RuO2–Ta2O5 coated titanium electrode microstructure, morphology, and electrochemical investigation. J. Electrochem. Soc., 151(10): D106–D112.CrossRefGoogle Scholar
  202. Riccardi, C. D. S., Dahmouche, K., Santilli, C. V., da Costa, P. I. and Yamanaka, H. (2006), Immobilization of streptavidin in sol–gel films: Application on the diagnosis of hepatitis C virus. Talanta, 70(3): 637–643.CrossRefGoogle Scholar
  203. Rolewicz, J., Comninellis, C., Plattner, E. and Hinden, J. (1988), Characterisation des electrodes de type DSA pour le degagement de O2 − I. L’electrode Ti ∕ IrO2–Ta2O5. Electrochim. Acta, 33(4): 573–580.Google Scholar
  204. Santana, M. H. P., Faria, L. A. D. and Boodts, J. F. C. (2005), Effect of preparation procedure of IrO2–Nb2O5 anodes on surface and electrocatalytic properties. J. Appl. Electrochem., 5(9): 915–924.CrossRefGoogle Scholar
  205. Sata, S., Koizumi, Y., Kaneda, K., Rakuma, T., Okajima, T. and Ohsaka, T. (2004), Electrochemical generation of ozone using DSA-type PtOx–Ta2O5 ∕ Ti electrodes. Meeting Abstracts.Google Scholar
  206. Schafer, L., Hofer, M. and Kroger, R. (2006), The versatility of hot-filament activated chemical vapor deposition. Thin Solid Films, 515(3): 1017–1024.CrossRefGoogle Scholar
  207. Schmidt, I., Hentschel, F. and Benndorf, C. (1997), Low temperature diamond growth using halogenated hydrocarbons. Solid State Ionics, 101–103(Part 1): 97–101.Google Scholar
  208. Scott, E. R., White, H. S. and Phipps, J. B. (1992), Direct imaging of ionic pathways in stratum-corneum using scanning electrochemical microscopy. Solid State Ionics, 53–6: 176–183.CrossRefGoogle Scholar
  209. Shah, J. and Wilkins, E. (2003), Electrochemical biosensors for detection of biological warfare agents, Electroanalysis, 15: 157–167.CrossRefGoogle Scholar
  210. Sharda, T., Misra, D. S. and Avasthi, D. K. (1996), Hydrogen in chemical vapour deposited diamond films. Vacuum, 47(11): 1259–1264.CrossRefGoogle Scholar
  211. Sharda, T., Soga, T., Jimbo, T. and Umeno, M. (2001), Growth of nanocrystalline diamond films by biased enhanced microwave plasma chemical vapor deposition. Diam. Relat. Mater., 10(9–10): 1592–1596.CrossRefGoogle Scholar
  212. Shervedani, R. K., Mehrjardi, A. H. and Zamiri, N. (2006), A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor. Bioelectrochemistry, 69(2): 201–208.CrossRefGoogle Scholar
  213. Shiddiky, M. J. A., Won, M. S. and Shim, Y. B. (2006), Simultaneous analysis of nitrate and nitrite in a microfluidic device with a Cu-complex-modified electrode. Electrophoresis, 27(22): 4545–4554.CrossRefGoogle Scholar
  214. Shi-Yun, Al, Jia-Qing, Ll, Luo-Ping, Ll, Hui-Qi, Peng, Ya, Yang and Li-Tong, J. (2005), Electrochemical deposition and properties of nanometer-structure Ce-doped lead dioxide film electrode. Chin. J. Chem. 23: 71–75.CrossRefGoogle Scholar
  215. Singh, J., Vellaikal, M. and Dat, R. (1994), Gas flow effects in synthesis of diamond by hot-filament chemical vapor deposition. Thin Solid Films, 238(1): 133–140.CrossRefGoogle Scholar
  216. Slevin, C. J., Gray, N. J., Macpherson, J. V., Webb, M. A. and Unwin, P. R. (1999), Fabrication and characterisation of nanometre-sized platinum electrodes for voltammetric analysis and imaging. Electrochem. Commun., 1(7): 282–288.CrossRefGoogle Scholar
  217. Soga, T., Sharda, T. and Jimbo, T. (2004), Precursors for CVD growth of nanocrystalline diamond. Phys. Solid State, 46(4): 720–725.CrossRefGoogle Scholar
  218. Sommer, M. and Smith, F. W. (1990), Activity of tungsten and rhenium filaments in CH4 ∕ H2 and C2H2 ∕ H2 mixtures. Importance for diamond CVD. J. Mater. Res., 5(11): 2433–2440.Google Scholar
  219. Spasojevic, M., Krstajic, N. and Jaksic, M. (1984), Electrocatalytic optimization of faradaic yields in the chlorate cell process. Surf. Technol., 21(1): 19–26.CrossRefGoogle Scholar
  220. Spataru, T., Roman, E. and Spataru, N. (2004), Electrodeposition of cobalt oxide on conductive diamond electrodes for catalytic sensor applications. Rev. Roum. Chim., 49(6): 525–530.Google Scholar
  221. Stiegler, J., Lang, T., Nygard-Ferguson, M., Von Kaenel, Y. and Blank, E. (1996), Low temperature limits of diamond film growth by microwave plasma-assisted CVD. Diam. Relat. Mater., 5(3–5): 226–230.CrossRefGoogle Scholar
  222. Stucki, S., Kotz, R., Carcer, B. and Suter, W. (1991), Electrochemical waste water treatment using high overvoltage anodes part II: Anode performance and applications. J. Appl. Electrochem., 21(2): 99–104.CrossRefGoogle Scholar
  223. Stulik, K., Amatore, C., Holub, K., Marecek, V. and Kutner, W. (2000), Microelectrodes. Definitions, characterization, and applications (Technical Report). Pure Appl. Chem., 72(8): 1483–1492.Google Scholar
  224. Su, L., Qiu, X. P., Guo, L. H., Zhang, F. H. and Tung, C. H. (2004), Amperometric glucose sensor based on enzyme-modified boron-doped diamond electrode by cross-linking method. Sensor Actuator B, 99(2–3): 499–504.CrossRefGoogle Scholar
  225. Sugino, T., Karasutani, K., Mano, F., Kataoka, H., Shirafuji, J. and Kobashi, K. (1994), Characterization of undoped and boron-doped polycrystalline diamond films synthesized by hot-filament chemical vapor deposition using methanol. Diam. Relat. Mater., 3(4–6): 618–622.CrossRefGoogle Scholar
  226. Sun, D. and Zhang, H. J. (2006), Electrochemical determination of 2-chlorophenol using an acetylene black film modified glassy carbon electrode. Water Res., 40(16): 3069–3074.CrossRefGoogle Scholar
  227. Svancara, I., Baldrianova, L., Tesarova, E., Hocevar, S. B., Elsuccary, S. A. A., Economou, A., Sotiropoulos, S., Ogorevc, B. and Vytras, K. (2006), Recent advances in anodic stripping voltammetry with bismuth-modified carbon paste electrodes. Electroanalysis, 18(2): 177–185.CrossRefGoogle Scholar
  228. Swain, G. M., Anderson, A. B. and Angus, J. C. (1998), Applications of diamond thin films in electrochemistry. MRS Bull., 23(9): 56–60.Google Scholar
  229. Taylor, G., Bates, C., Stadelmann, M., Kraft, A. and Matthee, T. (2003), Evaluation of electro-oxidation using diamond anodes for the treatment of radioactive contaminated lubricants – preliminary report. New Diam. Front. Carbon Technol., 13(2): 89–96.Google Scholar
  230. Tel-Vered, R., Walsh, D. A., Mehrgardi, M. A. and Bard, A. J. (2006), Carbon nanofiber electrodes and controlled nanogaps for scanning electrochemical microscopy experiments. Anal. Chem., 78(19): 6959–6966.CrossRefGoogle Scholar
  231. Tian, Y., Chen, X., Shang, C. and Chen, G. (2006), Active and stable Ti/Si/BDD anodes for electro-oxidation. J. Electrochem. Soc., 153(7): 6.Google Scholar
  232. Trasatti, S. (1980), Electrodes of Conductive Metallic Oxides. Elsevier, Amsterdam.Google Scholar
  233. Trasatti, S. (1991), Physical electrochemistry of ceramic oxides. Electrochim. Acta, 36(2): 225–241.CrossRefGoogle Scholar
  234. Troupe, C. E., Drummond, I. C., Graham, C., Grice, J., John, P., Wilson, J. I. B., Jubber, M. G. and Morrison, N. A. (1998), Diamond-based glucose sensors. Diam. Relat. Mater., 7(2–5): 575–580.CrossRefGoogle Scholar
  235. Tucker, D. A., McClure, M. T., Fathi, Z., Sitar, Z., Walden, B., Sutton, W. H., Lewis, W. A. and Wei, J. B. (1996), Microwave plasma assisted CVD of diamond on titanium and Ti-6Al-4v. Materials Research Society Symposium – Proceedings.Google Scholar
  236. Van Hege, K., Verhaege, M. and Verstraete, W. (2002), Indirect electrochemical oxidation of reverse osmosis membrane concentrates at boron-doped diamond electrodes. Electrochem. Commun., 4(4): 296–300.CrossRefGoogle Scholar
  237. Van Hege, K., Verhaege, M. and Verstraete, W. (2004), Electro-oxidative abatement of low-salinity reverse osmosis membrane concentrates. Water Res., 38(6): 1550–1558.CrossRefGoogle Scholar
  238. Velichenko, A. B., Amadelli, R., Baranova, E. A., Girenko, D. V. and Danilov, F. I. (2002), Electrodeposition of co-doped lead dioxide and its physicochemical properties. J. Electroanal. Chem., 527(1–2): 56–64.CrossRefGoogle Scholar
  239. Venter, A. and Neethling, J. H. (1994), Effect of filament temperature on the growth of diamond using hot-filament chemical vapor deposition. Diam. Relat. Mater., 3(1–2): 168–172.CrossRefGoogle Scholar
  240. Vicent, F., Morallo’n, E., Quijada, C., Va’zquez, J. L., Aldaz, A. and Cases, F. (1998), Characterization and stability of doped SnO2 anodes. J. Appl. Electrochem., 28(6): 607–612.CrossRefGoogle Scholar
  241. Vinokur, N., Miller, B., Avyigal, Y. and Kalish, R. (1996), Electrochemical behavior of boron-doped diamond electrodes. J. Electrochem. Soc., 143(10).Google Scholar
  242. Wang, T., Xin, H. W., Zhang, Z. M., Dai, Y. B. and Shen, H. S. (2004), The fabrication of nanocrystalline diamond films using hot filament CVD. Diam. Relat. Mater., 13(1): 6–13.CrossRefGoogle Scholar
  243. Wang, G., Mantey, K., Nayfeh, M. H. and Yau, S. T. (2006a), Enhanced amperometric detection of glucose using Si-29 particles. Appl. Phys. Lett., 89(24).Google Scholar
  244. Wang, J., Thongngamdee, S. and Lu, D. L. (2006b), Adsorptive stripping voltammetric measurements of trace beryllium at the mercury film electrode. Anal. Chim. Acta, 564(2): 248–252.CrossRefGoogle Scholar
  245. Wang, K., He, F. Y., Liu, A. L., Xu, J. J., Chen, H. Y. and Xia, X. H. (2006c), Novel coupling mechanism-based imaging approach to scanning electrochemical microscopy for probing the electric field distribution at the microchannel end. Langmuir, 22(16): 7052–7058.CrossRefGoogle Scholar
  246. Watanabe, T., Ivandini, T. A., Makide, Y., Fujishima, A. and Einaga, Y. (2006), Selective detection method derived from a controlled diffusion process at metal-modified dia electrodes. Anal. Chem., 78(22): 7857–7860.CrossRefGoogle Scholar
  247. Waterston, K., Wang, J. W. J., Bejan, D. and Bunce, N. J. (2006), Electrochemical waste water treatment: Electrooxidation of acetaminophen. J. Appl. Electrochem., 36(2): 227–232.CrossRefGoogle Scholar
  248. Wei, Y., Li, M. G., Jiao, S. F., Huang, Q. N., Wang, G. F. and Fang, B. (2006), Fabrication of CeO2 nanoparticles modified glassy carbon electrode and its application for electrochemical determination of ua and aa simultaneously. Electrochim. Acta, 52(3): 766–772.CrossRefGoogle Scholar
  249. Weiss, E., Groenen-Serrano, K. and Savall, A. (2006), Electrochemical degradation of sodium dodecylbenzene sulfonate on boron doped diamond and lead dioxide anodes. J. New Mater. Electrochem. Sys., 9(3): 249–256.Google Scholar
  250. Wightman, R. M. (1981), Microvoltammetric electrodes. Anal. Chem., 53(9): 1125A–1133A.CrossRefGoogle Scholar
  251. Wilson, J. I. B. and Kulisch, W. (1996), Diamond Thin Films. Akademie Verlag, Berlin.Google Scholar
  252. Wipf, D. O. and Bard, A. J. (1991a), Scanning electrochemical microscopy.7. Effect of heterogeneous electron-transfer rate at the substrate on the tip feedback current. J. Electrochem. Soc., 138(2): 469–474.Google Scholar
  253. Wipf, D. O. and Bard, A. J. (1991b), Scanning electrochemical microscopy.10. High-resolution imaging of active-sites on an electrode surface. J. Electrochem. Soc., 138(5): L4–L6.Google Scholar
  254. Wu, J. J. and Hong, F. C. N. (1998), The effects of chloromethane on diamond nucleation and growth in a hot-filament chemical vapor deposition reactor. J. Mater. Res., 13(9): 2498–2504.CrossRefGoogle Scholar
  255. Wu, J. L., Zhu, J. Z., Zhang, G. X., Lin, X. R. and Cheng, N. Y. (1996), Fabrication and application of a diamond-film glucose biosensor based on a H2O2 microarray electrode. Anal. Chim. Acta, 327(2): 133–137.CrossRefGoogle Scholar
  256. Xiang, L., Cheng, S. and Fang, Z. (2006), A novel nitrite sensor based on poly-1-naphthylamine doped by a ferrocenesulfonic-acid-modified electrode. J. Anal. Chem., 61(9): 896–901.CrossRefGoogle Scholar
  257. Xie, S. T., Shafer, G., Wilson, C. G. and Martin, H. B. (2006), In vitro adenosine detection with a diamond-based sensor. Diam. Relat. Mater., 15(2–3): 225–228.CrossRefGoogle Scholar
  258. Xue, M. H., Xu, Q., Zhou, M. and Zhu, J. J. (2006), In situ immobilization of glucose oxidase in chitosan-gold nanoparticle hybrid film on prussian blue modified electrode for high-sensitivity glucose detection. Electrochem. Commun., 8(9): 1468–1474.CrossRefGoogle Scholar
  259. Yamaguchi, Y., Yamanaka, Y., Miyamoto, M., Fujishima, A. and Honda, K. (2006), Hybrid electrochemical treatment for persistent metal complex at conductive diamond electrodes and clarification of its reaction route. J. Electrochem. Soc., 153(12): J123–J132.CrossRefGoogle Scholar
  260. Yang, W. W., Bai, Y., Li, Y. C. and Sun, C. Q. (2005a), Amperometric nitrite sensor based on hemoglobin/colloidal gold nanoparticles immobilized on a glassy carbon electrode by a titania sol–gel film. Anal. Bioanal. Chem., 382(1): 44–50.CrossRefGoogle Scholar
  261. Yang, Y. Z., Yang, W. S., Yang, F. L. and Zhang, X. W. (2005b), Electrooxidative degradation of an anthraquinone dye with in-situ electrogenerated active chlorine in a divided flow cell. Chin. J. Chem. Eng., 13(5): 628–633.Google Scholar
  262. Yano, T., Tryk, D. A., Hashimoto, K. and Fujishima, A. (1998), Electrochemical behavior of highly conductive boron-doped diamond electrodes for oxygen reduction in alkaline solution. J. Electrochem. Soc., 145(6): 1870–1876.CrossRefGoogle Scholar
  263. Yarbrough, W. A. and Messier, R. (1990), Current issues and problems in the chemical vapor deposition of diamond. Science, 247(4943): 688–696.CrossRefGoogle Scholar
  264. Yasukawa, T., Kaya, T. and Matsue, T. (2000), Characterization and imaging of single cells with scanning electrochemical microscopy. Electroanalysis, 12(9): 653–659.CrossRefGoogle Scholar
  265. Yoshikawa, H., Morel, C. and Koga, Y. (2001), Synthesis of nanocrystalline diamond films using microwave plasma CVD. Diam. Relat. Mater., 10(9–10): 1588–1591.CrossRefGoogle Scholar
  266. Yosypchuk, B. and Novotny, L. (2002), Nontoxic electrodes of solid amalgams. Crit. Rev. Anal. Chem., 32(2): 141–151.CrossRefGoogle Scholar
  267. Yu, Z. and Flodstrom, A. (1997), Pressure dependence of growth mode of HFCVD diamond. Diam. Relat. Mater., 6(1): 81–84.CrossRefGoogle Scholar
  268. Zaitsev, N. K., Osipova, E. A., Fedulov, D. M., Eremenko, E. A. and Dedov, A. G. (2006), Determination of selenium(IV) by cathodic stripping voltammetry using a copper-modified mercury-film electrode modified with copper. J. Anal. Chem., 61(1): 77–83.CrossRefGoogle Scholar
  269. Zhang, H. X., Cao, A. M., Hu, J. S., Wan, L. J. and Lee, S. T. (2006a), Electrochemical sensor for detecting ultratrace nitroaromatic compounds using mesoporous SiO2-modified electrode. Anal. Chem., 78(6): 1967–1971.CrossRefGoogle Scholar
  270. Zhang, H. X., Hu, J. S., Yan, C. J., Jiang, L. and Wan, L. J. (2006b), Functionalized carbon nanotubes as sensitive materials for electrochemical detection of ultra-trace 2,4,6-trinitrotoluene. Phys. Chem. Chem. Phys., 8(30): 3567–3572.CrossRefGoogle Scholar
  271. Zhao, W., Xu, J.-J., Qiu, Q.-Q. and Chen, H.-Y. (2006), Nanocrystalline diamond modified gold electrode for glucose biosensing. Biosens. Bioelectron., 22(5): 649–655.CrossRefGoogle Scholar
  272. Zheng, H., Dong, H. M., Yan, Z. N., Wen, L. J., Zhang, S. S. and Ye, B. X. (2006), Determination of copper at a glassy carbon electrode modified with langmuir-blodgett film of p-tert-butylthiacalix[4]arene. Electroanalysis, 18(21): 2115–2120.CrossRefGoogle Scholar
  273. Zhi, J. F., Wang, H. B., Nakashima, T., Rao, T. N. and Fujishima, A. (2003), Electrochemical incineration of organic pollutants on boron-doped diamond electrode. Evidence for direct electrochemical oxidation pathway. J. Phys. Chem. B, 107(48): 13389–13395.Google Scholar
  274. Zhou, D. and Gao, L. (2007), Effect of electrochemical preparation methods on structure and properties of PbO2 anodic layer. Electrochim. Acta, 53(4): 2060–2064.CrossRefGoogle Scholar
  275. Zhou, D., Gruen, D. M., Qin, L. C., McCauley, T. G. and Krauss, A. R. (1998), Control of diamond film microstructure by ar additions to CH4 ∕ H2 microwave plasmas. J. Appl. Phys., 84(4): 1981–1989.CrossRefGoogle Scholar
  276. Zhou, M., Dai, Q., Lei, L., Ma, C. and Wang, D. (2005), Long life modified lead dioxide anode for organic wastewater treatment: Electrochemical characteristics and degradation mechanism. Environ. Sci. Technol., 39(1): 363–370.CrossRefGoogle Scholar
  277. Zoski, C. G. (2002), Ultramicroelectrodes: design, fabrication, and characterization. Electroanalysis, 14(15–16): 1041–1051.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Chemical and Biomolecular Engineering DepartmentThe Hong Kong University of Science and TechnologyKowloonHong Kong

Personalised recommendations