Advertisement

Importance of Electrode Material in the Electrochemical Treatment of Wastewater Containing Organic Pollutants

  • Marco Panizza
Chapter

Abstract

Electrochemical oxidation is a promising method for the treatment of wastewaters containing organic compounds. As a general rule, the electrochemical incineration of organics at a given electrode can take place at satisfactory rates and without electrode deactivation only at high anodic potentials in the region of the water discharge due to the participation of the intermediates of oxygen evolution. The nature of the electrode material strongly influences both the selectivity and the efficiency of the process. In particular, anodes with low oxygen evolution overpotential (i.e., good catalysts for oxygen evolution reactions), such as graphite, IrO2, RuO2, and Pt only permit the partial oxidation of organics, while anodes with high oxygen evolution overpotential (i.e., anodes that are poor catalysts for oxygen evolution reactions), such as SnO2, PbO2, and boron-doped diamond (BDD) favor the complete oxidation of organics to CO2 and so are ideal electrodes for wastewater treatment.However, the application of SnO2 and PbO2 anodes may be limited by their short service life and the risk of lead contamination, while BDD electrodes exhibit good chemical and electrochemical stability, a long life, and a wide potential window for water discharge, and are thus promising anodes for industrial-scale wastewater treatment.

Keywords

Chemical Oxygen Demand Oxygen Evolution Current Efficiency Oxygen Evolution Reaction Lead Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author wishes to express his sincere thanks to Prof. Giacomo Cerisola for his helpful discussions during the preparation of this article and to the journals and all the authors who gave permission for the reproduction of figures and tables.

References

  1. Alvarez-Gallegos, A. and Pletcher, D. (1998) Removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell, Part 1. The electrosynthesis of hydrogen peroxide in aqueous acidic solutions. Electrochim. Acta 44, 853–861.Google Scholar
  2. Alvarez-Gallegos, A. and Pletcher, D. (1999) The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell, Part 2. The removal of phenols and related compounds from aqueous solutions. Electrochim. Acta 44, 2483–2492.Google Scholar
  3. Awad, Y. M. and Abuzaid, N. S. (1997) Electrochemical treatment of phenolic wastewater: Efficiency, design considerations and economic evaluation. J. Environ. Sci. Health A 32, 1393–1414.CrossRefGoogle Scholar
  4. Awad, Y. M. and Abuzaid, N. S. (1999) Electrochemical oxidation of phenol using graphite anodes. Sep. Sci. Technol. 34, 699–708.CrossRefGoogle Scholar
  5. Awad, Y. M. and Abuzaid, N. S. (2000) Influence of residence time on the anodic oxidation of phenol. Sep. Purif. Technol. 18, 227–236.CrossRefGoogle Scholar
  6. Beer, H. B. (1966) US Patent Appl. 549 194.Google Scholar
  7. Bellagamba, R., Michaud, P. A., Comninellis, C. and Vatistas, N. (2002) Electro-combustion of polyacrylates with boron-doped diamond anodes. Electrochem. Commun. 4, 171–176.CrossRefGoogle Scholar
  8. Bock, C. and MacDougall, B. (1999) Anodic oxidation of p-benzoquinone and maleic acid. J. Electrochem. Soc. 146, 2925–2932.CrossRefGoogle Scholar
  9. Bock, C. and MacDougall, B. (2000) Influence of metal oxide properties on the oxidation of organics. J. Electroanal. Chem. 491, 48–54.CrossRefGoogle Scholar
  10. Bonfatti, F., Ferro, S., Lavezzo, F., Malacarne, M., Lodi, G. and De Battisti, A. (1999) Electro-chemical incineration of glucose as a model organic substrate. I. Role of the electrode material. J. Electrochem. Soc. 146, 2175–2179.Google Scholar
  11. Bonfatti, F., De Battisti, A., Ferro, S., Lodi, G. and Osti, S. (2000a) Anodic mineralization of organic substrates in chloride-containing aqueous media. Electrochim. Acta 46, 305–314.CrossRefGoogle Scholar
  12. Bonfatti, F., Ferro, S., Lavezzo, F., Malacarne, M., Lodi, G. and De Battisti, A. (2000b) Electro-chemical incineration of glucose as a model organic substrate. II. Role of active chlorine mediation. J. Electrochem. Soc. 147, 592–596.Google Scholar
  13. Boudenne, J. L. and Cerclier, O. (1999) Performance of carbon black-slurry electrodes for 4-chlorophenol oxidation. Water Res. 33, 494–504.CrossRefGoogle Scholar
  14. Boudenne, J. L., Cerclier, O., Galea, J. and Vlist, E. V. D. (1996) Electrochemical oxidation of aqueous phenol at a carbon black slurry electrode. Appl. Catal. A: General 143, 185–202.CrossRefGoogle Scholar
  15. Boye, B., Dieng, M. M. and Brillas, E. (2002) Degradation of herbicide 4-chlorophenoxyacetic acid by advanced electrochemical oxidation methods. Environ. Sci. Technol. 36, 3030–3035.CrossRefGoogle Scholar
  16. Brillas, E., Bastida, R. M., Llosa, E. and Casado, J. (1995) Electrochemical destruction of aniline and chloroaniline for wastewater treatment using a carbon PTFE O2-fed cathode. J. Electrochem. Soc. 142, 1733–1741.CrossRefGoogle Scholar
  17. Brillas, E., Mur, E. and Casado, J. (1996) Iron(II) catalysis of the mineralization of aniline using a carbon-PTFE O2-fed cathode. J. Electrochem. Soc. 143, L49–L53.CrossRefGoogle Scholar
  18. Brillas, E., Boye, B. and Dieng, M. M. (2003) Peroxi-coagulation and photoperoxi-coagulation treatments of the herbicide 4-chlorophenoxyacetic acid in aqueous medium using an oxygen-diffusion cathode. J. Electrochem. Soc. 150, E148–E154.CrossRefGoogle Scholar
  19. Brillas, E., Boye, B., Sires, I., Garrido, J. A., Rodriguez, R. M., Arias, C., Cabot, P. L. and Comninellis, C. (2004) Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode. Electrochim. Acta 49, 4487–4496.CrossRefGoogle Scholar
  20. Canizares, P., Dominguez, J. A., Rodrigo, M. A., Villasenor, J. and Rodriguez, J. (1999) Effect of the current intensity in the electrochemical oxidation of aqueous phenol wastes at an activated carbon and steel anode. Ind. Eng. Chem. Res. 38, 3779–3785.CrossRefGoogle Scholar
  21. Canizares, P., Diaz, M., Dominguez, J. A., Garcia-Gomez, J. and Rodrigo, M. A. (2002) Electrochemical oxidation of aqueous phenol wastes on synthetic diamond thin-film electrodes. Ind. Eng. Chem. Res. 41, 4187–4194.CrossRefGoogle Scholar
  22. Canizares, P., Garcia-Gomez, J., Lobato, J. and Rodrigo, M. A. (2003a) Electrochemical oxidation of aqueous carboxylic acid wastes using diamond thin-film electrodes. Ind. Eng. Chem. Res. 42, 956–962.CrossRefGoogle Scholar
  23. Canizares, P., Garcia-Gomez, J., Saez, C. and Rodrigo, M. A. (2003b) Electrochemical oxida-tion of several chlorophenols on diamond electrodes: Part I. Reaction mechanism. J. Appl. Electrochem. 33, 917–927.Google Scholar
  24. Canizares, P., Garcia-Gomez, J., Saez, C. and Rodrigo, M. A. (2004a) Electrochemical oxida-tion of several chlorophenols on diamond electrodes: Part II. Influence of waste character-istics and operating conditions. J. Appl. Electrochem. 34, 87–94.Google Scholar
  25. Canizares, P., Saez, C., Lobato, J. and Rodrigo, M. A. (2004b) Electrochemical treatment of 2,4-dinitrophenol aqueous wastes using boron-doped diamond anodes. Electrochim. Acta 49, 4641–4650.CrossRefGoogle Scholar
  26. Canizares, P., Saez, C., Lobato, J. and Rodrigo, M. A. (2004c) Electrochemical treatment of 4-nitrophenol-containing aqueous wastes using boron-doped diamond anodes. Ind. Eng. Chem. Res. 43, 1944–1951.CrossRefGoogle Scholar
  27. Chang, H. and Johnson, D. C. (1990) Electrocatalysis of anodic oxygen-transfer reactions. J. Electrochem. Soc. 137, 2452–2457.CrossRefGoogle Scholar
  28. Chen, G. (2004) Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 38, 11–41.CrossRefGoogle Scholar
  29. Chen, G., Chen, X. and Yue, P. L. (2002) Electrochemical behavior of novel Ti ∕ IrOx − Sb2O5 − SnO2 anodes. J. Phys. Chem. B 106, 4364–4369.CrossRefGoogle Scholar
  30. Chen, X., Chen, G., Gao, F. and Yue, P. L. (2003) High-performance Ti/BDD electrodes for pollutant oxidation. Environ. Sci. Technol. 21, 5021–5026.CrossRefGoogle Scholar
  31. Chiang, L. C., Chang, J. E. and Wen, T. C. (1995) Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Res. 29, 671–678.CrossRefGoogle Scholar
  32. Comninellis, C. (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim. Acta 39, 1857–1862.CrossRefGoogle Scholar
  33. Comninellis, C. and De Battisti, A. (1996) Electrocatalysis in anodic oxidation of organics with simultaneous oxygen evolution. J. Chim. Phys. 93, 673–679.Google Scholar
  34. Comninellis, C. and Nerini, A. (1995) Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. J. Appl. Electrochem. 25, 23–28.CrossRefGoogle Scholar
  35. Comninellis, C. and Pulgarin, C. (1991) Anodic oxidation of phenol for wastewater treatment. J. Appl. Electrochem. 21, 703–708.CrossRefGoogle Scholar
  36. Comninellis, C. and Pulgarin, C. (1993) Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes. J. Appl. Electrochem. 23, 108–112.CrossRefGoogle Scholar
  37. Comninellis, C., Duo, I., Michaud, P. A., Marselli, B. and Park, S. M. (2005) Application of syhthetic boron-doped diamond electrodes in electrooxidation processes. In: A. Fujishima, Y. Einaga, T. N. Rao and D. A. Tryk (Eds.), Diamond Electrochemistry. Elsevier, Amsterdam, pp. 449–476.Google Scholar
  38. Correa-Lozano, B., Comninellis, C. and De Battisti, A. (1997) Service life of Ti ∕ SnO2 − Sb2O5 anodes. J. Appl. Electrochem. 27, 970–974.CrossRefGoogle Scholar
  39. Cossu, R., Polcaro, A. M., Lavagnolo, M. C., Mascia, M., Palmas, S. and Renoldi, F. (1998) Electrochemical treatment of landfill leachate: Oxidation at Ti ∕ PbO2 and Ti ∕ SnO2 anodes. Ind. Eng. Chem. Res. 32, 3570–3573.Google Scholar
  40. Dhooge, P. M. and Park, S. M. (1983) Electrochemistry of coal slurries - 2. Studies on various experimental parameters affecting oxidation of coal slurries. J. Electrochem. Soc. 130, 1029–1036.Google Scholar
  41. Do, J. S. and Chen, C. P. (1993) In situ oxidative degradation of formaldehyde with electro-generated hydrogen peroxide. J. Electrochem. Soc. 140, 1632–1637.CrossRefGoogle Scholar
  42. Do, J. S. and Chen, C. P. (1994a) In situ oxidative degradation of formaldehyde with hydrogen peroxide electrogenerated on the modified graphite. J. Appl. Electrochem. 24, 936–942.CrossRefGoogle Scholar
  43. Do, J. S. and Chen, C. P. (1994b) Kinetics of in situ oxidative degradation of formaldehyde with electrogenerated hydrogen peroxide. Ind. Eng. Chem. Res. 33, 387–394.CrossRefGoogle Scholar
  44. Do, J. S. and Yeh, W. C. (1995) In situ degradation of formaldehyde with electrogenerated hypochlorite ion. J. Appl. Electrochem. 25, 483–489.CrossRefGoogle Scholar
  45. Do, J. S., Yeh, W. C. and Chao, I. Y. (1997) Kinetic of the oxidative degradation of formaldehyde with electrogen hypochlorite. Ind. Eng. Chem. Res. 36, 349–356.CrossRefGoogle Scholar
  46. Farmer, J. C., Wang, F. T., Hawley-Fedder, R. A., Lewis, P. R., Summers, L. J. and Foiles, L. (1992) Electrochemical treatment of mixed and hazardous wastes: Oxidation of ethylene glycole and benzene by silver(II). J. Electrochem. Soc. 139, 654–662.CrossRefGoogle Scholar
  47. Feng, Y. J. and Li, X. Y. (2003) Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water Res. 37, 2399–2407.CrossRefGoogle Scholar
  48. Feng, J., Johnson, D. C., Lowery, S. N. and Carey, J. (1994) Electrocatalysis of anodic oxygen-transfer reactions evolution of ozone. J. Electrochem. Soc. 141, 2708–2711.CrossRefGoogle Scholar
  49. Feng, J., Houk, L. L., Johnson, D. C., Lowery, S. N. and Carey, J. J. (1995) Electrocatalysis of anodic oxygen-transfer reactions: The electrochemical incineration of benzoquinone. J. Electrochem. Soc. 142, 3626–3632.CrossRefGoogle Scholar
  50. Fernandes, A., Morao, A., Magrinho, M., Lopes, A. and Goncalves, I. (2004) Electrochemical degradation of C. I. Acid Orange 7. Dyes Pigm. 61, 287–296.CrossRefGoogle Scholar
  51. Foller, P. C. and Tobias, C. W. (1982) The anodic evolution of ozone. J. Electrochem. Soc. 129, 506–515.CrossRefGoogle Scholar
  52. Foti, G., Gandini, D. and Comninellis, C. (1997) Anodic oxidation of organics on thermally prepared oxide electrodes. Curr. Top. Electrochem. 5, 71–91.Google Scholar
  53. Foti, G., Gandini, D., Comninellis, C., Perret, A. and Haenni, W. (1999) Oxidation of organics by intermediates of water discharge on IrO2 and synthetic diamond anodes. Electrochem. Solid State Lett. 2, 228–230.CrossRefGoogle Scholar
  54. Gandini, D., Comninellis, C., Perret, A. and Haenni, W. (1999) Anodic oxidation of organics on synthetic diamond thin-film electrodes. ICHEME Symp. Series 145, 181–190.Google Scholar
  55. Gandini, D., Mahe, E., Michaud, P. A., Haenni, W., Perret, A. and Comninellis, C. (2000) Oxidation of carboxylic acids at boron-doped diamond electrodes for wastewater treatment. J. Appl. Electrochem. 30, 1345–1350.CrossRefGoogle Scholar
  56. Gattrell, M. and Kirk, D. (1990) The electrochemical oxidation of aqueous phenol at a glassy carbon electrode. Can. J. Chem. Eng. 68, 997–1003.CrossRefGoogle Scholar
  57. Gattrell, M. and Kirk, D. (1993) A study of the oxidation of phenol at platinum and preoxidized platinum surfaces. J. Electrochem. Soc. 140, 1534–1540.CrossRefGoogle Scholar
  58. Gherardini, L., Michaud, P. A., Panizza, M., Comninellis, C. and Vatistas, N. (2001) Electro-chemical oxidation of 4-chlorophenol for wastewater treatment. Definition of normalized current efficiency. J. Electrochem. Soc. 148, D78.Google Scholar
  59. Grimm, J. H., Bessarabov, D. G., Simon, U. and Sanderson, R. D. (2000) Characterization of doped tin dioxide anodes prepared by a sol-gel technique and their application in an SPE-reactor. J. Appl. Electrochem. 30, 293–302.CrossRefGoogle Scholar
  60. Guivarch, E., Oturan, N. and Oturan, M. A. (2003) Removal of organophosphorus pesticides from water by electrogenerated Fenton’s reagent. Environ. Chem. Lett. 1, 165–168.CrossRefGoogle Scholar
  61. Hattori, S., Doi, M., Takahashi, E., Kurosu, T., Nara, M., Nakamatsu, S., Nishiki, Y., Furuta, T. and Iida, M. (2003) Electrolytic decomposition of amaranth dyestuff using diamond electrodes. J. Appl. Electrochem. 33, 85–91.CrossRefGoogle Scholar
  62. Houk, L. L., Johnson, S. K., Feng, J., Houk, R. S. and Johnson, D. C. (1998) Electrochemical incineration of benzoquinone in aqueous media using a quaternary metal oxide electrode in the absence of a soluble supporting electrolyte. J. Appl. Electrochem. 28, 1167–1177.CrossRefGoogle Scholar
  63. Iniesta, J., Michaud, P. A., Panizza, M., Cerisola, G., Aldaz, A. and Comninellis, C. (2001a) Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochim. Acta 46, 3573–3578.CrossRefGoogle Scholar
  64. Iniesta, J., Michaud, P. A., Panizza, M. and Comninellis, C. (2001b) Electrochemical oxidation of 3-methylpyridine at a boron-doped diamond electrode: Application to electroorganic synthesis and wastewater treatment. Electrochem. Commun. 3, 346–351.CrossRefGoogle Scholar
  65. Iniesta, J., Exposito, E., Gonzalez-Garcia, J., Montiel, V. and Aldaz, A. (2002) Electrochemical treatment of industrial wastewater containing phenols. J. Electrochem. Soc. 149, D57-D62.CrossRefGoogle Scholar
  66. Israilides, C. J., Vlyssides, A. G., Mourafeti, V. N. and Karvouni, G. (1997) Olive oil waste-water treatment with the use of an electrolysis system. Bioresource Technol. 61, 163–170.CrossRefGoogle Scholar
  67. Johnson, S. K., Houk, L. L., Feng, J., Houk, R. S. and Johnson, D. C. (1999) Electrochemical incineration of 4-chlorophenol and the identification of products and intermediates by mass spectrometry. Environ. Sci. Technol. 33, 2638–2644.CrossRefGoogle Scholar
  68. Kawagoe, K. T. and Johnson, D. C. (1994) Electrocatalysis of anodic oxygen-transfer reactions. Oxidation of phenol and benzene at bismuth-doped lead dioxide electrodes in acidic solutions. J. Electrochem. Soc. 141, 3404–3409.Google Scholar
  69. Keech, P. G. and Bunce, N. J. (2003) Electrochemical oxidation of simple indoles at a PbO2 anode. J. Appl. Electrochem. 33, 79–83.CrossRefGoogle Scholar
  70. Kirk, D., Sharifian, H. and Foulkes, F. R. (1985) Anodic oxidation of aniline for waste water treatment. J. Appl. Electrochem. 15, 285–292.CrossRefGoogle Scholar
  71. Kotz, R., Stucki, S. and Carcer, B. (1991) Electrochemical wastewater treatment using high overvoltage anodes. Part I: physical and electrochemical properties of SnO2 anodes. J. Appl. Electrochem. 21, 14–20.CrossRefGoogle Scholar
  72. Kraft, A., Stadelmann, M. and Blaschke, M. (2003) Anodic oxidation with doped diamond electrodes: A new advanced oxidation process. J. Hazard. Mater. 103, 247–261.CrossRefGoogle Scholar
  73. Lamy, C. (1984) Electrocatalytic oxidation of organic compounds on noble metals in aqueous solution. Electrochim. Acta 29, 1581–1588.CrossRefGoogle Scholar
  74. Lamy, C., Leger, J. M., Clavilier, J. and Parsons, R. (1983) Structural effects in electrocatalysis: A comparative study of the oxidation of CO, HCOOH and CH3OH on single crystal Pt electrodes. J. Electroanal. Chem. 150, 71–77.CrossRefGoogle Scholar
  75. Lanza, M. R. V. and Bertazzoli, R. (2002) Cyanide oxidation from wastewater in a flow electrochemical reactor. Ind. Eng. Chem. Res. 41, 22–26.CrossRefGoogle Scholar
  76. Leffrang, U., Ebert, K., Flory, K., Galla, U. and Schmeider, H. (1995) Organic waste destruction by indirect electrooxidation. Sep. Purif. Technol. 30, 1883–1899.Google Scholar
  77. Li, X.-y., Cui, Y.-h., Feng, Y.-j., Xie, Z.-m. and Gu, J.-D. (2005) Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Res. 39, 1972–1981.Google Scholar
  78. Lin, S. H. and Chen, M. L. (1997) Treatment of textile wastewater by chemical methods for reuse. Water Res. 31, 868–876.CrossRefGoogle Scholar
  79. Lipp, L. and Pletcher, D. (1997) Preparation and characterization of tin dioxide coated titanium electrodes. Electrochim. Acta 42, 1091–1099.CrossRefGoogle Scholar
  80. Lissens, G., Pieters, J., Verhaege, M., Pinoy, L. and Verstraete, W. (2003) Electrochemical degradation of surfactants by intermediates of water discharge at carbon-based electrodes. Electrochim. Acta 48, 1655–1663.CrossRefGoogle Scholar
  81. Malpass, G. R. P., Neves, R. S. and Motheo, A. J. (2006) A comparative study of commercial and laboratory-made Ti ∕ Ru0. 3Ti0. 7O2 DSA electrodes: “In situ” and “ex situ” surface characterisation and organic oxidation activity. Electrochim. Acta 52, 936–944.Google Scholar
  82. Marselli, B., Garcia-Gomez, J., Michaud, P. A., Rodrigo, M. A. and Comninellis, C. (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J. Electrochem. Soc. 150, D79–D83.CrossRefGoogle Scholar
  83. Martinez-Huitle, C. A., Ferro, S. and De Battisti, A. (2004a) Electrochemical incineration of oxalic acid: Role of electrode material. Electrochim. Acta 49, 4027–4034.CrossRefGoogle Scholar
  84. Martinez-Huitle, C. A., Quiroz, M. A., Comninellis, C., Ferro, S. and De Battisti, A. (2004b) Electrochemical incineration of chloranilic acid using Ti ∕ IrO2, Pb ∕ PbO2 and Si/BDD electrodes. Electrochim. Acta 50, 949–956.CrossRefGoogle Scholar
  85. Martinez-Huitle, C. A., Ferro, S. and De Battisti, A. (2005) Electrochemical incineration in the presence of halides. Electrochem. Solid State Lett. 8, 35–39.CrossRefGoogle Scholar
  86. Montilla, F., Michaud, P. A., Morallon, E., Vazquez, J. L. and Comninellis, C. (2002) Electro-chemical oxidation of benzoic acid at boron-doped diamond electrodes. Electrochim. Acta 47, 3509–3513.CrossRefGoogle Scholar
  87. Morao, A., Lopes, A., Amorim, M. T. P. d. and Goncalves, I. C. (2004) Degradation of mixtures of phenols using boron doped diamond electrodes for wastewater treatment. Electrochim. Acta 49, 1587–1595.Google Scholar
  88. Naumczyk, J., Szpyrkowicz, L. and Zillio-Grandi, F. (1996) Electrochemical treatment of textile wastewater. Water Sci. Technol. 34, 17–24.Google Scholar
  89. Nelson, N. (2002) Electrochemical destruction of organic hazardous wastes. Plainum Met. Rev. 46, 18–23.Google Scholar
  90. Ogutveren, U. B., Toru, E. and Koparal, S. (1999) Removal of cyanide by anodic oxidation for wastewater treatment. Water Res. 33, 1851–1856.CrossRefGoogle Scholar
  91. Panizza, M. and Cerisola, G. (2001) Removal of organic pollutants from industrial wastewater by electrogenerated Fenton’s reagent. Water Res. 35, 3987–3992.CrossRefGoogle Scholar
  92. Panizza, M. and Cerisola, G. (2003a) Electrochemical oxidation of 2-naphthol with in situ electrogenerated active chlorine. Electrochim. Acta 48, 1515–1519.CrossRefGoogle Scholar
  93. Panizza, M. and Cerisola, G. (2003b) Influence of anode material on the electrochemical oxidation of 2-naphthol. Part 1. Cyclic voltammetry and potential step experiments. Electrochim. Acta 48, 3491–3497.Google Scholar
  94. Panizza, M. and Cerisola, G. (2004a) Electrochemical oxidation as final treatment of synthetic tannery wastewater. Environ. Sci. Technol. 38, 5470–5475.CrossRefGoogle Scholar
  95. Panizza, M. and Cerisola, G. (2004b) Influence of anode material on the electrochemical oxidation of 2-naphthol: Part 2. Bulk electrolysis experiments. Electrochim. Acta 49, 3221–3226.CrossRefGoogle Scholar
  96. Panizza, M. and Cerisola, G. (2005) Application of diamond electrodes to electrochemical processes. Electrochim. Acta 51, 191–199.CrossRefGoogle Scholar
  97. Panizza, M. and Cerisola, G. (2006a) Electrochemical oxidation of aromatic sulphonated acids on a boron-doped diamond electrode. Int. J. Environ. Pollut. 27, 64–74.Google Scholar
  98. Panizza, M. and Cerisola, G. (2006b) Electrochemical processes for the treatment of organic pollutants. In: D. V. Zinger (Eds.), Advances in Chemistry Research, Vol. 2. Nova Science, New York, NY, pp. 1–38.Google Scholar
  99. Panizza, M. and Cerisola, G. (2006c) Olive mill wastewater treatment by anodic oxidation with parallel plate electrodes. Water Res. 40, 1179–1184.CrossRefGoogle Scholar
  100. Panizza, M., Bocca, C. and Cerisola, G. (2000) Electrochemical treatment of wastewater containing poliaromatic organic pollutants. Water Res. 34, 2601–2605.CrossRefGoogle Scholar
  101. Panizza, M., Michaud, P. A., Cerisola, G. and Comninellis, C. (2001a) Anodic oxidation of 2-naphthol at boron-doped diamond electrodes. J. Electroanal. Chem. 507, 206.CrossRefGoogle Scholar
  102. Panizza, M., Michaud, P. A., Cerisola, G. and Comninellis, C. (2001b) Electrochemical treatment of wastewater containing organic pollutants on boron-doped diamond electrodes. Prediction of specific energy consumption and required electrode area. Electrochem. Commun. 3, 336.Google Scholar
  103. Panizza, M., Delucchi, M. and Cerisola, G. (2005) Electrochemical degradation of anionic surfactants. J. Appl. Electrochem. 35, 357–361.CrossRefGoogle Scholar
  104. Perret, A., Haenni, W., Skinner, N., Tang, X. M., Gandini, D., Comninellis, C., Correa, B. and Foti, G. (1999) Electrochemical behavior of synthetic diamond thin film electrodes. Diam. Relat. Mater. 8, 820–823.CrossRefGoogle Scholar
  105. Piya-areetham, P., Shenchunthichai, K. and Hunsom, M. (2006) Application of electrooxidation process for treating concentrated wastewater from distillery industry with a voluminous electrode. Water Res. 40, 2857–2864.CrossRefGoogle Scholar
  106. Pletcher, D. and Walsh, F. C. (1982) Industrial Electrochemistry. Chapman and Hall, London.Google Scholar
  107. Polcaro, A. M. and Palmas, S. (1997) Electrochemical oxidation of chlorophenols. Ind. Eng. Chem. Res., 1791–1798.Google Scholar
  108. Polcaro, A. M., Palmas, S., Renoldi, F. and Mascia, M. (1999) On the performance of Ti∕SnO2 and Ti∕PbO2 anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment. J. Appl. Electrochem. 29, 147–151.CrossRefGoogle Scholar
  109. Polcaro, A. M., Palmas, S., Renoldi, F. and Mascia, M. (2000) Three-dimensional electrodes for the electrochemical combustion of organic pollutants. Electrochim. Acta 46, 389–394.CrossRefGoogle Scholar
  110. Polcaro, A. M., Vacca, A., Palmas, S. and Mascia, M. (2003) Electrochemical treatment of wastewater containing phenolic compounds: Oxidation at boron-doped diamond electrodes. J. Appl. Electrochem. 33, 885–892.CrossRefGoogle Scholar
  111. Polcaro, A. M., Vacca, A., Mascia, M. and Palmas, S. (2005) Oxidation at boron doped diamond electrodes: An effective method to mineralise triazines. Electrochim. Acta 50, 1841–1847.CrossRefGoogle Scholar
  112. Ponce-de-Leon, C. and Pletcher, D. (1995) Removal of formaldehyde from aqueous solutions via oxygen reduction using a reticulated vitreous carbon cathode cell. J. Appl. Electrochem. 25, 307–314.Google Scholar
  113. Pulgarin, C., Adler, N., Peringer, P. and Comninellis, C. (1994) Electrochemical detoxification of a 1,4-benzoquinone solution in wastewater treatment. Water Res. 28, 887–893.CrossRefGoogle Scholar
  114. Rajeshwar, K. and Ibanez, J. G. (1997) Environmental Electrochemistry. Fundamentals and Applications in Pollution Abatement. Academic, London.Google Scholar
  115. Rajeshwar, K., Ibanez, J. G. and Swain, G. M. (1994) Electrochemistry and environment. J. Appl. Electrochem. 24, 1077–1091.CrossRefGoogle Scholar
  116. Rodgers, J. D., Jedral, W. and Bunce, N. J. (1999) Electrochemical oxidation of chlorinated phenols. Environ. Sci. Technol. 33, 1453–1457.CrossRefGoogle Scholar
  117. Rodrigo, M. A., Michaud, P. A., Duo, I., Panizza, M., Cerisola, G. and Comninellis, C. (2001) Oxidation of 4-Chlorophenol at boron-doped diamond electrodes for wastewater treatment. J. Electrochem. Soc. 148, D60–D64.CrossRefGoogle Scholar
  118. Rychen, P., Pupunat, L., Haenni, W. and Santoli, E. (2003) Water treatment applications with BDD electrodes and the DiaCell concept. New Diam. Front. Carbon Technol. 13, 109–117.Google Scholar
  119. Saracco, G., Solarino, L., Aigotti, R., Specchia, V. and Maja, M. (2000) Electrochemical oxidation of organic pollutants at low electrolyte concentrations. Electrochim. Acta 46, 373–380.CrossRefGoogle Scholar
  120. Sharifian, H. and Kirk, D. (1986) Electrochemical oxidation of phenol. J. Electrochem. Soc. 113, 921–924.CrossRefGoogle Scholar
  121. Simond, O., Schaller, V. and Comninellis, C. (1997) Theoretical model for the anodic oxidation of organics on metal oxide electrodes. Electrochim. Acta 42, 2009–2012.CrossRefGoogle Scholar
  122. Smith-de-Sucre, V. and Watkinson, A. P. (1981) Anodic oxidation of phenol for wastewater treatment. Can. J. Chem. Eng. 59, 52–59.CrossRefGoogle Scholar
  123. Socha, A., Chrzescijanska, E. and Kusmierek, E. (2005) Electrochemical and photoelectro-chemical treatment of 1-aminonaphthalene-3,6-disulphonic acid. Dyes Pigm. 67, 71–75.CrossRefGoogle Scholar
  124. Soriaga, M. P. and Hubbard, A. T. (1982) Determination of the orientation of adsorbed molecules at solid–liquid interfaces by thin-layer electrochemistry: Aromatic compounds at platinum electrodes. J. Am. Chem. Soc. 104, 2735–2742.CrossRefGoogle Scholar
  125. Stucki, S., Kotz, R., Carcer, B. and Suter, W. (1991) Electrochemical wastewater treatment using high overvoltage anodes. Part II: Anode performance and applications. J. Appl. Electrochem. 21, 99–104.Google Scholar
  126. Szpyrkowicz, L., Naumczyk, J. and Zilio-Grandi, F. (1995) Electrochemical treatment of tannery wastewater using Ti/Pt and Ti/Pt/Ir electrodes. Water Res. 29, 517–524.CrossRefGoogle Scholar
  127. Szpyrkowicz, L., Juzzolino, C., Kaul, S. N., Daniele, S. and DeFaveri, M. (2000) Electro-chemical oxidation of dyeing baths bearing disperse dyes. Ind. Eng. Chem. Res. 39, 3241–3248.CrossRefGoogle Scholar
  128. Szpyrkowicz, L., Kelsall, G. H., Kaul, S. N. and DeFaveri, M. (2001) Performance of electro-chemical reactor for treatment of tannery wastewaters. Chem. Eng. Sci. 56, 1579–1586.CrossRefGoogle Scholar
  129. Tahar, N. B. and Savall, A. (1998) Mechanistic aspects of phenol electrochemical degradation by oxidation on a Ta/PbO2 anode. J. Electrochem. Soc. 145, 3427–3434.CrossRefGoogle Scholar
  130. Tahar, N. B. and Savall, A. (1999a) A comparison of different lead dioxide coated electrodes for the electrochemical destruction of phenol. J. New Mat. Electr. Sys. 2, 19–26.Google Scholar
  131. Tahar, N. B. and Savall, A. (1999b) Electrochemical degradation of phenol in aqueous solution on bismuth doped lead dioxide: A comparison of the activities of various electrode formulations. J. Appl. Electrochem. 29, 277–283.CrossRefGoogle Scholar
  132. Tatapudi, P. and Fenton, J. M. (1993) Synthesis of ozone in a proton exchange membrane electrochemical reactor. J. Electrochem. Soc. 140, 3527–3530.CrossRefGoogle Scholar
  133. Troster, I., Fryda, M., Herrmann, D., Schafer, L., Haenni, W., Perret, A., Blaschke, M., Kraft, A. and Stadelmann, M. (2002) Electrochemical advanced oxidation process for water treatment using DiaChem electrodes. Diam. Relat. Mater. 11, 640–645.CrossRefGoogle Scholar
  134. Vicent, F., Morallon, E., Quijada, C., Vazquez, J. L., Aldaz, A. and Cases, F. (1998) Characterization and stability of doped SnO2 anodes. J. Appl. Electrochem. 28, 607–612.CrossRefGoogle Scholar
  135. Vlyssides, A. G. and Israilides, C. J. (1997) Detoxification of tannery waste liquors with an electrolysis system. Environ. Pollut. 97, 147–152.CrossRefGoogle Scholar
  136. Vlyssides, A. G., Papaioannou, D., Loizidoy, M., Karlis, P. K. and Zorpas, A. A. (2000) Testing an electrochemical method for treatment of textile dye wastewater. Waste Manage. 20, 569–574.CrossRefGoogle Scholar
  137. Vlyssides, A. G., Karlis, P. K. and Mahnken, G. (2003) Influence of various parameters on the electrochemical treatment of landfill leachates. J. Appl. Electrochem. 33, 155–159.CrossRefGoogle Scholar
  138. Yang, C. H., Lee, C. C. and Wen, T. C. (2000) Hypochlorite generation on Ru–Ti binary oxide for the treatment of dye wastewater. J. Appl. Electrochem. 30, 1043–1051.CrossRefGoogle Scholar
  139. Zanta, C. L. P. S., Andrade, A. R. d. and Boodts, J. F. C. (2000) Electrochemical behaviour of olefins: Oxidation at ruthenium-titanium dioxide and iridium-titanium dioxide coated electrodes. J. Appl. Electrochem., 467–474.Google Scholar
  140. Zanta, C. L. P. S., Michaud, P. A., Comninellis, C., Andrade, A. R. D. and Boodts, J. F. C. (2003) Electrochemical oxidation of p-chlorophenol on SnO2-Sb2O5 based anodes for wastewater treatment. J. Appl. Electrochem. 33, 1211–1215.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Chemical and Process EngineeringUniversity of GenoaGenoaItaly

Personalised recommendations