Use of Both Anode and Cathode Reactions in Wastewater Treatment

  • Enric Brillas
  • Ignasi Sirés
  • Pere Lluı́s Cabot


Here, we describe the fundamentals, laboratory experiments, and environmental applications of indirect electrooxidation methods based on H2O2 electrogeneration such as electro-Fenton, photoelectro-Fenton and peroxicoagulation for the treatment of acidic wastewaters containing toxic and recalcitrant organics. These methods are electrochemical advanced oxidation processes that can be used in divided and undivided electrolytic cells in which pollutants are oxidized by hydroxyl radical (OH) produced from anode and/or cathode reactions. H2O2 is generated from the two-electron reduction of O2 at reticulated vitreous carbon, graphite, carbon-felt, and O2-diffusion cathodes. The most usual method is electro-Fenton where Fe2 + added to the wastewater reacts with electrogenerated H2O2 to yield OH and Fe3 + from Fenton’s reaction. An advantage of this technique is that Fe2 + is continuously regenerated from cathodic reduction of Fe3 +. The characteristics of different electro-Fenton systems where pollutants are simultaneously destroyed by OH formed in the medium from Fenton’s reaction and at the anode surface from water oxidation are explained. The effect of the anode [Pt or boron-doped diamond (BDD)] and cathode (carbon-felt or O2-diffusion) on the degradation rate of persistent industrial by-products, herbicides, pharmaceuticals, dyes, etc. is examined. Initial pollutants react much more rapidly with OH formed in the medium and their degradation sequences are discussed from aromatic intermediates and finally short aliphatic acids are detected. The synergetic positive catalytic effect of Cu2 + on the electro-Fenton process is evidenced. The photoelectro-Fenton method involves the irradiation of the wastewater with UVA light that rapidly photodecomposes complexes of Fe3 + with final carboxylic acids enhancing total decontamination. The peroxicoagulation method uses a sacrificial Fe anode that is continuously oxidized to Fe2 + and organics are either mineralized with OH formed from both electrogenerated Fe2 + and H2O2 or removed by parallel coagulation with the FeOH3 precipitate formed from the excess of Fe3 + generated from Fenton’s reaction.


Chemical Oxygen Demand Total Organic Carbon Anodic Oxidation Chemical Oxygen Demand Removal Total Organic Carbon Removal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aaron, J. –J. and Oturan, M. A. (2001) New photochemical and electrochemical methods for the degradation of pesticides in aqueous media. Environmental applications. Turk. J. Chem. 25, 509–520.Google Scholar
  2. Alvarez-Gallegos, A. and Pletcher, D. (1998) The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous cathode cell. Part 1. The electrosynthesis of hydrogen peroxide in aqueous acidic solutions. Electrochim. Acta 44, 853–861.Google Scholar
  3. Alverez-Gallegos, A. and Pletcher, D. (1999) The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell. Part 2: The removal of phenols and related compounds from aqueous effluents. Electrochim. Acta 44, 2483–2492.Google Scholar
  4. Alvarez Gallegos, A., Vergara García, Y. and Zamudio, A. (2005) Solar hydrogen peroxide. Solar Energy Mater. Solar Cells 88, 157–167.CrossRefGoogle Scholar
  5. Badellino, C., Rodrigues, C. A. and Bertazzoli, R. (2006) Oxidation of pesticides by in situ electrogenerated hydrogen peroxide: Study for the degradation of 2,4-dichlorophenoxyacetic acid. J. Hazard. Mater. B137, 856–864.CrossRefGoogle Scholar
  6. Bellakhal, N., Oturan, M. A., Oturan, N. and Dachraoui, M. (2006) Olive oil mill wastewater treatment by the electro-Fenton Process. Environ. Chem. 3, 345–349.CrossRefGoogle Scholar
  7. Boye, B., Dieng, M. M. and Brillas, E. (2002) Degradation of herbicide 4-chlorophenoxyacetic acid by advanced electrochemical oxidation methods. Environ. Sci. Technol. 36, 3030–3035.CrossRefGoogle Scholar
  8. Boye, B., Brillas, E. and Dieng, M. M. (2003a) Electrochemical degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid in aqueous medium by peroxi-coagulation and photoperoxi-coagulation. J. Electroanal. Chem. 540, 25–34.CrossRefGoogle Scholar
  9. Boye, B., Dieng, M. M. and Brillas, E. (2003b) Electrochemical degradation of 2,4,5-trichlorophenoxyacetic acid in aqueous medium by peroxi-coagulation. Effect of pH and UV light. Electrochim. Acta 48, 781–790.Google Scholar
  10. Boye, B., Dieng, M. M. and Brillas, E. (2003c) Anodic oxidation, electro-Fenton and photoelectro-Fenton treatments of 2,4,5-trichlorophenoxyacetic acid. J. Electroanal. Chem. 557, 135–146.CrossRefGoogle Scholar
  11. Boye, B., Farnia, G., Sandonà, G., Buso, A. and Giomo, M. (2005) Removal of vegetal tannins from wastewater by electroprecipitation combined with electrogenerated Fenton oxidation. J. Appl. Electrochem. 35, 369–374.CrossRefGoogle Scholar
  12. Boye, B., Brillas, E., Buso, A., Farnia, G., Flox, C., Giomo, M. and Sandonà, G. (2006) Electrochemical removal of gallic acid from aqueous solutions. Electrochim. Acta 52, 256–262.CrossRefGoogle Scholar
  13. Brillas, E. and Casado, J. (2002) Aniline degradation by Electro-Fenton and peroxi-coagulation processes using a flow reactor for wastewater treatment. Chemosphere 47, 241–248.CrossRefGoogle Scholar
  14. Brillas, E., Bastida, R. M., Llosa, E. and Casado, J. (1995) Electrochemical destruction of aniline and 4-chloroaniline for wastewater treatment using a carbon-PTFE O2-fed cathode. J. Electrochem. Soc. 142, 1733–1741.CrossRefGoogle Scholar
  15. Brillas, E., Mur, E. and Casado, J. (1996) Iron(II) catalysis of the mineralization of aniline using a carbon-PTFE O2-fed cathode. J. Electrochem. Soc. 143, L49–L53.CrossRefGoogle Scholar
  16. Brillas, E., Sauleda, R. and Casado, J. (1997) Peroxi-coagulation of aniline in acidic medium using an oxygen diffusion cathode. J. Electrochem. Soc. 144, 2374–2379.CrossRefGoogle Scholar
  17. Brillas, E., Mur, E., Sauleda, R., Sánchez, L., Peral, J., Domènech, X. and Casado, J. (1998a) Aniline mineralization by AOP’s: Anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Appl. Catal. B: Environ. 16, 31–42.CrossRefGoogle Scholar
  18. Brillas, E., Sauleda, R. and Casado, J. (1998b) Degradation of 4-chlorophenol by anodic oxidation, electro-Fenton, photoelectro-Fenton, and peroxi-coagulation processes. J. Electrochem. Soc. 145, 759–765.CrossRefGoogle Scholar
  19. Brillas, E., Calpe, J. C. and Casado, J. (2000) Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Res. 34, 2253–2262.CrossRefGoogle Scholar
  20. Brillas, E., Baños, M. A. and Garrido, J. A. (2003a) Mineralization of herbicide 3, 6-dichloro-2-methoxybenzoic acid in aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton. Electrochim. Acta 48, 1697–1705.CrossRefGoogle Scholar
  21. Brillas, E., Boye, B., Baños, M. A., Calpe, J. C. and Garrido, J. A. (2003b) Electrochemical degradation of chlorophenoxy and chlorobenzoic herbicides in acidic aqueous medium by the peroxi-coagulation method. Chemosphere 51, 227–235.CrossRefGoogle Scholar
  22. Brillas, E., Boye, B. and Dieng, M. M. (2003c) Peroxi-coagulation and photoperoxi-coagulation treatments of the herbicide 4-chlorophenoxyacetic acid in aqueous medium using an oxygen-diffusion cathode. J. Electrochem. Soc. 150, E148–E154.CrossRefGoogle Scholar
  23. Brillas, E., Boye, B. and Dieng, M. M. (2003d) General and UV-assisted cathodic Fenton treatments for the mineralization of herbicide MCPA. J. Electrochem. Soc. 150, E583–E589.CrossRefGoogle Scholar
  24. Brillas, E., Baños, M. A., Camps, S., Arias, C., Cabot, P. L., Garrido, J. A. and Rodríguez, R. M. (2004a) Catalytic effect of Fe2 +, Cu2 + and UVA light on the electrochemical degradation of nitrobenzene using an oxygen-diffusion cathode. New J. Chem. 28, 314–322.CrossRefGoogle Scholar
  25. Brillas, E., Boye, B., Sirés, I., Garrido, J. A., Rodríguez, R. M., Arias, C., Cabot, P. L. and Comninellis, Ch. (2004b) Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode. Electrochim. Acta 49, 4487–4496.CrossRefGoogle Scholar
  26. Comninellis, Ch and De Battisti, A. (1996) Electrocatalysis in anodic oxidation of organics with simultaneous oxygen evolution. J. Chim. Phys. 93, 673–679.Google Scholar
  27. Da Pozzo, A., Di Palma, L., Merli, C. and Petrucci, E. (2005a) An experimental comparison of a graphite electrode and a gas diffusion electrode for the cathodic production of hydrogen peroxide. J. Appl. Electrochem. 35, 413–419.CrossRefGoogle Scholar
  28. Da Pozzo, A., Merli, C., Sirés, I., Garrido, J. A., Rodríguez, R. M. and Brillas, E. (2005b) Removal of the herbicide amitrole from water by anodic oxidation and electro-Fenton. Environ. Chem. Lett. 3, 7–11.CrossRefGoogle Scholar
  29. De Laat, J. and H. Gallard, H. (1999) Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: Mechanism and kinetic modeling. Environ. Sci. Technol. 33, 2726–2732.Google Scholar
  30. Do, J. -S. and Chen, C. -P. (1993) In situ oxidative degradation of formaldehyde with electrogenerated hydrogen peroxide. J. Electrochem. Soc. 140, 1632–1637.CrossRefGoogle Scholar
  31. Drogui, P., Elmaleh, S., Rumeau, M., Bernard, C. and Rambaud, A. (2001a) Hydrogen peroxide production by water electrolysis: Application to disinfection. J. Appl. Electrochem. 31, 877–882.CrossRefGoogle Scholar
  32. Drogui, P., Elmaleh, S., Rumeau, M., Bernard, C. and Rambaud, A. (2001b) Oxidising and disinfecting by hydrogen peroxide produced in a two-electrode cell. Water Res. 35, 3235–3241.CrossRefGoogle Scholar
  33. Edelahi, M. C., Oturan, N., Oturan, M. A., Padellec, Y., Bermond, A. and El Kacemi, K. (2004) Degradation of diuron by the electro-Fenton process. Environ. Chem. Lett. 1, 233–236.CrossRefGoogle Scholar
  34. Ferro, S., De Battisti, A., Duo, I., Comninellis, Ch., Haenni, W. and Perret, A. (2000) Chlorine evolution at highly boron-doped diamond electrodes. J. Electrochem. Soc. 147, 2614–2619.CrossRefGoogle Scholar
  35. Flox, C., Ammar, S., Arias, C., Brillas, E., Vargas-Zavala, A. V. and Abdelhedi, R. (2006) Electro-Fenton and photoelectro-Fenton degradation of indigo Carmine in acidic aqueous medium. Appl. Catal. B: Environ. 67, 93–104.CrossRefGoogle Scholar
  36. Fockedey, E. and Van Lierde, A. (2002) Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes. Water Res. 36, 4169–4175.CrossRefGoogle Scholar
  37. Foller, P. C. and Bombard, R. T. (1995) Processes for the production of mixtures of caustic soda and hydrogen peroxide via the reduction of oxygen. J. Appl. Electrochem. 25, 613–627.CrossRefGoogle Scholar
  38. Gallard, H., De Laat, J. and Legube, B. (1999) Comparative study of the rate of decomposition of H2O2 and of atrazine by Fe(III) ∕ H2O2, Cu(II) ∕ H2O2, \(\mathrm{Fe}(\mathrm{III})/\mathrm{Cu}(\mathrm{II})/{\mathrm{H}}_{2}{\mathrm{O}}_{2}\). Rev. Sci. Eau 12, 715–728.Google Scholar
  39. Gözmen, B., Oturan, M. A., Oturan, N. and Erbatur, O. (2003) Indirect electrochemical treatment of bisphenol A in water via electrochemically generated Fenton’s reagent. Environ. Sci. Technol. 37, 3716–3723.CrossRefGoogle Scholar
  40. Guivarch, E., Oturan, N. and Oturan, M. A. (2003a) Removal of organophosphorus pesticides from water by electrogenerated Fenton’s reagent. Environ. Chem. Lett. 1, 165–168.CrossRefGoogle Scholar
  41. Guivarch, E., Trevin, S., Lahitte, C. and Oturan, M. A. (2003b) Degradation of azo dyes in water by electro-Fenton process. Environ. Chem. Lett. 1, 38–44.CrossRefGoogle Scholar
  42. Hanna, K., Chiron, S. and Oturan, M. A. (2005) Coupling enhanced water solubilization with cyclodextrin to indirect electrochemical treatment for pentachlorophenol contaminated soil remediation. Water Res. 39, 2763–2773.CrossRefGoogle Scholar
  43. Harrington, T. and Pletcher, D. (1999) The removal of low levels of organics from aqueous solutions using Fe(II) and hydrogen peroxide formed in situ at gas diffusion electrodes. J. Electrochem. Soc. 146, 2983–2989.CrossRefGoogle Scholar
  44. Hsiao, Y. L. and Nobe, K. (1993) Hydroxylation of chlorobenzene and phenol in a packed bed flow reactor with electrogenerated Fenton’s reagent. J. Appl. Electrochem. 39, 943–946.CrossRefGoogle Scholar
  45. Irmak, S., Yavuz, H. I. and Erbatur, O (2005) Degradation of 4-chloro-2-methylphenol in aqueous solution by electro-Fenton and photoelectro-Fenton processes. Appl. Catal. B: Environ. 63, 243–248.CrossRefGoogle Scholar
  46. Marselli, B., Garcia-Gomez, J., Michaud, P. -A., Rodrigo, M. A. and Comninellis, Ch. (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J. Electrochem. Soc. 150, D79–D83.CrossRefGoogle Scholar
  47. Matsue, T., Fujihira, M. and Osa, T. (1981) Oxidation of alkylbenzenes by electrogenerated hydroxyl radical. J. Electrochem. Soc. 128, 2565–2569.CrossRefGoogle Scholar
  48. Meinero, S. and Zerbinati, O. (2006) Oxidative and energetic efficiency of different electrochemical oxidation processes for chloroanilines abatement in aqueous medium. Chemosphere 64, 386–392.CrossRefGoogle Scholar
  49. Oturan, M. A. (2000) An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: Application to herbicide 2,4-D. J. Appl. Electrochem. 30, 475–482.CrossRefGoogle Scholar
  50. Oturan, M. A. and Pinson, J. (1995) Hydroxylation by electrochemically generated OH radicals. Mono- and polyhydroxylation of benzoic acid: Products and isomer distribution. J. Phys. Chem. 99, 13948–13954.Google Scholar
  51. Oturan, M. A., Pinson, J., Deprez, D. and Terlain, B. (1992) Polyhydroxylation of salicylic acid by electrochemically generated hydroxyl radicals. New J. Chem. 16, 705–710.Google Scholar
  52. Oturan, M. A., Aaron, J. J., Oturan, N. and Pinson, J. (1999a) Degradation of chlorophenoxyacid herbicides in aqueous media, using a novel electrochemical method. Pestic. Sci. 55, 558–562.CrossRefGoogle Scholar
  53. Oturan, M. A., Pinson, J., Oturan, N. and Deprez, D. (1999b) Hydroxylation of aromatic drugs by the electro-Fenton method. Formation and identification of the metabolites of riluzole. New J. Chem. 23, 793–794.Google Scholar
  54. Oturan, M. A., Peiroten, J., Chartrin, P. and Acher, A. J. (2000) Complete destruction of p-nitrophenol in aqueous medium by electro-Fenton method. Environ. Sci. Technol. 34, 3474–3479.CrossRefGoogle Scholar
  55. Oturan, M. A., Oturan, N., Lahitte, C. and Trevin, S. (2001) Production of hydroxyl radicals by electrochemically assisted Fenton’s reagent. Application to the mineralization of an organic micropollutant, pentachlorophenol. J. Electroanal. Chem. 507, 96–102.CrossRefGoogle Scholar
  56. Panizza, M. and Cerisola, G. (2001) Removal of organic pollutants from industrial wastewater by electrogenerated Fenton’s reagent. Water Res. 35, 3987–3992.CrossRefGoogle Scholar
  57. Panizza, M. and Cerisola, G. (2005) Application of diamond electrodes to electrochemical processes. Electrochim. Acta 51, 191–199.CrossRefGoogle Scholar
  58. Peralta-Hernández, J. M., Meas-Vong, Y., Rodríguez, F. J., Chapman, T. W., Maldonado, M. I. and Godínez, L. A. (2006) In situ electrochemical and photo-electrochemical generation of the Fenton reagent: A potentially important new water treatment technology. Water Res. 40, 1754–1762.CrossRefGoogle Scholar
  59. Plant, L. and Jeff, M. (1994) Hydrogen peroxide: A potent force to destroy organics in wastewater. Chem. Eng. 101, 16–20.Google Scholar
  60. Pletcher, D. (1999) Indirect oxidations using electrogenerated hydrogen peroxide. Acta Chem. Scand. 53, 745–750.CrossRefGoogle Scholar
  61. Ponce De Leon, C. and Pletcher, D. (1995) Removal of formaldehyde from aqueous solutions via oxygen reduction using a reticulated vitreous carbon cathode cell. J. Appl. Electrochem. 25, 307–314.Google Scholar
  62. Pratap, K. and Lemley, A. T. (1998) Fenton electrochemical treatment of aqueous atrazine and metolachlor. J. Agric. Food Chem. 46, 3285–3291.CrossRefGoogle Scholar
  63. Qiang, Z., Chang, J. H. and Huang, C. P. (2003) Electrochemical regeneration of Fe2 + in Fenton oxidation processes. Water Res. 37, 1308–1319.CrossRefGoogle Scholar
  64. Sharma, V. K. and Millero, F. J. (1988) Oxidation of copper(I) in seawater. Environ. Sci. Technol. 22, 768–771.CrossRefGoogle Scholar
  65. Sirés, I., Arias, C., Cabot, P. L., Centellas, F., Rodríguez, R. M., Garrido, J. A. and Brillas, E. (2004) Paracetamol mineralization by advanced electrochemical oxidation processes for wastewater treatment. Environ. Chem. 1, 26–28.CrossRefGoogle Scholar
  66. Sirés, I., Garrido, J. A., Rodríguez, R. M., Cabot, P. L.,Centellas, F., Arias, C. and Brillas, E. (2006) Electrochemical degradation of paracetamol from water by catalytic action of Fe2 +, Cu2 +, and UVA light on electrogenerated hydrogen peroxide. J. Electrochem. Soc. 153, D1–D9.CrossRefGoogle Scholar
  67. Song-hu, Y. and Xiao-hua, L. (2005) Comparison treatment of various chlorophenols by electro-Fenton method: Relationship between chlorine content and degradation. J. Hazard. Mater. B118, 85–92.CrossRefGoogle Scholar
  68. Sudoh, M., Kodera, T., Sakai, K., Zhang, J. Q. and Koide, K. (1986) Oxidative degradation of aqueous phenol effluent with electrogenerated Fenton’s reagent. J. Chem. Eng. Jpn 19, 513–518.CrossRefGoogle Scholar
  69. Sun, Y. and Pignatello, J. J. (1993) Photochemical reactions involved in the total mineralization of 2,4-D by \({\mathrm{Fe}}^{3+}/{\mathrm{H}}_{2}{\mathrm{O}}_{2}/\mathrm{UV}\). Environ. Sci. Technol. 27, 304–310.CrossRefGoogle Scholar
  70. Tomat, R. and Rigo, A. (1976) Electrochemical production of hydroxyl radicals and their reaction with toluene. J. Appl. Electrochem. 6, 257–261.CrossRefGoogle Scholar
  71. Tomat, R. and Rigo, A. (1979) Oxidation of polymethylated benzenes promoted by hydroxyl radicals. J. Appl. Electrochem. 9, 301–305.CrossRefGoogle Scholar
  72. Tomat, R. and Rigo, A. (1984) Electrochemical oxidation of toluene promoted by hydroxyl radicals. J. Appl. Electrochem. 14, 1–8.CrossRefGoogle Scholar
  73. Tomat, R. and Rigo, A. (1985) Electrochemical oxidation of aliphatic hydrocarbons promoted by inorganic radicals. I. Hydroxyl radicals. J. Appl. Electrochem. 15, 167–173.CrossRefGoogle Scholar
  74. Tomat, R. and Vecchi, E. (1971) Electrocatalytic production of hydroxyl radicals and their oxidative addition to benzene. J. Appl. Electrochem. 1, 185–188.CrossRefGoogle Scholar
  75. Traube, M. (1882) Ueber die Aktivirung des Sauerstoffs. Ber. Dtsch. Chem.Ges. 15, 2434–2443.CrossRefGoogle Scholar
  76. Tzedakis, T., Savall, A. and Clifton, M. J. (1989) The electrochemical regeneration of Fenton’s reagent in the hydroxylation of aromatic substrates: Batch and continuous processes. J. Appl. Electrochem. 19, 911–921.CrossRefGoogle Scholar
  77. Ventura, A., Jacquet, G., Bermond, A. and Camel, V. (2002) Electrochemical generation of the Fenton’s reagent: Application to atrazine degradation. Water Res. 36, 3517–3522.CrossRefGoogle Scholar
  78. Wang, Q. and Lemley, A. T. (2001) Kinetic model and optimization of 2,4-D degradation by anodic Fenton treatment. Environ. Sci. Technol. 35, 4509–4514.CrossRefGoogle Scholar
  79. Wang, Q. and Lemley, A. T. (2002) Oxidation of diazinon by anodic Fenton treatment. Water Res. 36, 3237–3244.CrossRefGoogle Scholar
  80. Wang, Q. and Lemley, A. T. (2003) Oxidative degradation and detoxification of aqueous carbofuran by membrane anodic Fenton treatment. J. Hazard. Mater. B98, 241–255.CrossRefGoogle Scholar
  81. Wang, Q., Scherer, E. M. and Lemley, A. T. (2004) Metribuzin degradation by membrane anodic Fenton treatment and its interaction with ferric ion. Environ. Sci. Technol. 38, 1221–1227.CrossRefGoogle Scholar
  82. Wang, A., Qu, J., Ru, J., Liu, H. and Ge, J. (2005) Mineralization of an azo dye Acid Red 14 by electro-Fenton’s reagent using an activated carbon fiber cathode. Dyes Pigments 65, 227–233.CrossRefGoogle Scholar
  83. Xie, Y. -B. and Li, X. -Z. (2006a) Degradation of Bisphenol A in aqueous solution by H2O2-assisted photoelectrocatalytic oxidation. J. Hazard. Mater. B138, 526–533.CrossRefGoogle Scholar
  84. Xie, Y. -B. and Li, X. -Z. (2006b) Interactive oxidation of photoelectrocatalysis and electro-Fenton for azo dye degradation using TiO2-Ti mesh and reticulated vitreous carbon electrodes. Mater. Chem. Phys. 95, 39–50.CrossRefGoogle Scholar
  85. Yuan, S., Tian, M., Cui, Y., Lin, L. and Lu, X. (2006) Treatment of nitrophenols by cathode reduction and electro-Fenton methods. J. Hazard. Mater. B137, 573–580.CrossRefGoogle Scholar
  86. Zuo, Y. and Hoigné, J. (1992) Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes. Environ. Sci. Technol. 26, 1014–1022.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Enric Brillas
    • 1
  • Ignasi Sirés
  • Pere Lluı́s Cabot
  1. 1.Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de QuímicaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations