Fabrication of Photoelectrode Materials

  • Huanjun Zhang
  • Xinyong Li
  • Guohua Chen


In this chapter, a number of methods for the fabrication of film-structured photoelectrode materials were selectively reviewed. Sol–gel methods have long been employed for film fabrications. Direct assembly of particulate photocatalysts was also shortly discussed. The emphasis was placed on the development of photoelectrodes with enhanced photocatalytic performance due to either light absorption enhancement or increase in the separation of photogenerated charge carriers. Photocatalysts with enhanced light absorption were successfully developed by various doping techniques. And those with increase in charge carrier separations were made to have special crystalline structures such as nanorod/nanotubular arrays, interfacial region between coupled semiconductor components, and metal/semiconductor heterojunctions etc. Other structural characteristics such as high surface area and porosity were also achieved by various fabrication techniques as will be illustrated in this chapter.


Photocatalytic Activity TiO2 Film TiO2 Thin Film Anodic Aluminum Oxide Template Titanium Isopropoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adachi, M., Murata, Y., Okada, I. and Yoshikawa, S. (2003). Formation of titania nanotubes and applications for dye-sensitized solar cells. J. Electrochem. Soc. 150(8), G488–G493.CrossRefGoogle Scholar
  2. An, H. J., Jang, S. R., Vittal, R., Lee, J. and Kim, K. J. (2005). Cationic surfactant promoted reductive electrodeposition of nanocrystalline anatase TiO2 for application to dye-sensitized solar cells. Electrochimica Acta 50(13), 2713–2718.CrossRefGoogle Scholar
  3. Anderson, C. and Bard, A. J. (1995). Improved photocatalyst of TiO2 ∕ SiO2 prepared by a sol–gel synthesis. J. Phys. Chem. 99(24), 9882–9885.CrossRefGoogle Scholar
  4. Anderson, M. A., Gieselmann, M. J. and Xu, Q. Y. (1988). Titania and alumina ceramic membranes. J. Membr. Sci. 39(3), 243–258.CrossRefGoogle Scholar
  5. Andersson, M., Birkedal, H., Franklin, N. R., Ostomel, T., Boettcher, S., Palmqvist, A. E. C. and Stucky, G. D. (2005). Ag/AgCl-loaded ordered mesoporous anatase for photocatalysis. Chem. Mater. 17(6), 1409–1415.CrossRefGoogle Scholar
  6. Anpo, M. (2000). Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method. Pure Appl. Chem. 72(9), 1787–1792.Google Scholar
  7. Anpo, M., Ichihashi, Y., Takeuchi, M. and Yamashita, H. (1998). Design of unique titanium oxide photocatalysts by an advanced metal ion-implantation method and photocatalytic reactions under visible light irradiation. Res. Chem. Intermed. 24(2), 143–149.CrossRefGoogle Scholar
  8. Anpo, M., Ichihashi, Y., Takeuchi, M. and Yamashita, H. (1999). Design and development of unique titanium oxide photocatalysts capable of operating under visible light irradiation by an advanced metal ion-implantation method. Sci. Technol. Catal. 1998. 121, 305–310.Google Scholar
  9. Anpo, M., Kishiguchi, S., Ichihashi, Y., Takeuchi, M., Yamashita, H., Ikeue, K., Morin, B., Davidson, A. and Che, M. (2001). The design and development of second-generation titanium oxide photocatalysts able to operate under visible light irradiation by applying a metal ion-implantation method. Res. Chem. Intermed. 27(4–5), 459–467.CrossRefGoogle Scholar
  10. Antonelli, D. M. and Ying, J. Y. (1995). Synthesis of hexagonally packed mesoporous TiO2 by a modified sol–gel method. Angew. Chem. Int. Ed. Engl. 34(18), 2014–2017.CrossRefGoogle Scholar
  11. Babelon, P., Dequiedt, A. S., Mostefa-Sba, H., Bourgeois, S., Sibillot, P. and Sacilotti, M. (1998). SEM and XPS studies of titanium dioxide thin films grown by MOCVD. Thin Solid Films 322(1–2), 63–67.CrossRefGoogle Scholar
  12. Backman, U., Auvinen, A. and Jokiniemi, J. K. (2005). Deposition of nanostructured titania films by particle-assisted MOCVD. Surf. Coat. Technol. 192(1), 81–87.CrossRefGoogle Scholar
  13. Badawy, W. A. (1997). Preparation, electrochemical, photoelectrochemical and solid-state characteristics of indium-incorporated TiO2 thin films for solar cell fabrication. J. Mater. Sci. 32(18), 4979–4984.CrossRefGoogle Scholar
  14. Bamwenda, G. R., Tsubota, S., Nakamura, T. and Haruta, M. (1995). Photoassisted hydrogen-production from a water–ethanol solution – A comparison of activities of Au – TiO2 and Pt – TiO2. J. Photochem. Photobiol. A-Chem. 89(2), 177–189.CrossRefGoogle Scholar
  15. Bandyopadhyay, M., Birkner, A., van den Berg, M. W. E., Klementiev, K. V., Schmidt, W., Grunert, W. and Gies, H. (2005). Synthesis and characterization of mesoporous MCM-48 containing TiO2 nanoparticles. Chem. Mater. 17(15), 3820–3829.CrossRefGoogle Scholar
  16. Bavykin, D. V., Lapkin, A. A., Plucinski, P. K., Torrente-Murciano, L., Friedrich, J. M. and Walsh, F. C. (2006). Deposition of Pt, Pd, Ru and Au on the surfaces of titanate nanotubes. Top. Catal. 39(3–4), 151–160.Google Scholar
  17. Beck, K. M., Sasaki, T. and Koshizaki, N. (1999). Characterization of nanocomposite materials prepared via laser ablation of Pt ∕ TiO2 bi-combinant targets. Chem. Phys. Lett. 301(3–4), 336–342.CrossRefGoogle Scholar
  18. Boccuzzi, F., Chiorino, A., Tsubota, S. and Haruta, M. (1996). FTIR study of carbon monoxide oxidation and scrambling at room temperature over gold supported on ZnO and TiO2. J. Phys. Chem. 100(9), 3625–3631.CrossRefGoogle Scholar
  19. Bond, G. C. and Thompson, D. T. (1999). Catalysis by gold. Catal. Rev. Sci. Eng. 41(3–4), 319–388.CrossRefGoogle Scholar
  20. Bougrine, A., El Hichou, A., Addou, M., Ebothe, J., Kachouane, A. and Troyon, M. (2003). Structural, optical and cathodoluminescence characteristics of undoped and tin-doped ZnO thin films prepared by spray pyrolysis. Mater. Chem. Phys. 80(2), 438–445.CrossRefGoogle Scholar
  21. Bowker, M., Millard, L., Greaves, J., James, D. and Soares, J. (2004). Photocatalysis by Au nanoparticles: Reforming of methanol. Gold Bull. 37(3–4), 170–173.Google Scholar
  22. Butterfield, I. M., Christensen, P. A., Hamnett, A., Shaw, K. E., Walker, G. M., Walker, S. A. and Howarth, C. R. (1997). Applied studies on immobilized titanium dioxide films as catalysts for the photoelectrochemical detoxification of water. J. Appl. Electrochem. 27(4), 385–395.CrossRefGoogle Scholar
  23. Centeno, M. A., Carrizosa, I. and Odriozola, J. A. (2003). Deposition-precipitation method to obtain supported gold catalysts: dependence of the acid–base properties of the support exemplified in the system TiO2 − TiOxNy − TiN. Appl. Catal. A-Gen. 246(2), 365–372.CrossRefGoogle Scholar
  24. Chan, S. C. and Barteau, M. A. (2005). Preparation of highly uniform Ag ∕ TiO2 and Au ∕ TiO2 supported nanoparticle catalysts by photodeposition. Langmuir 21(12), 5588–5595.CrossRefGoogle Scholar
  25. Che, G. L., Lakshmi, B. B., Fisher, E. R. and Martin, C. R. (1998). Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393(6683), 346–349.CrossRefGoogle Scholar
  26. Choi, W., Hong, S. J., Chang, Y. S. and Cho, Y. (2000). Photocatalytic degradation of polychlorinated dibenzo-p-dioxins on TiO2 film under UV or solar light irradiation. Environ. Sci. Technol. 34(22), 4810–4815.CrossRefGoogle Scholar
  27. Choi, K. S., Lichtenegger, H. C., Stucky, G. D. and McFarland, E. W. (2002). Electrochemical synthesis of nanostructured ZnO films utilizing self-assembly of surfactant molecules at solid–liquid interfaces. J. Am. Chem. Soc. 124(42), 12402–12403.CrossRefGoogle Scholar
  28. Choi, S. Y., Mamak, M., Coombs, N., Chopra, N. and Ozin, G. A. (2004). Thermally stable two-dimensional hexagonal mesoporous nanocrystalline anatase, meso-nc-TiO2: Bulk and crack-free thin film morphologies. Adv. Funct. Mater. 14(4), 335–344.CrossRefGoogle Scholar
  29. Choi, S. Y., Mamak, M., Speakman, S., Chopra, N. and Ozin, G. A. (2005). Evolution of nanocrystallinity in periodic mesoporous anatase thin films. Small 1(2), 226–232.CrossRefGoogle Scholar
  30. Conde-Gallardo, A., Guerrero, M., Fragoso, R. and Castillo, N. (2006). Gas-phase diffusion and surface reaction as limiting mechanisms in the aerosol-assisted chemical vapor deposition of TiO2 films from titanium diisopropoxide. J. Mater. Res. 21(12), 3205–3209.CrossRefGoogle Scholar
  31. Cozzoli, P. D., Comparelli, R., Fanizza, E., Curri, M. L., Agostiano, A. and Laub, D. (2004). Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: A semiconductor/metal nanocomposite in homogeneous nonpolar solution. J. Am. Chem. Soc. 126(12), 3868–3879.CrossRefGoogle Scholar
  32. Cui, H., Shen, H. S., Gao, Y. M., Dwight, K. and Wold, A. (1993). Photocatalytic properties of titanium (IV) oxide thin-films prepared by spin coating and spray pyrolysis. Mater. Res. Bull. 28(3), 195–201.CrossRefGoogle Scholar
  33. de Tacconi, N. R., Chenthamarakshan, C. R., Rajeshwar, K., Pauporte, T. and Lincot, D. (2003). Pulsed electrodeposition of WO3 – TiO2 composite films. Electrochem. Commun. 5(3), 220–224.CrossRefGoogle Scholar
  34. Decher, G. (1997). Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277(5330), 1232–1237.CrossRefGoogle Scholar
  35. Decher, G., Hong, J. D. and Schmitt, J. (1992). Buildup of ultrathin multilayer films by a self-assembly process. 3. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210(1–2), 831–835.Google Scholar
  36. Dimitratos, N., Villa, A., Bianchi, C. L., Prati, L. and Makkee, M. (2006). Gold on titania: Effect of preparation method in the liquid phase oxidation. Appl. Catal. A-Gen. 311, 185–192.CrossRefGoogle Scholar
  37. Di Paola, A., Marci, G., Palmisano, L., Schiavello, M., Uosaki, K., Ikeda, S. and Ohtani, B. (2002). Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: Characterization and photocatalytic activity for the degradation of 4-nitrophenol. J. Phys. Chem. B 106(3), 637–645.CrossRefGoogle Scholar
  38. Dumitriu, D., Bally, A. R., Ballif, C., Hones, P., Schmid, P. E., Sanjines, R., Levy, F. and Parvulescu, V. I. (2000). Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering. Appl. Catal. B-Environ. 25(2–3), 83–92.CrossRefGoogle Scholar
  39. Espinos, J. P., Fernandez, A., Caballero, A., Jimenez, V. M., Sanchez-Lopez, J. C., Contreras, L., Leinen, D. and GonzalezElipe, A. R. (1997). Ion-beam-induced CVD: An alternative method of thin film preparation. Chem. Vapor Deposit. 3(4), 219–226.CrossRefGoogle Scholar
  40. Evans, P., Pemble, M. E. and Sheel, D. W. (2006). Precursor-directed control of crystalline type in atmospheric pressure CVD growth of TiO2 on stainless steel. Chem. Mater. 18(24), 5750–5755.CrossRefGoogle Scholar
  41. Feng, S. H. and Xu, R. R. (2001). New materials in hydrothermal synthesis. Accounts Chem. Res. 34(3), 239–247.CrossRefGoogle Scholar
  42. Feng, X. J., Macak, J. M. and Schmuki, P. (2007). Robust self-organization of oxide nanotubes over a wide pH range. Chem. Mater. 19(7), 1534–1536.CrossRefGoogle Scholar
  43. Gauthier, V., Bourgeois, S., Sibillot, P., Maglione, M. and Sacilotti, M. (1999). Growth and characterization of AP-MOCVD iron doped titanium dioxide thin films. Thin Solid Films 340(1–2), 175–182.CrossRefGoogle Scholar
  44. Ghicov, A., Macak, J. M., Tsuchiya, H., Kunze, J., Haeublein, V., Kleber, S. and Schmuki, P. (2006). TiO2 nanotube layers: Dose effects during nitrogen doping by ion implantation. Chem. Phys. Lett. 419(4–6), 426–429.CrossRefGoogle Scholar
  45. Göß, D., Frach, P., Zywitzki, O., Modes, T., Klinkenberg, S. and Gottfried, C. (2005). Photocatalytic titanium dioxide thin films prepared by reactive pulse magnetron sputtering at low temperature. Surf. Coat. Technol. 200(1–4), 967–971.Google Scholar
  46. Grosso, D., Babonneau, F., Sanchez, C., Soler-Illia, G., Crepaldi, E. L., Albouy, P. A., Amenitsch, H., Balkenende, A. R. and Brunet-Bruneau, A. (2003). A first insight in the mechanisms involved in the self-assembly of 2D-hexagonal templated SiO2 and TiO2 mesostructured films during dip-coating. J. Sol–Gel Sci. Technol. 26(1–3), 561–565.Google Scholar
  47. Guo, M., Diao, P. and Cai, S. M. (2005a). Hydrothermal growth of perpendicularly oriented ZnO nanorod array film and its photoelectrochemical properties. Appl. Surf. Sci. 249(1–4), 71–75.CrossRefGoogle Scholar
  48. Guo, M., Diao, P., Wang, X. D. and Cai, S. M. (2005b). The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films. J. Solid State Chem. 178(10), 3210–3215.CrossRefGoogle Scholar
  49. Halary, E., Benvenuti, G., Wagner, F. and Hoffmann, P. (2000). Light induced chemical vapour deposition of titanium oxide thin films at room temperature. Appl. Surf. Sci. 154, 146–151.CrossRefGoogle Scholar
  50. Halary-Wagner, E., Wagner, F. and Hoffmann, P. (2004). Titanium dioxide thin-film deposition on polymer substrate by light induced chemical vapor deposition. J. Electrochem. Soc. 151(9), C571–C576.CrossRefGoogle Scholar
  51. Halary-Wagner, E., Bret, T. and Hoffmann, P. (2005). Light-induced CVD of titanium dioxide thin films I: Kinetics of deposition. Chem. Vapor Deposit. 11(1), 21–28.CrossRefGoogle Scholar
  52. Hao, W. C., Pan, F. and Wang, T. M. (2005). Photocatalytic activity TiO2 granular films prepared by layer-by-layer self-assembly method. J. Mater. Sci. 40(5), 1251–1253.CrossRefGoogle Scholar
  53. Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J. and Delmon, B. (1993). Low-temperature oxidation of Co over gold supported on TiO2, α-Fe2O3, and Co3O4. J. Catal. 144(1), 175–192.CrossRefGoogle Scholar
  54. Haruta, M., Uphade, B. S., Tsubota, S. and Miyamoto, A. (1998). Selective oxidation of propylene over gold deposited on titanium-based oxides. Res. Chem. Intermed. 24(3), 329–336.CrossRefGoogle Scholar
  55. He, C., Xiong, Y., Chen, J., Zha, C. H. and Zhu, X. H. (2003). Photoelectrochemical performance of Ag – TiO2 ∕ ITO film and photoelectrocatalytic activity towards the oxidation of organic pollutants. J. Photochem. Photobiol. A-Chem. 157(1), 71–79.CrossRefGoogle Scholar
  56. He, J. X., Yang, P. J., Sato, H., Umemura, Y. and Yamagishi, A. (2004). Effects of Ag-photodeposition on photocurrent of an ITO electrode modified by a hybrid film of TiO2 nanosheets. J. Electroanal. Chem. 566(1), 227–233.CrossRefGoogle Scholar
  57. Hidaka, H., Asai, Y., Zhao, J. C., Nohara, K., Pelizzetti, E. and Serpone, N. (1995). Photoelectrochemical decomposition of surfactants on a TiO2 ∕ TCO particulate film electrode assembly. J. Phys. Chem. 99(20), 8244–8248.CrossRefGoogle Scholar
  58. Hidaka, H., Nagaoka, H., Nohara, K., Shimura, T., Horikoshi, S., Zhao, J. and Serpone, N. (1996). A mechanistic study of the photoelectrochemical oxidation of organic compounds on a TiO2 ∕ TCO particulate film electrode assembly. J. Photochem. Photobiol. A-Chem. 98(1–2), 73–78.CrossRefGoogle Scholar
  59. Hidaka, H., Ajisaka, K., Horikoshi, S., Oyama, T., Takeuchi, K., Zhao, J. and Serpone, N. (2001). Comparative assessment of the efficiency of TiO2 ∕ OTE thin film electrodes fabricated by three deposition methods – Photoelectrochemical degradation of the DBS anionic surfactant. J. Photochem. Photobiol. A-Chem. 138(2), 185–192.CrossRefGoogle Scholar
  60. Hosono, E., Fujihara, S., Kakiuchi, K. and Imai, H. (2004). Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. J. Am. Chem. Soc. 126(25), 7790–7791.CrossRefGoogle Scholar
  61. Hou, X. G., Hao, F. H., Fan, B., Gu, X. N., Wu, X. Y. and Liu, A. D. (2006). Modification of TiO2 photocatalytic films by V+ ion implantation. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 243(1), 99–102.CrossRefGoogle Scholar
  62. Hsu, S. W., Yang, T. S., Chen, T. K. and Wong, M. S. (2007). Ion-assisted electron-beam evaporation of carbon-doped titanium oxide films as visible-light photocatalyst. Thin Solid Films 515(7–8), 3521–3526.CrossRefGoogle Scholar
  63. Hyett, G., Green, M. and Parkin, I. P. (2006). X-ray diffraction area mapping of preferred orientation and phase change in TiO2 thin films deposited by chemical vapor deposition. J. Am. Chem. Soc. 128(37), 12147–12155.CrossRefGoogle Scholar
  64. Ichinose, I., Senzu, H. and Kunitake, T. (1997). A surface sol–gel process of TiO2 and other metal oxide films with molecular precision. Chem. Mater. 9(6), 1296–1298.CrossRefGoogle Scholar
  65. Ilican, S., Caglar, Y., Caglar, M. and Yakuphanoglu, F. (2006). Electrical conductivity, optical and structural properties of indium-doped ZnO nanofiber thin film deposited by spray pyrolysis method. Phys. E 35(1), 131–138.CrossRefGoogle Scholar
  66. Inoue, N., Yuasa, H. and Okoshi, M. (2002). TiO2 thin films prepared by PLD for photocatalytic applications. Appl. Surf. Sci. 197, 393–397.CrossRefGoogle Scholar
  67. Ishizuka, S. O., Kato, S., Maruyama, T. and Akimoto, K. (2001). Nitrogen doping into Cu2O thin films deposited by reactive radio-frequency magnetron sputtering. Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers 40(4B), 2765–2768.Google Scholar
  68. Jin, S. and Shiraishi, F. (2004). Photocatalytic activities enhanced for decompositions of organic compounds over metal-photodepositing titanium dioxide. Chem. Eng. J. 97(2–3), 203–211.CrossRefGoogle Scholar
  69. Jing, L. Q., Li, X. Q., Li, S. D., Wang, B. Q., Xin, B. F., Fu, H. G., Wang, D. J. and Cai, W. M. (2005). XPS and SPS studies on nanometer Au/TiO2 photocatalyst. Chin. J. Catal. 26(3), 189–193.Google Scholar
  70. Jung, K. Y. and Park, S. B. (2000). Enhanced photoactivity of silica-embedded titania particles prepared by sol–gel process for the decomposition of trichloroethylene. Appl. Catal. B-Environ. 25(4), 249–256.CrossRefGoogle Scholar
  71. Kanai, N., Nuida, T., Ueta, K., Hashimoto, K., Watanabe, T. and Ohsaki, H. (2004). Photocatalytic efficiency of TiO2 ∕ SnO2 thin film stacks prepared by DC magnetron sputtering. Vacuum 74(3–4), 723–727.CrossRefGoogle Scholar
  72. Karches, M., Morstein, M., von Rohr, P., Pozzo, R. L., Giombi, J. L. and Baltanas, M. A. (2002). Plasma-CVD-coated glass beads as photocatalyst for water decontamination. Catal. Today 72(3–4), 267–279.CrossRefGoogle Scholar
  73. Kavan, L., O’Regan, B., Kay, A. and Grätzel, M. (1993). Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3. J. Electroanal. Chem. 346(1–2), 291–307.CrossRefGoogle Scholar
  74. Khoudiakov, M., Gupta, M. C. and Deevi, S. (2005). Au ∕ Fe2O3 nanocatalysts for CO oxidation: A comparative study of deposition – precipitation and coprecipitation techniques. Appl. Catal. A-Gen. 291(1–2), 151–161.CrossRefGoogle Scholar
  75. Kikuchi, H., Kitano, M., Takeuchi, M., Matsuoka, M., Anpo, M. and Kamat, P. V. (2006). Extending the photoresponse of TiO2 to the visible light region: Photoelectrochemical behavior of TiO2 thin films prepared by the radio frequency magnetron sputtering deposition method. J. Phys. Chem. B 110(11), 5537–5541.CrossRefGoogle Scholar
  76. Kim, D. H. and Anderson, M. A. (1994). Photoelectrocatalytic degradation of formic-acid using a porous TiO2 thin-film electrode. Environ. Sci. Technol. 28(3), 479–483.CrossRefGoogle Scholar
  77. Kim, T. H. and Yoon, K. H. (1991). Photoeffects in SnO2 film electrodes deposited by spray pyrolysis. J. Appl. Phys. 70(5), 2739–2744.CrossRefGoogle Scholar
  78. Kim, K. H., Park, K. C. and Ma, D. Y. (1997). Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering. J. Appl. Phys. 81(12), 7764–7772.CrossRefGoogle Scholar
  79. Kim, J. H., Fujita, S. and Shiratori, S. (2006). Fabrication and characterization of TiO2 thin film prepared by a layer-by-layer self-assembly method. Thin Solid Films 499(1–2), 83–89.CrossRefGoogle Scholar
  80. Kitano, M., Takeuchi, M., Matsuoka, M., Thomas, J. M. and Anpo, M. (2005). Preparation of visible light-responsive TiO2 thin film photocatalysts by an RF magnetron sputtering deposition method and their photocatalytic reactivity. Chem. Lett. 34(4), 616–617.CrossRefGoogle Scholar
  81. Kitano, M., Funatsu, K., Matsuoka, M., Ueshima, M. and Anpo, M. (2006). Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation. J. Phys. Chem. B 110(50), 25266–25272.CrossRefGoogle Scholar
  82. Kiyonaga, T., Mitsui, T., Torikoshi, M., Takekawa, M., Soejima, T. and Tada, H. (2006). Ultrafast photosynthetic reduction of elemental sulfur by Au nanoparticle-loaded TiO2. J. Phys. Chem. B 110(22), 10771–10778.CrossRefGoogle Scholar
  83. Lakshmi, B. B., Dorhout, P. K. and Martin, C. R. (1997a). Sol–gel template synthesis of semiconductor nanostructures. Chem. Mater. 9(3), 857–862.CrossRefGoogle Scholar
  84. Lakshmi, B. B., Patrissi, C. J. and Martin, C. R. (1997b). Sol–gel template synthesis of semiconductor oxide micro- and nanostructures. Chem. Mater. 9(11), 2544–2550.CrossRefGoogle Scholar
  85. Lam, R. C. W., Leung, M. K. H., Leung, D. Y. C., Vrijinoed, L. L. P., Yam, W. C. and Ng, S. P. (2007). Visible-light-assisted photocatalytic degradation of gaseous formaldehyde by parallel-plate reactor coated with Cr ion-implanted TiO2 thin film. Solar Energy Mater. Solar Cells 91(1), 54–61.CrossRefGoogle Scholar
  86. Lee, H. Y., Park, Y. H. and Ko, K. H. (2000). Correlation between surface morphology and hydrophilic/hydrophobic conversion of MOCVD-TiO2 films. Langmuir 16(18), 7289–7293.CrossRefGoogle Scholar
  87. Lee, S. B., Mitchell, D. T., Trofin, L., Nevanen, T. K., Soderlund, H. and Martin, C. R. (2002). Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science 296(5576), 2198–2200.CrossRefGoogle Scholar
  88. Lee, M. K., Huang, J. J. and Wu, T. S. (2005). Electrical characteristics improvement of oxygen-annealed MOCVD-TiO2 films. Semicond. Sci. Technol. 20(6), 519–523.CrossRefGoogle Scholar
  89. Li, D., Haneda, H., Hishita, S., Ohashi, N. and Labhsetwar, N. K. (2005a). Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde. J. Fluorine Chem. 126(1), 69–77.CrossRefGoogle Scholar
  90. Li, P., Liu, J. Y., Nag, N. and Croziers, P. A. (2005b). Atomic-scale study of in situ metal nanoparticle synthesis in a Ni ∕ TiO2 system. J. Phys. Chem. B 109(29), 13883–13890.CrossRefGoogle Scholar
  91. Li, W. C., Comotti, M. and Schuth, F. (2006). Highly reproducible syntheses of active Au ∕ TiO2 catalysts for CO oxidation by deposition-precipitation or impregnation. J. Catal. 237(1), 190–196.CrossRefGoogle Scholar
  92. Limmer, S. J., Seraji, S., Forbess, M. J., Wu, Y., Chou, T. P., Nguyen, C. and Cao, G. Z. (2001). Electrophoretic growth of lead zirconate titanate nanorods. Adv. Mater. 13(16), 1269–1272.CrossRefGoogle Scholar
  93. Limmer, S. J., Seraji, S., Wu, Y., Chou, T. P., Nguyen, C. and Cao, G. Z. (2002). Template-based growth of various oxide nanorods by sol–gel electrophoresis. Adv. Funct. Mater. 12(1), 59–64.CrossRefGoogle Scholar
  94. Limmer, S. J., Cruz, S. V. and Cao, G. Z. (2004). Films and nanorods of transparent conducting oxide ITO by a citric acid sol route. Appl. Phys. A-Mater. Sci. Process. 79(3), 421–424.CrossRefGoogle Scholar
  95. Lindgren, T., Mwabora, J. M., Avendano, E., Jonsson, J., Hoel, A., Granqvist, C. G. and Lindquist, S. E. (2003). Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. J. Phys. Chem. B 107(24), 5709–5716.CrossRefGoogle Scholar
  96. Liu, B. and Zeng, H. C. (2003). Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 125(15), 4430–4431.CrossRefGoogle Scholar
  97. Liu, B. S., Zhao, X. J., Zhang, N. Z., Zhao, Q. N., He, X. and Feng, J. Y. (2005). Photocatalytic mechanism of TiO2 – CeO2 films prepared by magnetron sputtering under UV and visible light. Surf. Sci. 595(1–3), 203–211.CrossRefGoogle Scholar
  98. Lo Nigro, R., Toro, R., Malandrino, G. and Fragala, I. L. (2003). Heteroepitaxial growth of nanostructured cerium dioxide thin films by MOCVD on a (001) TiO2 substrate. Chem. Mater. 15(7), 1434–1440.CrossRefGoogle Scholar
  99. Luo, J. and Hepel, M. (2001). Photoelectrochemical degradation of naphthol blue black diazo dye on WO3 film electrode. Electrochim. Acta 46(19), 2913–2922.CrossRefGoogle Scholar
  100. Macak, J. M., Tsuchiya, H., Taveira, L., Aldabergerova, S. and Schmuki, P. (2005). Smooth anodic TiO2 nanotubes. Angew. Chem. Int. Ed. 44(45), 7463–7465.CrossRefGoogle Scholar
  101. Manivannan, A., Seehra, M. S., Majumder, S. B. and Katiyar, R. S. (2003). Magnetism of Co-doped titania thin films prepared by spray pyrolysis. Appl. Phys. Lett. 83(1), 111–113.CrossRefGoogle Scholar
  102. Martin, C. R. (1995). Template synthesis of electronically conductive polymer nanostructures. Accounts Chem. Res. 28(2), 61–68.CrossRefGoogle Scholar
  103. Matsuda, A., Higashi, Y., Tadanaga, K. and Tatsumisago, M. (2006). Hot-water treatment of sol–gel derived SiO2 – TiO2 microparticles and application to electrophoretic deposition for thick films. J. Mater. Sci. 41(24), 8101–8108.CrossRefGoogle Scholar
  104. Matsuoka, M., Kitano, M., Takeuchi, M., Anpo, M. and Thomas, J. M. (2005). Photocatalytic water splitting on visible light-responsive TiO2 thin films prepared by a RF magnetron sputtering deposition method. Top. Catal. 35(3–4), 305–310.CrossRefGoogle Scholar
  105. McMurray, T. A., Byrne, J. A., Dunlop, P. S. M. and McAdams, E. T. (2005). Photocatalytic and electrochemically assisted photocatalytic oxidation of formic acid on TiO2 films under UVA and UVB irradiation. J. Appl. Electrochem. 35(7–8), 723–731.CrossRefGoogle Scholar
  106. Meldrum, A., Haglund, R. F., Boatner, L. A. and White, C. W. (2001). Nanocomposite materials formed by ion implantation. Adv. Mater. 13(19), 1431–1444.CrossRefGoogle Scholar
  107. Miao, Z., Xu, D. S., Ouyang, J. H., Guo, G. L., Zhao, X. S. and Tang, Y. Q. (2002). Electrochemically induced sol–gel preparation of single-crystalline TiO2 nanowires. Nano Lett. 2(7), 717–720.CrossRefGoogle Scholar
  108. Modes, T., Scheffel, B., Metzner, C., Zywitzki, O. and Reinhold, E. (2005). Structure and properties of titanium oxide layers deposited by reactive plasma activated electron beam evaporation. Surf. Coat. Technol. 200(1–4), 306–309.CrossRefGoogle Scholar
  109. Moon, S. W., Lee, G. D., Park, S. S. and Hong, S. S. (2004). Catalytic combustion of chlorobenzene over V2O5 ∕ TiO2 catalysts prepared by the precipitation-deposition method. React. Kinet. Catal. Lett. 82(2), 303–310.CrossRefGoogle Scholar
  110. Mor, G. K., Shankar, K., Paulose, M., Varghese, O. K. and Grimes, C. A. (2006). Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6(2), 215–218.CrossRefGoogle Scholar
  111. Murakami, T. N., Kijitori, Y., Kawashima, N. and Miyasaka, T. (2004). Low temperature preparation of mesoporous TiO2 films for efficient dye-sensitized photoelectrode by chemical vapor deposition combined with UV light irradiation. J. Photochem. Photobiol. A-Chem. 164(1–3), 187–191.CrossRefGoogle Scholar
  112. Nasr, C., Kamat, P. V. and Hotchandani, S. (1998). Photoelectrochemistry of composite semiconductor thin films. Photosensitization of the SnO2 ∕ TiO2 coupled system with a ruthenium polypyridyl complex. J. Phys. Chem. B 102(49), 10047–10056.Google Scholar
  113. Natarajan, C. and Nogami, G. (1996). Cathodic electrodeposition of nanocrystalline titanium dioxide thin films. J. Electrochem. Soc. 143(5), 1547–1550.CrossRefGoogle Scholar
  114. Natarajan, C., Fukunaga, N. and Nogami, G. (1998). Titanium dioxide thin film deposited by spray pyrolysis of aqueous solution. Thin Solid Films 322(1–2), 6–8.CrossRefGoogle Scholar
  115. Nazeeruddin, M. K., Kay, A., Rodicio, I., Humphrybaker, R., Muller, E., Liska, P., Vlachopoulos, N. and Grätzel, M. (1993). Conversion of light to electricity by cis-X2bis(2,2-bipyridyl-4,4-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl, Br, I, CN, and SCN) on nanocrystalline TiO2 electrodes. J. Am. Chem. Soc. 115(14), 6382–6390.CrossRefGoogle Scholar
  116. Oekermann, T., Yoshida, T., Schlettwein, D., Sugiura, T. and Minoura, H. (2001). Photoelectrochemical properties of ZnO/tetrasulfophthalocyanine hybrid thin films prepared by electrochemical self-assembly. Phys. Chem. Chem. Phys. 3(16), 3387–3392.CrossRefGoogle Scholar
  117. Oh, S. H., Kim, D. J., Hahn, S. H. and Kim, E. J. (2003). Comparison of optical and photocatalytic properties of TiO2 thin films prepared by electron-beam evaporation and sol–gel dip-coating. Mater. Lett. 57(26–27), 4151–4155.CrossRefGoogle Scholar
  118. Ohno, S., Sato, D., Kon, M., Song, P. K., Yoshikawa, M., Suzuki, K., Frach, P. and Shigesato, Y. (2003). Plasma emission control of reactive sputtering process in mid-frequency mode with dual cathodes to deposit photocatalytic TiO2 films. Thin Solid Films 445(2), 207–212.CrossRefGoogle Scholar
  119. Ohyama, M., Kozuka, H. and Yoko, T. (1997). Sol–gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution. Thin Solid Films 306(1), 78–85.CrossRefGoogle Scholar
  120. Okuya, M., Prokudina, N. A., Mushika, K. and Kaneko, S. (1999). TiO2 thin films synthesized by the spray pyrolysis deposition (SPD) technique. J. Eur. Ceram. Soc. 19(6–7), 903–906.CrossRefGoogle Scholar
  121. Okuyama, H., Honma, K. and Ohno, S. (1999). Photocatalytic activity of ultrafine TiO2 particles synthesized by an RF plasma CVD. J. Jpn. Inst. Met. 63(1), 74–81.Google Scholar
  122. Ortega, J. M., Martinez, A. I., Acosta, D. R. and Magana, C. R. (2006). Structural and electrochemical studies of WO3 films deposited by pulsed spray pyrolysis. Solar Energy Mater. Solar Cells 90(15), 2471–2479.CrossRefGoogle Scholar
  123. Pal, B., Sharon, M. and Nogami, G. (1999). Preparation and characterization of TiO2 ∕ Fe2O3 binary mixed oxides and its photocatalytic properties. Mater. Chem. Phys. 59(3), 254–261.CrossRefGoogle Scholar
  124. Palgrave, R. G. and Parkin, I. P. (2006). Aerosol assisted chemical vapor deposition using nanoparticle precursors: A route to nanocomposite thin films. J. Am. Chem. Soc. 128(5), 1587–1597.CrossRefGoogle Scholar
  125. Papp, J., Soled, S., Dwight, K. and Wold, A. (1994). Surface-acidity and photocatalytic activity of TiO2, WO3 ∕ TiO2, and MoO3 ∕ TiO2 photocatalysts. Chem. Mater. 6(4), 496–500.CrossRefGoogle Scholar
  126. Paraguay, F., Estrada, W., Acosta, D. R., Andrade, E. and Miki-Yoshida, M. (1999). Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Thin Solid Films 350(1–2), 192–202.CrossRefGoogle Scholar
  127. Paulose, M., Shankar, K., Yoriya, S., Prakasam, H. E., Varghese, O. K., Mor, G. K., Latempa, T. A., Fitzgerald, A. and Grimes, C. A. (2006). Anodic growth of highly ordered TiO2 nanotube arrays to 134 μ m in length. J. Phys. Chem. B 110(33), 16179–16184.CrossRefGoogle Scholar
  128. Peng, B., Jungmann, G., Jager, C., Haarer, D., Schmidt, H. W. and Thelakkat, M. (2004). Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells. Coord. Chem. Rev. 248(13–14), 1479–1489.CrossRefGoogle Scholar
  129. Peulon, S. and Lincot, D. (1996). Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films. Adv. Mater. 8(2), 166–170.CrossRefGoogle Scholar
  130. Peulon, S. and Lincot, D. (1998). Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions. J. Electrochem. Soc. 145(3), 864–874.CrossRefGoogle Scholar
  131. Prakasam, H. E., Varghese, O. K., Paulose, M., Mor, G. K. and Grimes, C. A. (2006). Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization. Nanotechnology 17(17), 4285–4291.CrossRefGoogle Scholar
  132. Quan, X., Yang, S. G., Ruan, X. L. and Zhao, H. M. (2005). Preparation of titania nanotubes and their environmental applications as electrode. Environ. Sci. Technol. 39(10), 3770–3775.CrossRefGoogle Scholar
  133. Reddy, B. M., Chowdhury, B. and Smirniotis, P. G. (2001). An XPS study of the dispersion of MoO3 on TiO2 – ZrO2, TiO2 – SiO2, TiO2 – Al2O3, SiO2 – ZrO2, and SiO2 – TiO2 – ZrO2 mixed oxides. Appl. Catal. A-Gen. 211(1), 19–30.CrossRefGoogle Scholar
  134. Rensmo, H., Keis, K., Lindstrom, H., Sodergren, S., Solbrand, A., Hagfeldt, A., Lindquist, S. E., Wang, L. N. and Muhammed, M. (1997). High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. J. Phys. Chem. B 101(14), 2598–2601.CrossRefGoogle Scholar
  135. Santato, C., Odziemkowski, M., Ulmann, M. and Augustynski, J. (2001). Crystallographically oriented mesoporous WO3 films: Synthesis, characterization, and applications. J. Am. Chem. Soc. 123(43), 10639–10649.CrossRefGoogle Scholar
  136. Sarkar, P. and Nicholson, P. S. (1996). Electrophoretic deposition (EPD): Mechanisms, kinetics, and application to ceramics. J. Am. Ceram. Soc. 79(8), 1987–2002.CrossRefGoogle Scholar
  137. Sayari, A., Liu, P., Kruk, M. and Jaroniec, M. (1997). Characterization of large-pore MCM-41 molecular sieves obtained via hydrothermal restructuring. Chem. Mater. 9(11), 2499–2506.CrossRefGoogle Scholar
  138. Shah, S. I., Li, W., Huang, C. P., Jung, O. and Ni, C. (2002). Study of Nd3 +, Pd2 +, Pt4 +, and Fe3 + dopant effect on photoreactivity of TiO2 nanoparticles. Proc. Natl Acad. Sci. USA 99, 6482–6486.CrossRefGoogle Scholar
  139. Shang, J., Yao, W. Q., Zhu, Y. F. and Wu, N. Z. (2004). Structure and photocatalytic performances of glass ∕ SnO2 ∕ TiO2 interface composite film. Appl. Catal. A-Gen. 257(1), 25–32.CrossRefGoogle Scholar
  140. Shankar, K., Mor, G. K., Prakasam, H. E., Yoriya, S., Paulose, M., Varghese, O. K. and Grimes, C. A. (2007). Highly-ordered TiO2 nanotube arrays up to 220 μm in length: Use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18(6), 11.CrossRefGoogle Scholar
  141. Shchukin, D. G. and Caruso, R. A. (2003). Inorganic macroporous films from preformed nanoparticles and membrane templates: Synthesis and investigation of photocatalytic and photoelectrochemical properties. Adv. Funct. Mater. 13(10), 789–794.CrossRefGoogle Scholar
  142. Soejima, T., Tada, H., Kawahara, T. and Ito, S. (2002). Formation of Au nanoclusters on TiO2 surfaces by a two-step method consisting of Au(III)-complex chemisorption and its photoreduction. Langmuir 18(11), 4191–4194.CrossRefGoogle Scholar
  143. Soler-Illia, G., Crepaldi, E. L., Grosso, D. and Sanchez, C. (2003). Block copolymer-templated mesoporous oxides. Curr. Opin. Colloid Interface Sci. 8(1), 109–126.CrossRefGoogle Scholar
  144. Somasundaram, S., Chenthamarakshan, C. R., de Tacconi, N. R., Basit, N. A. and Rajeshwar, K. (2006). Composite WO3 – TiO2 films: Pulsed electrodeposition from a mixed bath versus sequential deposition from twin baths. Electrochem. Commun. 8(4), 539–543.CrossRefGoogle Scholar
  145. Song, K. Y., Park, M. K., Kwon, Y. T., Lee, H. W., Chung, W. J. and Lee, W. I. (2001). Preparation of transparent particulate MoO3 ∕ TiO2 and WO3 ∕ TiO2 films and their photocatalytic properties. Chem. Mater. 13(7), 2349–2355.CrossRefGoogle Scholar
  146. Studenikin, S. A., Golego, N. and Cocivera, M. (1998). Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J. Appl. Phys. 84(4), 2287–2294.CrossRefGoogle Scholar
  147. Suda, Y., Kawasaki, H., Ueda, T. and Ohshima, T. (2004). Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method. Thin Solid Films 453–54, 162–166.CrossRefGoogle Scholar
  148. Suda, Y., Kawasaki, H., Ueda, T. and Ohshima, T. (2005). Preparation of nitrogen-doped titanium oxide thin film using a PLD method as parameters of target material and nitrogen concentration ratio in nitrogen/oxygen gas mixture. Thin Solid Films 475(1–2), 337–341.CrossRefGoogle Scholar
  149. Sun, K., Zhu, S., Fromknecht, R., Linker, G. and Wang, L. M. (2004). Formation of single-layered Au nanoparticles in Au ion implanted TiO2 and SrTiO3. Mater. Lett. 58(5), 547–550.CrossRefGoogle Scholar
  150. Sunada, K., Kikuchi, Y., Hashimoto, K. and Fujishima, A. (1998). Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ. Sci. Technol. 32(5), 726–728.CrossRefGoogle Scholar
  151. Tada, H., Teranishi, K., Inubushi, Y. and Ito, S. (2000). Ag nanocluster loading effect on TiO2 photocatalytic reduction of bis(2-dipyridyl)disulfide to 2-mercaptopyridine by H2O. Langmuir 16(7), 3304–3309.CrossRefGoogle Scholar
  152. Tada, H., Mitsui, T., Kiyonaga, T., Akita, T. and Tanaka, K. (2006). All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system. Nat. Mater. 5(10), 782–786.CrossRefGoogle Scholar
  153. Takahashi, T., Nakabayashi, H., Yamada, N. and Tanabe, J. (2003). Photocatalytic properties of TiO2 ∕ WO3 bilayers deposited by reactive sputtering. J. Vac. Sci. Technol. A 21(4), 1409–1413.CrossRefGoogle Scholar
  154. Takeda, S., Suzuki, S., Odaka, H. and Hosono, H. (2001). Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering. Thin Solid Films 392(2), 338–344.CrossRefGoogle Scholar
  155. Tang, Y. W., Chen, Z. G., Jia, Z. J., Zhang, L. S. and Li, J. L. (2005). Electrodeposition and characterization of nanocrystalline cuprous oxide thin films on TiO2 films. Mater. Lett. 59(4), 434–438.CrossRefGoogle Scholar
  156. Tayade, R. J., Kulkarni, R. G. and Jasra, R. V. (2006). Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water. Ind. Eng. Chem. Res. 45(15), 5231–5238.CrossRefGoogle Scholar
  157. Teleki, A., Pratsinis, S. E., Kalyanasundaram, K. and Gouma, P. I. (2006). Sensing of organic vapors by flame-made TiO2 nanoparticles. Sens. Actuator B-Chem. 119(2), 683–690.CrossRefGoogle Scholar
  158. Teoh, W. Y., Amal, R., Madler, L. and Pratsinis, S. E. (2007). Flame sprayed visible light-active Fe – TiO2 for photomineralisation of oxalic acid. Catal. Today 120(2), 203–213.CrossRefGoogle Scholar
  159. Tesfamichael, T., Will, G. and Bell, J. (2005). Nitrogen ion implanted nanostructured titania films used in dye-sensitised solar cells and photocatalyst. Appl. Surf. Sci. 245(1–4), 172–178.CrossRefGoogle Scholar
  160. Tsuge, Y., Inokuchi, K., Onozuka, K., Shingo, O., Sugi, S., Yoshikawa, M. and Shiratori, S. (2006). Fabrication of porous TiO2 films using a spongy replica prepared by layer-by-layer self-assembly method: Application to dye-sensitized solar cells. Thin Solid Films 499(1–2), 396–401.CrossRefGoogle Scholar
  161. Tsuji, H., Sakai, N., Sugahara, H., Gotoh, Y. and Ishikawa, J. (2005). Silver negative-ion implantation to sol–gel TiO2 film for improving photocatalytic property under fluorescent light. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 237(1–2), 433–437.CrossRefGoogle Scholar
  162. Tsuji, H., Sakai, N., Gotoh, Y. and Ishikawa, J. (2006). Photocatalytic properties of sol–gel titania film under fluorescent-light irradiation improved by silver negative-ion implantation. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 242(1–2), 129–132.CrossRefGoogle Scholar
  163. Tu, M. L., Su, Y. K. and Ma, C. Y. (2006). Nitrogen-doped p-type ZnO films prepared from nitrogen gas radio-frequency magnetron sputtering. J. Appl. Phys. 100(5), 4.CrossRefGoogle Scholar
  164. Uchikoshi, T., Suzuki, T. S., Tang, F., Okuyama, H. and Sakka, Y. (2004). Crystalline-oriented TiO2 fabricated by the electrophoretic deposition in a strong magnetic field. Ceram. Int. 30(7), 1975–1978.CrossRefGoogle Scholar
  165. van Bokhoven, J. A., Louis, C., Miller, J. T., Tromp, M., Safonova, O. V. and Glatzel, P. (2006). Activation of oxygen on gold/alumina catalysts: In situ high-energy-resolution fluorescence and time-resolved X-ray spectroscopy. Angew. Chem. Int. Ed. 45(28), 4651–4654.CrossRefGoogle Scholar
  166. Venkov, T., Fajerwerg, K., Delannoy, L., Klimev, H., Hadjiivanov, K. and Louis, C. (2006). Effect of the activation temperature on the state of gold supported on titania: An FT-IR spectroscopic study. Appl. Catal. A-Gen. 301(1), 106–114.CrossRefGoogle Scholar
  167. Vinodgopal, K. and Kamat, P. V. (1995). Electrochemically assisted photocatalysis using nanocrystalline semiconductor thin-films. Solar Energy Mater. Solar Cells 38(1–4), 401–410.CrossRefGoogle Scholar
  168. Visinescu, C. M., Sanjines, R., Levy, F., Marcu, V. and Parvulescu, V. I. (2005). Tantalum doped titania photocatalysts: Preparation by dc reactive sputtering and catalytic behavior. J. Photochem. Photobiol. A-Chem. 174(2), 106–112.CrossRefGoogle Scholar
  169. Vorontsov, A. V., Stoyanova, I. V., Kozlov, D. V., Simagina, V. I. and Savinov, E. N. (2000). Kinetics of the photocatalytic oxidation of gaseous acetone over platinized titanium dioxide. J. Catal. 189(2), 360–369.CrossRefGoogle Scholar
  170. Wang, X. and Li, Y. D. (2002). Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124(12), 2880–2881.CrossRefGoogle Scholar
  171. Wang, C. M., Zhang, Y., Shutthanandan, V., Thevuthasan, S. and Duscher, G. (2004). Microstructure of precipitated au nanoclusters in TiO2. J. Appl. Phys. 95(12), 8185–8193.CrossRefGoogle Scholar
  172. Wang, X. C., Yu, J. C., Yip, H. Y., Wu, L., Wong, P. K. and Lai, S. Y. (2005). A mesoporous Pt ∕ TiO2 nanoarchitecture with catalytic and photocatalytic functions. Chem. Eur. J. 11(10), 2997–3004.CrossRefGoogle Scholar
  173. Wark, M., Tschirch, J., Bartels, O., Bahnemann, D. and Rathousky, J. (2005). Photocatalytic activity of hydrophobized mesoporous thin films of TiO2. Microporous Mesoporous Mater. 84(1–3), 247–253.CrossRefGoogle Scholar
  174. Weiher, N., Beesley, A. M., Tsapatsaris, N., Delannoy, L., Louis, C., van Bokhoven, J. A. and Schroeder, S. L. M. (2007). Activation of oxygen by metallic gold in Au ∕ TiO2 catalysts. J. Am. Chem. Soc. 129(8), 2240–2241.CrossRefGoogle Scholar
  175. Weinberger, B. R. and Garber, R. B. (1995). Titanium-dioxide photocatalysts produced by reactive magnetron sputtering. Appl. Phys. Lett. 66(18), 2409–2411.CrossRefGoogle Scholar
  176. Won, D. J., Wang, C. H., Jang, H. K. and Choi, D. J. (2001). Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties. Appl. Phys. A-Mater. Sci. Process. 73(5), 595–600.CrossRefGoogle Scholar
  177. Wu, N. L., Wang, S. Y. and Rusakova, I. A. (1999). Inhibition of crystallite growth in the sol–gel synthesis of nanocrystalline metal oxides. Science 285(5432), 1375–1377.CrossRefGoogle Scholar
  178. Xie, Y. B. (2006). Photoelectrochemical reactivity of a hybrid electrode composed of polyoxophosphotungstate encapsulated in titania nanotubes. Adv. Funct. Mater. 16(14), 1823–1831.CrossRefGoogle Scholar
  179. Xu, P., Mi, L. and Wang, P. N. (2006). Improved optical response for N-doped anatase TiO2 films prepared by pulsed laser deposition in N2 ∕ NH3 ∕ O2 mixture. J. Cryst. Growth 289(2), 433–439.CrossRefGoogle Scholar
  180. Yamagishi, M., Kuriki, S., Song, P. K. and Shigesato, Y. (2003). Thin film TiO2 photocatalyst deposited by reactive magnetron sputtering. Thin Solid Films 442(1–2), 227–231.CrossRefGoogle Scholar
  181. Yamashita, H., Honda, M., Harada, M., Ichihashi, Y., Anpo, M., Hirao, T., Itoh, N. and Iwamoto, N. (1998). Preparation of titanium oxide photocatalysts anchored on porous silica glass by a metal ion-implantation method and their photocatalytic reactivities for the degradation of 2-propanol diluted in water. J. Phys. Chem. B 102(52), 10707–10711.CrossRefGoogle Scholar
  182. Yamashita, H., Harada, M., Misaka, J., Takeuchi, M., Ikeue, K. and Anpo, M. (2002). Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. J. Photochem. Photobiol. A-Chem. 148(1–3), 257–261.CrossRefGoogle Scholar
  183. Yamashita, H., Harada, M., Misaka, J., Takeuchi, M., Neppolian, B. and Anpo, M. (2003). Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catal. Today 84(3–4), 191–196.CrossRefGoogle Scholar
  184. Yang, W. L. and Wolden, C. A. (2006). Plasma-enhanced chemical vapor deposition of TiO2 thin films for dielectric applications. Thin Solid Films 515(4), 1708–1713.CrossRefGoogle Scholar
  185. Yang, P. D., Deng, T., Zhao, D. Y., Feng, P. Y., Pine, D., Chmelka, B. F., Whitesides, G. M. and Stucky, G. D. (1998). Hierarchically ordered oxides. Science 282(5397), 2244–2246.CrossRefGoogle Scholar
  186. Yang, T. S., Yang, M. C., Shiu, C. B., Chang, W. K. and Wong, M. S. (2006). Effect of N2 ion flux on the photocatalysis of nitrogen-doped titanium oxide films by electron-beam evaporation. Appl. Surf. Sci. 252(10), 3729–3736.CrossRefGoogle Scholar
  187. Yoshida, T., Terada, K., Schlettwein, D., Oekermann, T., Sugiura, T. and Minoura, H. (2000). Electrochemical self-assembly of nanoporous ZnO/eosin Y thin films and their sensitized photoelectrochemical performance. Adv. Mater. 12(16), 1214–1217.CrossRefGoogle Scholar
  188. You, X. F., Chen, F., Zhang, J. L. and Anpo, M. (2005). A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide. Catal. Lett. 102(3–4), 247–250.CrossRefGoogle Scholar
  189. Yu, J. G., Zhao, X. J. and Zhao, Q. N. (2000). Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol–gel method. Thin Solid Films 379(1–2), 7–14.CrossRefGoogle Scholar
  190. Yu, J. C., Wang, X. C., Wu, L., Ho, W. K., Zhang, L. Z. and Zhou, G. T. (2004). Sono- and photochemical routes for the formation of highly dispersed gold nanoclusters in mesoporous titania films. Adv. Funct. Mater. 14(12), 1178–1183.CrossRefGoogle Scholar
  191. Zanella, R. and Louis, C. (2005). Influence of the conditions of thermal treatments and of storage on the size of the gold particles in Au ∕ TiO2 samples. Catal. Today 107–08, 768–777.CrossRefGoogle Scholar
  192. Zanella, R., Giorgio, S., Henry, C. R. and Louis, C. (2002). Alternative methods for the preparation of gold nanoparticles supported on TiO2. J. Phys. Chem. B 106(31), 7634–7642.CrossRefGoogle Scholar
  193. Zanella, R., Delannoy, L. and Louis, C. (2005). Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition–precipitation with NaOH and urea. Appl. Catal. A-Gen. 291(1–2), 62–72.CrossRefGoogle Scholar
  194. Zhang, S., Zhu, Y. F. and Brodie, D. E. (1992). Photoconducting TiO2 prepared by spray pyrolysis using TiCl4. Thin Solid Films 213(2), 265–270.CrossRefGoogle Scholar
  195. Zhang, M., Bando, Y. and Wada, K. (2001). Sol–gel template preparation of TiO2 nanotubes and nanorods. J. Mater. Sci. Lett. 20(2), 167–170.CrossRefGoogle Scholar
  196. Zhang, D. S., Yoshida, T. and Minoura, H. (2002). Low temperature synthesis of porous nanocrystalline TiO2 thick film for dye-sensitized solar cells by hydrothermal crystallization. Chem. Lett. (9), 874–875.Google Scholar
  197. Zhang, W. J., Li, Y., Zhu, S. L. and Wang, F. H. (2003). Fe-doped photocatalytic TiO2 film prepared by pulsed dc reactive magnetron sputtering. J. Vac. Sci. Technol. A 21(6), 1877–1882.CrossRefGoogle Scholar
  198. Zhang, W. J., Li, Y., Zhu, S. L. and Wang, F. H. (2004). Influence of argon flow rate on TiO2 photocatalyst film deposited by dc reactive magnetron sputtering. Surf. Coat. Technol. 182(2–3), 192–198.CrossRefGoogle Scholar
  199. Zhang, X. W., Zhou, M. H. and Lei, L. C. (2006). Co-deposition of photocatalytic Fe doped TiO2 coatings by MOCVD. Catal. Commun. 7(7), 427–431.CrossRefGoogle Scholar
  200. Zhao, D. Y., Feng, J. L., Huo, Q. S., Melosh, N., Fredrickson, G. H., Chmelka, B. F. and Stucky, G. D. (1998a). Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279(5350), 548–552.CrossRefGoogle Scholar
  201. Zhao, D. Y., Huo, Q. S., Feng, J. L., Chmelka, B. F. and Stucky, G. D. (1998b). Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120(24), 6024–6036.CrossRefGoogle Scholar
  202. Zheng, S. K., Wang, T. M., Xiang, G. and Wang, C. (2001). Photocatalytic activity of nanostructured TiO2 thin films prepared by dc magnetron sputtering method. Vacuum 62(4), 361–366.CrossRefGoogle Scholar
  203. Zheng, S. K., Wang, T. M., Hao, W. C. and Shen, R. (2002a). Improvement of photocatalytic activity of TiO2 thin film by Sn ion implantation. Vacuum 65(2), 155–159.CrossRefGoogle Scholar
  204. Zheng, S. K., Wang, T. M., Wang, C. and Xiang, G. (2002b). Photocatalytic activity study of TiO2 thin films with and without Fe ion implantation. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 187(4), 479–484.CrossRefGoogle Scholar
  205. Zhou, J. K., Takeuchi, M., Zhao, X. S., Ray, A. K. and Anpo, M. (2006). Photocatalytic decomposition of formic acid under visible light irradiation over V-ion-implanted TiO2 thin film photocatalysts prepared on quartz substrate by ionized cluster beam (ICB) deposition method. Catal. Lett. 106(1–2), 67–70.CrossRefGoogle Scholar
  206. Zhu, Y. C., Li, H. L., Koltypin, Y., Hacohen, Y. R. and Gedanken, A. (2001). Sonochemical synthesis of titania whiskers and nanotubes. Chem. Commun. 24, 2616–2617.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringHong Kong University of Science and TechnologyKowloonHong Kong

Personalised recommendations