Solar Disinfection of Water by TiO2 Photoassisted Processes: Physicochemical, Biological, and Engineering Aspects

  • Angela Guiovana Rincón
  • Cesar Pulgarin


In this chapter, an overview of photocatalytic bacterial inactivation is given together with recent relevant literature examples and references. The most important parameters influencing the process are classified in physicochemical, biological, and engineering aspects. Experiments carried out at laboratory and field scale are illustrated and discussed. Limitations, advantages, and drawbacks are pointed out. Sensitivity of bacteria to solar disinfection in the absence and presence of TiO2 can vary for each species of microorganism according to strain, stage of the culture, growth medium, initial bacterial load, and type of plating medium used for bacterial cultivation and counting. Physicochemical parameters and reactor design among others also influence the process. However, to comply with requirements in the disinfection systems, it is important to determine for each condition the length of the irradiation period or effective disinfection time (EDT) that ensures death of the bacteria and consequently the end of the treatment.


TiO2 Surface Inactivation Rate Water Disinfection TiO2 Concentration Suspended TiO2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdullah, M., Low, G.K.C. and Mattheus, R.W. (1990) Effects of common inorganic anions on rates of photoctalytic degradation of organic carbon over illuminated titanium dioxide. J. Phys. Chem. 94, 6820–6825.CrossRefGoogle Scholar
  2. Amezaga-Madrid, P., Nevarez-Moorillon, G.V., Orrantia-Borunda, E. and Miki-Yoshida, M. (2002) Photoinduced bactericidal activity against Pseudomonas aeruginosa by TiO2 based thin films. FEMS Microbiol. Lett. 211, 183–188.CrossRefGoogle Scholar
  3. Armon, R., Laot, N., Narkis, N. and Neeman, I. (1998) Photocatalytic inactivation of different bacteria and bacteriophages in drinking water at different TiO2 concentration with or without exposure to O2. J. Adv. Oxid. Technol. 3, 145–150.Google Scholar
  4. Bahnemann, D., Cunningham, J., Fox, M.A., Pelizzetti, E., Pichat, P. and Serpone, N. (1994) Photocatalytic treatment of waters. Lewis Publishers, Boca Raton, FL.Google Scholar
  5. Bekbolet, M. (1997) Photocatalytic bactericidal activity of TiO2 in aqueous suspensions of Escherichia coli. Water Sci. Technol. 35, 95–100.Google Scholar
  6. Belháová, L., Krýsa, J., Geryk, J. and Jirkovský, J. (1999) Inactivation of microorganisms in a flow-through photoreactor with an immobilized TiO2 layer. J. Chem. Technol. Biotechnol. 74, 149–154.CrossRefGoogle Scholar
  7. Blake, D.M., Maness, P.C., Huang, Z., Wolfrum, E.J., Huang, J. and Jacoby, W.A. (1999) Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Separ. Purif. Methods 28, 1–50.CrossRefGoogle Scholar
  8. Brezova, V., Blazkova, A., Borosova, E., Ceppan, M. and Fiala, R. (1995) The influence of dissolved metal ions on the photocatalytic degradation of phenol in aqueous TiO2 suspensions. J. Mol. Catal. A: Chem. 98, 109–116.CrossRefGoogle Scholar
  9. Britt, A.B. (1996) DNA damage and repair in plants. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 47, 75–100.CrossRefGoogle Scholar
  10. Butterfield, I.M., Christensen, P.A., Curtis, T.P. and Gunlazuardi, J. (1997) Water disinfection using an immobilised titanium dioxide film in a photochemical reactor with electric field enhancement. Water Res. 31, 675–677.CrossRefGoogle Scholar
  11. Chen, H.Y., Zahraa, O. and Bouchy, M. (1997) Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of TiO2 by inorganic ions. J. Photochem. Photobiol. A: Chem. 108, 37–44.CrossRefGoogle Scholar
  12. Child, M., Strike, P., Pickup, R. and Edwards, C. (2002) Salmonella typhimurium displays cyclical patterns of sensitivity to UV-C killing during prolonged incubation in the stationary phase of growth. FEMS Microbiol. Lett. 213, 81–85.CrossRefGoogle Scholar
  13. Christensen, P.A., Curtis, T.P., Egerton, T.A., Kosa, S.A.M. and Tinlin, J.R. (2003) Photoelectrocatalytic and photocatalytic disinfection of E. coli suspensions by titanium dioxide. Appl. Catal. B: Environ. 41, 371–386.Google Scholar
  14. Christensen, P.A., Egerton, T.A., Kosa, S.A.M., Tinlin, J.R. and Scott, K. (2005) The photoelectrocatalytic oxidation of aqueous nitrophenol using a novel reactor. J. Appl. Electrochem. 35, 683–692.CrossRefGoogle Scholar
  15. Cooper, W.J., Cadavid, E., Nickelsen, M.G., Lin, K.J., Kurucz, C.N. and Waite, T.D. (1993) Removing THMS from drinking-water using high-energy electron-beam irradiation. J. Am. Water Work Assoc. 85, 106–112.Google Scholar
  16. Crap O., Huisman, C.L. and Reller, A. (2004) Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32, 33–177.CrossRefGoogle Scholar
  17. Dhananjeyan, M.R., Mielczarski, E., Thampi, R.K., Buffat, P., Bensimon, M., Kulik, J., Mielczarski, J. and Kiwi, J. (2001) Photodynamics and surface characterization of TiO2 and Fe2O3 photocatalysts immobilized on modified polyethylene films. J. Phys. Chem. B 105, 12046–12055.CrossRefGoogle Scholar
  18. Duffy, E.F., Al Touati, F., Kehoe, S.C., McLoughlin, O.A., Gill, L.W., Gernjak, W., Oller, I., Maldonado, M.I., Malato, S. and Cassidy, J. (2004) A novel TiO2-assisted solar photocatalytic batch-process disinfection reactor for the treatment of biological and chemical contaminants in domestic drinking water in developing countries. Solar Energy 77, 649–655.CrossRefGoogle Scholar
  19. Dunlop, P.S.M., Byrne, J.A., Manga, N. and Eggins, B.R. (2002) The photocatalytic removal of bacterial pollutants from drinking water. J. Photochem. Photobiol. A: Chem. 148, 355–363.CrossRefGoogle Scholar
  20. Epling, G.A. and Lin, C. (2002) Investigation of retardation effects on the titanium dioxide photodegradation system. Chemosphere 46, 937–944.CrossRefGoogle Scholar
  21. Fernandez, P., Blanco, J., Sichel, C. and Malato, S. (2005) Water disinfection by solar photocatalysis using compound parabolic collectors. Catal. Today 101, 345–352.CrossRefGoogle Scholar
  22. Gogniat, G., Thyssen, M., Denis, M., Pulgarin, C. and Dukan, S. (2006) The bactericidal effect of TiO2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity. FEMS Microbiol. Lett. 258, 18–24.CrossRefGoogle Scholar
  23. Guillard, C., Disdier, J., Monnet, C., Dussaud, J., Malato, S., Blanco, J., Maldonado, M.I. and Herrmann, J.-M. (2003a) Solar efficiency of a new deposited titania photocatalyst: Chlorophenol, pesticide and dye removal applications. Appl. Catal. B: Environ. 46, 319–332.CrossRefGoogle Scholar
  24. Guillard, C., Lachheb, H., Houas, A., Ksibi, M., Elaloui, E. and Herrmann, J.-M. (2003b) Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2. J. Photochem. Photobiol. A: Chem. 158, 27–36.CrossRefGoogle Scholar
  25. Gumy, D. (2006) Factors influencing photocatalytic drinking water detoxification and disinfection by suspended and fixed TiO2, PhD Thesis, EPFL 3586, p. 170.Google Scholar
  26. Gumy, D., Morais, C., Bowen, P., Pulgarin, C., Giraldo, S., Hajdu, R. and Kiwi, J. (2006a) Catalytic activity of commercial of TiO2 powders for the abatement of the bacteria (E. coli) under solar simulated light: Influence of the isoelectric point. Appl. Catal. B: Environ. 63, 76–84.Google Scholar
  27. Gumy, D., Rincon, A.G., Hajdu, R. and Pulgarin, C. (2006b) Solar photocatalysis for detoxification and disinfection of water: Different types of suspended and fixed TiO2 catalysts study. Solar Energy 80, 1376–1381.CrossRefGoogle Scholar
  28. Hoffmann, M., Martin, S., Choi, W. and Bahnemann, D. (1995) Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96.CrossRefGoogle Scholar
  29. Hoigne, J. (1997) Inter-calibration of OH radical sources and water quality parameters. Water Sci. Technol. 35, 1–8.Google Scholar
  30. Hu, C., Yu, J.C., Hao, Z. and Wong, P.K. (2003) Effects of acidity and inorganic ions on the photocatalytic degradation of different azo dyes. Appl. Catal. B: Environ. 46, 35–47.CrossRefGoogle Scholar
  31. Huang, N., Xiao, Z., Huang, D. and Yuan, C. (1998) Photochemical disinfection of Escherichia coli with a TiO2 colloid solution and a self-assembled TiO2 thin film. Supramol. Sci. 5, 559–564.CrossRefGoogle Scholar
  32. Huang, Z., Maness, P.C., Blake, D.M., Wolfrum, E.J., Smolinski, S.L. and Jacoby, W.A. (2000) Bactericidal mode of titanium dioxide photocatalysis. J. Photochem. Photobiol. A: Chem. 130, 163–170.CrossRefGoogle Scholar
  33. Ireland, J.C., Klostermann, P., Rice, E.W. and Clark, R.M. (1993) Inactivation of Escherichia coli by titanium-dioxide photocatalytic oxidation. Appl. Environ. Microbiol. 59, 1668–1670.Google Scholar
  34. Jacoby, W.A., Maness, P.C., Wolfrum, E.J., Blake, D.M. and Fennell, J.A. (1998) Mineralization of bacterial-cell mass on a photocatalytic surface in air. Environ. Sci. Technol. 32, 2650–2653.CrossRefGoogle Scholar
  35. Kadavy, D.R., Shaffer, J.J., Lott, S.E., Wolf, T.A., Bolton, C.E., Gallimore, W.H., Martin, E.L., Nickerson, K.W. and Kokjohn, T.A. (2000) Influence of infected cell growth state on bacteriophage reactivation levels. Appl. Environ. Microbiol. 66, 5206–5212.CrossRefGoogle Scholar
  36. Kashige, N., Kakita, Y., Nakashima, Y., Miake, F. and Watanabe, K. (2001) mechanism of the photocatalytic inactivation of lactobacillus case I Phage PL-1 by titania thin film. Curr. Microbiol. 42, 184–189.CrossRefGoogle Scholar
  37. Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K. and Fujishima, A. (1997) Photocatalytic bactericidal effect of TiO2 thin-films – Dynamic view of the active oxygen species responsible for the effect. J. Photochem. Photobiol. A: Chem. 106, 51–56.CrossRefGoogle Scholar
  38. Koizumi, Y. and Taya, M. (2002) Photocatalytic inactivation rate of phage MS2 in titanium dioxide suspensions containing various ionic species. Biotechnol. Lett. 24, 459–462.CrossRefGoogle Scholar
  39. Kuhn, K.P., Chaberny, I.F., Massholder, K., Stickler, M., Benz, V.W., Sonntag, H.-G. and Erdinger, L. (2003) Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere 53, 71–77.CrossRefGoogle Scholar
  40. Lee, S., Nishida, K., Otaki, M. and Ohgaki, S. (1997) Photocatalytic inactivation of phage Q-beta by immobilized titanium-dioxide mediated photocatalyst. Water Sci. Technol. 35, 101–106.Google Scholar
  41. Legrini, O., Oliveros, E. and Braun, M.A. (1993) Photochemical processes for water treatment. Chem. Rev. 93, 671–698.CrossRefGoogle Scholar
  42. Lewis, C.K. and Burt Maxcy, R. (1984) Effect of physiological age on radiation resistance of some bacteria that are highly radiation resistant. Appl. Environ. Microbiol. 47, 915–918.Google Scholar
  43. Lonnenn, J., Kilvington, S., Kehoe, S.C., Touati, F.A. and McGuigan, K.G. (2005) Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water. Water Res. 39, 877–883.CrossRefGoogle Scholar
  44. Maness, P.-C., Smolinski, S., Blake, D.M., Huang, Z., Wolfrum, E.J. and Jacoby, W.A. (1999) Bactericidal activity of photocatalytic TiO2 reaction: Toward an understanding of its killing mechanism. Appl. Environ. Microbiol. 65, 4094–4098.Google Scholar
  45. Matsunaga, T., Tomoda, R., Nakajima, T. and Wake, H. (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol. Lett. 29, 211–214.CrossRefGoogle Scholar
  46. Matsunaga, T., Tomoda, T., Nakajima, T., Nakamura, N. and Komine, T. (1988) Continuous-sterilization system that uses photosemiconductor powders. Appl. Environ. Microbiol. 54, 1330–1333.Google Scholar
  47. McLoughlin, O.A., Fernández, P., Gernjak, W., Malato, S. and Gilla, L.W. (2004) Photocatalytic disinfection of water using low cost compound parabolic collectors. Solar Energy 77, 625–633.CrossRefGoogle Scholar
  48. Mercalf, E. (2005) Waste water engineering treatment and reuse. McGraw Hill, New York, NY.Google Scholar
  49. Mest’ankova, H., Mailhot, G., Pilichowski, J.-F., Krysa, J., Jirkovsky, J.x.r. and Bolte, M. (2004) Mineralisation of monuron photoinduced by Fe(III) in aqueous solution. Chemosphere 57, 1307–1315.Google Scholar
  50. Morton, A.R. and Haynes, R.H. (1969) Changes in the ultraviolet sensitivity of Escherichia coli during growth in bath cultures. J. Bacteriol. 97, 1379–1385.Google Scholar
  51. Murno, P.M., Flatatau, G.N., Clement, L.R. and Gauthier, M.L. (1995) Influence of the RpoS (KatF) sigma factor on maintenance of viability and culturability of Escherichia coli and Salmonella typhimurium in seawater. Appl. Environ. Microbiol. 61, 1853–1858.Google Scholar
  52. Nakayama, T., Wake, H., Ozawa, K., Kodama, H., Nakamura, N. and Matsunaga, T. (1998) Use of a titanium nitride for electrochemical inactivation of marine bacteria. Environ. Sci. Technol. 32, 798–801.CrossRefGoogle Scholar
  53. Ollis, D., Pelizzetti, E. and Serpone, N. (1991) Photocatalysed destruction of water contaminants. Environ. Sci. Technol. 25, 1522–1529.CrossRefGoogle Scholar
  54. Pham, H.N., McDowell, T. and Wilkins, E. (1995) Photocatalytically mediated disinfection of water using TiO2 as a catalyst and spore-forming Bacillus-Pumilus as a model. J. Environ. Sci. Health A Environ. 30, 627–636.CrossRefGoogle Scholar
  55. Pizarro, P., Guillard, C., Perolb, N. and Herrmann, J.M. (2005) Photocatalytic degradation of Imazapyr in water: Comparison of activities of different supported and unsupported TiO2-based catalysts. Catal. Today 101, 211–218.CrossRefGoogle Scholar
  56. Poulina, A. and Mikhailova, S.S. (1995) Influence of impurities on adsorption interaction between surfactants and titanium dioxide. Colloid J. 57, 116–117.Google Scholar
  57. Reed, R.H. (2004) The inactivation of microbes by sunlight: Solar disinfection as a water treatment process. Adv. Appl. Microbiol. 54, 333–365.CrossRefGoogle Scholar
  58. Reed, R.H., Mani, S.K. and Meyer, V. (2000) Solar photo-oxidative disinfection of drinking water: Preliminary field observations. Lett. Appl. Microbiol. 30, 432–436.CrossRefGoogle Scholar
  59. Rincón, A.G. and Pulgarin, C. (2003) Photocatalytical inactivation of E. coli: Effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO2 concentration. Appl. Catal. B: Environ. 44, 263–284.Google Scholar
  60. Rincón, A.G. and Pulgarin, C. (2004a) Field solar E.coli inactivation in the absence and presence of TiO2: Is UV solar dose an appropriate parameter for standarization of water solar disinfection?. Solar Energy 77, 635–648.CrossRefGoogle Scholar
  61. Rincón, A.G. and Pulgarin, C. (2004b) Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: Post irradiation events in the dark and assessment of the effective disinfection time. Appl. Catal. B: Environ. 49, 99–112.CrossRefGoogle Scholar
  62. Rincón, A.G. and Pulgarin, C. (2004c) Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2: Implications in solar water disinfection. Appl. Catal. B. Environ. 51, 283–302.CrossRefGoogle Scholar
  63. Rincón, A.G. and Pulgarin, C. (2005) Use of coaxial photocatalytic reactor (CAPHORE) in the TiO2 photo-assisted treatment of mixed E. coli and Bacillus sp. and bacterial community present in wastewater. Catal. Today 101, 331–344.CrossRefGoogle Scholar
  64. Rincón, A.G. and Pulgarin, C. (2006) Comparative evaluation of Fe+ 3 and TiO2 photoassisted processes in solar photocatalytic disinfection of water. Appl. Catal. B: Environ. 63, 222–231.CrossRefGoogle Scholar
  65. Rincón, A.G. and Pulgarin, C. (2007a) Fe3+ and TiO2 solar-light-assisted inactivation of E. coli at field scale. Implications in solar disinfection at low temperature of large quantities of water. Catal. Today 122, 128–136CrossRefGoogle Scholar
  66. Rincón, A.G. and Pulgarin, C. (2007b) Solar photolytic and photocatalytic disinfection of water at laboratory and field scale. Effect of the chemical composition of water and study of the postirradiation events. Solar Energy Eng. 129, 100–110.Google Scholar
  67. Rincón, A.G., and Pulgarin C. (2007c) Absence of E. coli regrowth after Fe3 + and TiO2 solar photoassisted disinfection of water in CPC solar photoreactor. Catal. Today. 124, 204–214.CrossRefGoogle Scholar
  68. Rincón, A.G., Pulgarin, C., Adler, N. and Peringer, P. (2001) Interaction between E. coli inactivation and DBP-precursors – dihydroxybenzene isomers – in the photocatalytic process of drinking-water disinfection with TiO2. J. Photochem. Photobiol. A: Chem. 139, 233–241.Google Scholar
  69. Saito, T., Iwase, T., Horie, J. and Morioka, T. (1992) Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans Streptococci. J. Photochem. Photobiol. B: Biol. 14, 369–379.CrossRefGoogle Scholar
  70. Salih, F.M. (2002) Enhancement of solar inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation. J. Appl. Microbiol. 92, 920–926.CrossRefGoogle Scholar
  71. Serpone, N., Salinaro, A., Horikoshi, S. and Hidaka, H. (2006) Beneficial effects of photoinactive titanium dioxide specimens on plasmid DNA, human cells and yeast cells exposed to UVA/UV B simulated sunlight. J. Photochem. Photobiol. A: Chem. 179, 200–212.CrossRefGoogle Scholar
  72. Sichel, C., de Cara M., Tello, J., Blanco, J. and Fernandez-Ibanez, P. (2007a). Solar photocatalytic disinfection of agricultural pathogenic fungi: Fusarium species. Appl. Catal. B: Environ. 74, 152–160.CrossRefGoogle Scholar
  73. Sichel, C., Tello, J., de Cara, M. and Fernandez-Ibanez P. (2007b) Effect of UV solar intensity and dose on the photocatalytic disinfection of bacteria and fungi. Catal. Today. 129, 152–60.CrossRefGoogle Scholar
  74. Sichel, C., Blanco, J., Malato, S. and Fernández-Ibáñez, P. (2007c) Effects of experimental conditions on E. coli survival during solar photocatalytic water disinfection. J. Photochem. Photobiol. A: Chem. 189, 239–246.Google Scholar
  75. Sjogren, J.C. and Sierka, R.A. (1994) Inactivation of phage Ms-2 by iron-aided titanium-dioxide photocatalysis. Appl. Environ. Microbiol. 60, 344–347.Google Scholar
  76. Sommer, R., Haider, T., Cabaj, A., Pribil, W. and Lhotsky, M. (1998) Time dose reciprocity in UV disinfection of water. Water Sci. Technol. 38, 145–150.Google Scholar
  77. Srinivasan C., and Somasundaram, N. (2003) Bactericidal and detoxification effects of irradiated semiconductor catalyst TiO2. Curr. Sci. 85, 1431–1438.Google Scholar
  78. Sunada, K., Kikuchi, Y., Hashimoto, K. and Fujishima, A. (1998) Bactericidal and detoxification effects of TiO2 thin-film photocatalysts. Environ. Sci. Technol. 32, 726–728.CrossRefGoogle Scholar
  79. Sunada, K., Watanabe, T. and Hashimoto, K. (2003) Studies on photokilling of bacteria on TiO2 thin film. J. Photochem. Photobiol. A: Chem. 156, 227–233.CrossRefGoogle Scholar
  80. Wei, C., Lin, W.Y., Zainal, Z., Williams, N.E., Zhu, K., Kruzic, A.P., Smith, R.L. and Rajeshwar, K. (1994) Bactericidal activity of TiO2 photocatalyst in aqueous-media – Toward a solar-assisted water disinfection system. Environ. Sci. Technol. 28, 934–938.CrossRefGoogle Scholar
  81. Whitelam, G.C. and Codd, G.A. (1985) Damaging effects of light on microorganisms. In: Herbert, R.A. and Codd, G.A. (Eds.) Microbes in extreme environments. Academic, London, pp. 129–169.Google Scholar
  82. Wolfrum, E.J., Huang, J., Blake, D.M., Maness, P.-C., Huang, Z., Fiest, J. and Jacoby, W.A. (2002) Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces. Environ. Sci. Technol. 36, 3412–3419.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Division of Engineering and Applied ScienceCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations