Environmental Photo(electro)catalysis: Fundamental Principles and Applied Catalysts

  • Huanjun Zhang
  • Guohua Chen
  • Detlef W. Bahnemann


Starting with a detailed introduction of the fundamental concepts that are most relevant to photocatalytic and photoelectrocatalytic systems and processes, this chapter reviews the recent research and development of semiconductor-based photocatalyst materials that are applicable to environmental remediation purposes. A wide variety of TiO2 particles and/or films has been studied during the past 30 years as the most stable and powerful photocatalysts toward the degradation of various organic pollutants. The photocatalytic performance of other semiconductor materials such as ZnO, SnO2, WO3, Fe2O3, and CdS has also been intensively investigated. A general limitation concerning the efficiency for any photocatalytic process is the recombination of the photogenerated charge carriers, i.e., of electrons and holes, following bandgap illumination. Considerable efforts have been made to suppress the recombination hence enhancing the charge-carrier separation and the overall efficiency by means of, e.g., coupling of different semiconductors with desirable matching of their electronic band structures, or incorporation of noble metal nanoclusters onto the surface of semiconductor photocatalyst particles. Modification of the physicochemical properties, e.g., particle size, surface area, porosity, and/or crystallinity of the semiconductor materials and optimization of the experimental conditions such as pH, illumination conditions, and/or catalyst loading, during photocatalytic reactions have also been elaboratively addressed to achieve high reaction rates or yields. In order to utilize the solar energy more efficiently, i.e., to extend the optical absorption by photocatalysts into the visible light range, numerous research groups have contributed to developing novel visible-light-active photocatalysts. With the application of semiconductors with narrower bandgap such as CdS, Fe2O3, and WO3 being a straightforward choice, doping of wide bandgap semiconductors as exemplified by TiO2 has been the most popular technique to enhance their optical absorption abilities. Both theoretical and experimental evidence have been accumulated to support that such-developed semiconductor materials can serve as highly efficient photocatalysts.


Photocatalytic Activity Methyl Orange TiO2 Particle Photocatalytic Reaction Space Charge Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abe, R., T. Takata, H. Sugihara and K. Domen (2005). Photocatalytic overall water splitting under visible light by TaON and WO3 with an \({\mathrm{IO}}_{3}^{-}/{\mathrm{I}}^{-}\) shuttle redox mediator. Chemical Communications 2005(30), 3829–3831.CrossRefGoogle Scholar
  2. Ah, C.S., H.S. Han, K. Kim and D.J. Jang (2000). Photofragmentation dynamics of n-dodecanethiol-derivatized silver nanoparticles in cyclohexane. Journal of Physical Chemistry B, 104(34), 8153–8159.CrossRefGoogle Scholar
  3. Akyol, A., H.C. Yatmaz and M. Bayramoglu (2004). Photocatalytic decolorization of remazol red RR in aqueous ZnO suspensions. Applied Catalysis B-Environmental, 54(1), 19–24.Google Scholar
  4. Alivisatos, A.P. (1996a). Perspectives on the physical chemistry of semiconductor nanocrystals. Journal of Physical Chemistry, 100(31), 13226–13239.CrossRefGoogle Scholar
  5. Alivisatos, A.P. (1996b). Semiconductor clusters, nanocrystals, and quantum dots. Science, 271(5251), 933–937.CrossRefGoogle Scholar
  6. Amalric, L., C. Guillard and P. Pichat (1994). Use of catalase and superoxide-dismutase to assess the roles of hydrogen-peroxide and superoxide in the TiO2 or ZnO photocatalytic destruction of 1,2-dimethoxybenzene in water. Research on Chemical Intermediates, 20(6), 579–594.CrossRefGoogle Scholar
  7. Anpo, M., K. Chiba, M. Tomonari, S. Coluccia, M. Che and M.A. Fox (1991). Photocatalysis on native and platinum-loaded TiO2 and ZnO catalysts-origin of different reactivities on wet and dry metal-oxides. Bulletin of the Chemical Society of Japan, 64(2), 543–551.CrossRefGoogle Scholar
  8. Antonelli, D.M. and J.Y. Ying (1995). Synthesis of hexagonally packed mesoporous TiO2 by a modified sol–gel method. Angewandte Chemie-International Edition in English, 34(18), 2014–2017.CrossRefGoogle Scholar
  9. Arabatzis, I.M., T. Stergiopoulos, D. Andreeva, S. Kitova, S.G. Neophytides and P. Falaras (2003). Characterization and photocatalytic activity of Au∕TiO2 thin films for azo-dye degradation. Journal of Catalysis, 220(1), 127–135.CrossRefGoogle Scholar
  10. Arana, J., J.M. Dona-Rodriguez, O. Gonzalez-Diaz, E.T. Rendon, J.A.H. Melian, G. Colon, J.A. Navio and J.P. Pena (2004). Gas-phase ethanol photocatalytic degradation study with TiO2 doped with Fe, Pd and Cu. Journal of Molecular Catalysis A-Chemical, 215(1–2), 153–160.CrossRefGoogle Scholar
  11. Araujo, P.Z., C.B. Mendive, L.A.G. Rodenas, P.J. Morando, A.E. Regazzoni, M.A. Blesa and D. Bahnemann (2005). FT-IR-ATR as a tool to probe photocatalytic interfaces. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 265(1–3), 73–80.CrossRefGoogle Scholar
  12. Arpac, E., F. Sayilkan, M. Asilturk, P. Tatar, N. Kiraz and H. Sayilkan (2007). Photocatalytic performance of Sn-doped and undoped TiO2 nanostructured thin films under UV and Vis-lights. Journal of Hazardous Materials, 140(1–2), 69–74.CrossRefGoogle Scholar
  13. Asahi, R., T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga (2001). Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 293(5528), 269–271.CrossRefGoogle Scholar
  14. Bach, U., D. Lupo, P. Comte, J.E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer and M. Grätzel (1998). Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 395(6702), 583–585.CrossRefGoogle Scholar
  15. Badilescu, S. and P.V. Ashrit (2003). Study of sol–gel prepared nanostructured WO3 thin films and composites for electrochromic applications. Solid State Ionics, 158(1–2), 187–197.CrossRefGoogle Scholar
  16. Baeck, S.H., K.S. Choi, T.F. Jaramillo, G.D. Stucky and E.W. McFarland (2003). Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Advanced Materials, 15(15), 1269–1273.CrossRefGoogle Scholar
  17. Bahnemann, D.W. (1993). Ultrasmall metal oxide particles: Preparation, photophysical characterization, and photocatalytic properties. Israel Journal of Chemistry, 33, 115–136.Google Scholar
  18. Bahnemann, D., A. Henglein, J. Lilie and L. Spanhel (1984a). Flash photolysis observation of the absorption spectra of trapped positive holes and electrons in colloidal TiO2. Journal of Physical Chemistry, 88(4), 709–711.CrossRefGoogle Scholar
  19. Bahnemann, D., A. Henglein and L. Spanhel (1984b). Detection of the intermediates of colloidal TiO2-catalysed photoreactions. Faraday Discussions of the Chemical Society, 78, 151–163.CrossRefGoogle Scholar
  20. Bahnemann, D.W., C. Kormann and M.R. Hoffmann (1987a). Preparation and characterization of quantum size zinc oxide: A detailed spectroscopic study. Journal of Physical Chemistry, 91(14), 3789–3798.CrossRefGoogle Scholar
  21. Bahnemann, D.W., J. Mönig and R. Chapman (1987b). Efficient photocatalysis of the irreversible one-electron and two-electron reduction of halothane on platinized colloidal titanium dioxide in aqueous suspension. Journal of Physical Chemistry, 91(14), 3872–3788.CrossRefGoogle Scholar
  22. Bahnemann, D.W., M. Hilgendorff and R. Memming (1997). Charge carrier dynamics at TiO2 particles: Reactivity of free and trapped holes. Journal of Physical Chemistry B, 101(21), 4265–4275.CrossRefGoogle Scholar
  23. Bally, A.R., E.N. Korobeinikova, P.E. Schmid, F. Levy and F. Bussy (1998). Structural and electrical properties of Fe-doped TiO2 thin films. Journal of Physics D-Applied Physics, 31(10), 1149–1154.CrossRefGoogle Scholar
  24. Bamwenda, G.R., S. Tsubota, T. Nakamura and M. Haruta (1995). Photoassisted hydrogen-production from a water–ethanol solution – a comparison of activities of \({\mbox{ Au\textendash TiO}}_{2}\) and \({\mbox{ Pt\textendash TiO}}_{2}\). Journal of Photochemistry and Photobiology A-Chemistry, 89(2), 177–189.CrossRefGoogle Scholar
  25. Baron, R., C.H. Huang, D.M. Bassani, A. Onopriyenko, M. Zayats and I. Willner (2005). Hydrogen-bonded CdS nanoparticle assemblies on electrodes for photoelectrochemical applications. Angewandte Chemie-International Edition, 44(26), 4010–4015.CrossRefGoogle Scholar
  26. Bechinger, C., G. Oefinger, S. Herminghaus and P. Leiderer (1993). On the fundamental role of oxygen for the photochromic effect of WO3. Journal of Applied Physics, 74(7), 4527–4533.CrossRefGoogle Scholar
  27. Bechinger, C., E. Wirth and P. Leiderer (1996). Photochromic coloration of WO3 with visible light. Applied Physics Letters, 68(20), 2834–2836.CrossRefGoogle Scholar
  28. Bedja, I. and P.V. Kamat (1995). Capped semiconductor colloids – synthesis and photoelectrochemical behavior of TiO2-capped SnO2 nanocrystallites. Journal of Physical Chemistry, 99(22), 9182–9188.CrossRefGoogle Scholar
  29. Bessekhouad, Y., D. Robert and J. Weber (2004). Bi2S3 ∕ TiO2 and CdS∕TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. Journal of Photochemistry and Photobiology A-Chemistry, 163(3), 569–580.CrossRefGoogle Scholar
  30. Bessekhouad, Y., N. Chaoui, M. Trzpit, N. Ghazzal, D. Robert and J.V. Weber (2006). UV/Vis versus visible degradation of acid orange II in a coupled CdS∕TiO2 semiconductors suspension. Journal of Photochemistry and Photobiology A-Chemistry, 183(1–2), 218–224.CrossRefGoogle Scholar
  31. Bettinelli, M., A. Speghini, D. Falcomer, M. Daldosso, V. Dallacasa and L. Romano (2006). Photocatalytic, spectroscopic and transport properties of lanthanide-doped TiO2 nanocrystals. Journal of Physics-Condensed Matter, 18(33), S2149–S2160.CrossRefGoogle Scholar
  32. Bilmes, S.A., P. Mandelbaum, F. Alvarez and N.M. Victoria (2000). Surface and electronic structure of titanium dioxide photocatalysts. Journal of Physical Chemistry B, 104, 9851–9858.CrossRefGoogle Scholar
  33. Blesa, M.A., A.D. Weisz, P.J. Morando, J.A. Salfity, G.E. Magaz and A.E. Regazzoni (2000). The interaction of metal oxide surfaces with complexing agents dissolved in water. Coordination Chemistry Reviews, 196, 31–63.CrossRefGoogle Scholar
  34. Bollinger, M.A. and M.A. Vannice (1996). A kinetic and drifts study of low-temperature carbon monoxide oxidation over \({\mbox{ Au\textendash TiO}}_{2}\) catalysts. Applied Catalysis B-Environmental, 8(4), 417–443.Google Scholar
  35. Brus, L.E. (1983). A simple-model for the ionization-potential, electron-affinity, and aqueous redox potentials of small semiconductor crystallites. Journal of Chemical Physics, 79(11), 5566–5571.CrossRefGoogle Scholar
  36. Brus, L.E. (1984). Electron–electron and electron–hole interactions in small semiconductor crystallites – the size dependence of the lowest excited electronic state. Journal of Chemical Physics, 80(9), 4403–4409.CrossRefGoogle Scholar
  37. Cao, L.X., H.B. Wan, L.H. Huo and S.Q. Xi (2001). A novel method for preparing ordered SnO2 ∕ TiO2 alternate nanoparticulate films. Journal of Colloid and Interface Science, 244(1), 97–101.CrossRefGoogle Scholar
  38. Cao, Y.A., W.S. Yang, W.F. Zhang, G.Z. Liu and P.L. Yue (2004). Improved photocatalytic activity of Sn4 + doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition. New Journal of Chemistry, 28(2), 218–222.CrossRefGoogle Scholar
  39. Carp, O., C.L. Huisman and A. Reller (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32(1–2), 33–177.CrossRefGoogle Scholar
  40. Chakrabarti, S. and B.K. Dutta (2004). Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. Journal of Hazardous Materials, 112(3), 269–278.CrossRefGoogle Scholar
  41. Choi, H., E. Stathatos and D.D. Dionysiou (2006). Sol–gel preparation of mesoporous photocatalytic TiO2 films and TiO2 ∕ Al2O3 composite membranes for environmental applications. Applied Catalysis B-Environmental, 63(1–2), 60–67.CrossRefGoogle Scholar
  42. Colmenares, J.C., M.A. Aramendia, A. Marinas, J.M. Marinas and F.J. Urbano (2006). Synthesis, characterization and photocatalytic activity of different metal-doped titania systems. Applied Catalysis A-General, 306, 120–127.CrossRefGoogle Scholar
  43. Colombo Jr, D.P. and R.M. Bowman (1995). Femtosecond diffuse reflectance spectroscopy of TiO2 powders. Journal of Physical Chemistry, 99(30), 11752–11756.CrossRefGoogle Scholar
  44. Colon, G., M. Maicu, M.C. Hidalgo and J.A. Navio (2006). Cu-doped TiO2 systems with improved photocatalytic activity. Applied Catalysis B-Environmental, 67(1–2), 41–51.CrossRefGoogle Scholar
  45. Cozzoli, P.D., R. Comparelli, E. Fanizza, M.L. Curri, A. Agostiano and D. Laub (2004a). Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: A semiconductor/metal nanocomposite in homogeneous nonpolar solution. Journal of the American Chemical Society, 126(12), 3868–3879.CrossRefGoogle Scholar
  46. Cozzoli, P.D., E. Fanizza, R. Comparelli, M.L. Curri, A. Agostiano and D. Laub (2004b). Role of metal nanoparticles in TiO2 ∕ Ag nanocomposite-based microheterogeneous photocatalysis. Journal of Physical Chemistry B, 108(28), 9623–9630.CrossRefGoogle Scholar
  47. Crepaldi, E.L., G. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot and C. Sanchez (2003). Controlled formation of highly organized mesoporous titania thin films: From mesostructured hybrids to mesoporous nanoanatase TiO2. Journal of the American Chemical Society, 125(32), 9770–9786.CrossRefGoogle Scholar
  48. Cun, W., X.M. Wang, B.Q. Xu, J.C. Zhao, B.X. Mai, P. Peng, G.Y. Sheng and H.M. Fu (2004). Enhanced photocatalytic performance of nanosized coupled ZnO∕SnO2 photocatalysts for methyl orange degradation. Journal of Photochemistry and Photobiology A-Chemistry, 168(1–2), 47–52.Google Scholar
  49. Daneshvar, N., D. Salari and A.R. Khataee (2004). Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. Journal of Photochemistry and Photobiology A-Chemistry, 162(2–3), 317–322.CrossRefGoogle Scholar
  50. Di Paola, A., E. Garcia-Lopez, S. Ikeda, G. Marci, B. Ohtani and L. Palmisano (2002). Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catalysis Today, 75(1–4), 87–93.CrossRefGoogle Scholar
  51. Di Valentin, C., G. Pacchioni, A. Selloni, S. Livraghi and E. Giamello (2005). Characterization of paramagnetic species in n-doped TiO2 powders by EPR spectroscopy and DFT calculations. Journal of Physical Chemistry B, 109(23), 11414–11419.CrossRefGoogle Scholar
  52. Diwald, O., T.L. Thompson, T. Zubkov, E.G. Goralski, S.D. Walck and J.T.J. Yates (2004). Photochemical activity of nitrogen-doped rutile TiO2(110) in visible light. Journal of Physical Chemistry B, 108, 6004–6008.CrossRefGoogle Scholar
  53. Do, Y.R., W. Lee, K. Dwight and A. Wold (1994). The effect of WO3 on the photocatalytic activity of TiO2. Journal of Solid State Chemistry, 108(1), 198–201.CrossRefGoogle Scholar
  54. Duonghong, D., J. Ramsden and M. Grätzel (1982). Dynamics of interfacial electron-transfer processes in colloidal semiconductor systems. Journal of the American Chemical Society, 104(11), 2977–2985.CrossRefGoogle Scholar
  55. Dvoranova, D., V. Brezova, M. Mazur and M.A. Malati (2002). Investigations of metal-doped titanium dioxide photocatalysts. Applied Catalysis B-Environmental, 37(2), 91–105.CrossRefGoogle Scholar
  56. Einaga, H., M. Harada, S. Futamura and T. Ibusuki (2003). Generation of active sites for CO photooxidation on TiO2 by platinum deposition. Journal of Physical Chemistry B, 107(35), 9290–9297.CrossRefGoogle Scholar
  57. Evans, J.E., K.W. Springer and J.Z. Zhang (1994). Femtosecond studies of interparticle electron-transfer in a coupled \({\mbox{ CdS\textendash TiO}}_{2}\) colloidal system. Journal of Chemical Physics, 101(7), 6222–6225.CrossRefGoogle Scholar
  58. Faust, B.C., M.R. Hoffmann and D.W. Bahnemann (1989). Photocatalytic oxidation of surfur dioxide in aqueous suspension of α-Fe2O3. Journal of Physical Chemistry, 93, 6371–6381.CrossRefGoogle Scholar
  59. Feldhoff, A., C. Mendive, T. Bredow and D. Bahnemann (2007). Direct measurement of size, three-dimensional shape, and specific surface area of anatase nanocrystals. Chemphyschem, 8(6), 805–809.CrossRefGoogle Scholar
  60. Frank, S.N. and A.J. Bard (1975). Semiconductor electrodes. II. Electrochemistry at n-type titanium dioxide electrodes in acetonitrile solutions. Journal of the American Chemical Society, 97(26), 7427–7433.Google Scholar
  61. Frank, S.N. and A.J. Bard (1977a). Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. Journal of Physical Chemistry, 81, 1484–1488.CrossRefGoogle Scholar
  62. Frank, S.N. and A.J. Bard (1977b). Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. Journal of the American Chemical Society, 99(1), 303–304.CrossRefGoogle Scholar
  63. Friedmann, D., H. Hansing and D. Bahnemann (2007). Primary processes during the photodeposition of Ag clusters on TiO2 nanoparticles. Zeitschrift fur Physikalische Chemie, 221(3), 329–348.CrossRefGoogle Scholar
  64. Fujishima, A. and K. Honda (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238(5358), 37–38.CrossRefGoogle Scholar
  65. Fujishima, A., T. Kato, E. Maekawa and K. Honda (1981). Mechanism of the current doubling effect. I. The ZnO photoanode in aqueous solution of sodium formate. Bulletin of the Chemical Society of Japan, 54, 1671–1674.Google Scholar
  66. Furube, A., T. Asahi, H. Masuhara, H. Yamashita and M. Anpo (2001). Direct observation of a picosecond charge separation process in photoexcited platinum-loaded TiO2 particles by femtosecond diffuse reflectance spectroscopy. Chemical Physics Letters, 336(5–6), 424–430.CrossRefGoogle Scholar
  67. Gao, Y.M., W. Lee, R. Trehan, R. Kershaw, K. Dwight and A. Wold (1991). Improvement of photocatalytic activity of titanium(IV) oxide by dispersion of Au on TiO2. Materials Research Bulletin, 26(12), 1247–1254.CrossRefGoogle Scholar
  68. Gao, R.M., J. Stark, D.W. Bahnemann and J. Rabani (2002). Quantum yields of hydroxyl radicals in illuminated TiO2 nanocrystallite layers. Journal of Photochemistry and Photobiology A-Chemistry, 148(1–3), 387–391.CrossRefGoogle Scholar
  69. Gerischer, H. (1959). Metal and semiconductor electrode processes. Journal of the Electrochemical Society, 106(8), C200.Google Scholar
  70. Gerischer, H. (1961). Electrode processes. Annual Review of Physical Chemistry, 12, 227–254.CrossRefGoogle Scholar
  71. Gerischer, H. (1995). Photocatalysis in aqueous-solution with small TiO2 particles and the dependence of the quantum yield on particle-size and light-intensity. Electrochimica Acta, 40(10), 1277–1281.CrossRefGoogle Scholar
  72. Gerischer, H. and A. Heller (1992). Photocatalytic oxidation of organic-molecules at TiO2 particles by sunlight in aerated water. Journal of the Electrochemical Society, 139(1), 113–118.CrossRefGoogle Scholar
  73. Gesenhues, U. (2001). Al-doped TiO2 pigments: Influence of doping on the photocatalytic degradation of alkyd resins. Journal of Photochemistry and Photobiology A-Chemistry, 139(2–3), 243–251.CrossRefGoogle Scholar
  74. Ghicov, A., B. Schmidt, J. Kunze and P. Schmuki (2007). Photoresponse in the visible range from Cr doped TiO2 nanotubes. Chemical Physics Letters, 433(4–6), 323–326.CrossRefGoogle Scholar
  75. Gissler, W. and R. Memming (1977). Photoelectrochemical processes at semiconducting WO3 layers. Journal of the Electrochemical Society, 124, 1710–1714.CrossRefGoogle Scholar
  76. Gracia, F., J.P. Holgado, A. Caballero and A.R. Gonzalez-Elipe (2004). Structural, optical, and photoelectrochemical properties of \({\mathrm{m}}^{\mathrm{n+}}\mbox{ -}{\mathrm{TiO}}_{2}\) model thin film photocatalysts. Journal of Physical Chemistry B, 108(45), 17466–17476.CrossRefGoogle Scholar
  77. Granot, E., F. Patolsky and I. Willner (2004). Electrochemical assembly of a CdS semiconductor nanoparticle monolayer on surfaces: Structural properties and photoelectrochemical applications. Journal of Physical Chemistry B, 108(19), 5875–5881.CrossRefGoogle Scholar
  78. Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414(6861), 338–344.CrossRefGoogle Scholar
  79. Grätzel, M. and R.F. Howe (1990). Electron paramagnetic resonance studies of doped TiO2 colloids. Journal of Physical Chemistry, 94(6), 2566–2572.CrossRefGoogle Scholar
  80. Grunwaldt, J.D., M. Maciejewski, O.S. Becker, P. Fabrizioli and A. Baiker (1999). Comparative study of Au∕TiO2 and Au∕ZrO2 catalysts for low-temperature co oxidation. Journal of Catalysis, 186(2), 458–469.CrossRefGoogle Scholar
  81. Ha, M.G., E.D. Jeong, M.S. Won, H.G. Kim, H.K. Pak, J.H. Jung, B.H. Shon, S.W. Bae and J.S. Lee (2006). Electronic band structure and photocatalytic activity of m-doped TiO2 (m = Co and Fe). Journal of the Korean Physical Society, 49, S675–S679Google Scholar
  82. Hameed, A., M.A. Gondal and Z.H. Yamani (2004). Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination: Role of 3d-orbitals. Catalysis Communications, 5(11), 715–719.CrossRefGoogle Scholar
  83. Hardee, K.L. and A.J. Bard (1977). Semiconductor electrodes X. Photoelectrochemical behavior of several polycrystalline metal oxide electrodes in aqueous solutions. Journal of the Electrochemical Society, 124, 215–224.Google Scholar
  84. Hattori, A., Y. Tokihisa, H. Tada and S. Ito (2000). Acceleration of oxidations and retardation of reductions in photocatalysis of a TiO2 ∕ SnO2 bilayer-type catalyst. Journal of the Electrochemical Society, 147(6), 2279–2283.CrossRefGoogle Scholar
  85. Hattori, A., Y. Tokihisa, H. Tada, N. Tohge, S. Ito, K. Hongo, R. Shiratsuchi and G. Nogami (2001). Patterning effect of a sol–gel TiO2 overlayer on the photocatalytic activity of a TiO2 ∕ SnO2 bilayer-type photocatalyst. Journal of Sol–Gel Science and Technology, 22(1–2), 53–61.Google Scholar
  86. Hayashi, T., K. Tanaka and M. Haruta (1998). Selective vapor-phase epoxidation of propylene over Au∕TiO2 catalysts in the presence of oxygen and hydrogen. Journal of Catalysis, 178(2), 566–575.CrossRefGoogle Scholar
  87. He, J.X., P.J. Yang, H. Sato, Y. Umemura and A. Yamagishi (2004). Effects of Ag-photodeposition on photocurrent of an ITO electrode modified by a hybrid film of TiO2 nanosheets. Journal of Electroanalytical Chemistry, 566(1), 227–233.CrossRefGoogle Scholar
  88. Henglein, A., B. Lindig and J. Westerhausen (1981). Photochemical electron storage on colloidal metals and hydrogen formation by free radicals. Journal of Physical Chemistry, 85(12), 1627–1628.CrossRefGoogle Scholar
  89. Hidaka, H., J. Zhao, E. Pelizzetti and N. Serpone (1992). Photodegradation of surfactants. 8. Comparison of photocatalytic processes between anionic sodium dodecylbenzenesulfonate and cationic benzyldodecyldimethylammonium chloride on the TiO2 surface. Journal of Physical Chemistry, 96(5), 2226–2230.Google Scholar
  90. Higashimoto, S., M. Sakiyama and M. Azuma (2006). Photoelectrochemical properties of hybrid WO3 ∕ TiO2 electrode. Effect of structures of WO3 on charge separation behavior. Thin Solid Films, 503(1–2), 201–206.Google Scholar
  91. Hirai, T., Y. Bando and I. Komasawa (2002). Immobilization of CdS nanoparticles formed in reverse micelles onto alumina particles and their photocatalytic properties. Journal of Physical Chemistry B, 106(35), 8967–8970.CrossRefGoogle Scholar
  92. Hirakawa, T. and P.V. Kamat (2004). Photoinduced electron storage and surface plasmon modulation in Ag@TiO2 clusters. Langmuir, 20(14), 5645–5647.CrossRefGoogle Scholar
  93. Hirakawa, T. and P.V. Kamat (2005). Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. Journal of the American Chemical Society, 127(11), 3928–3934.CrossRefGoogle Scholar
  94. Ho, W., J.C. Yu and S. Lee (2006). Synthesis of hierarchical nanoporous f-doped TiO2 spheres with visible light photocatalytic activity. Chemical Communications 2006(10), 1115–1117.CrossRefGoogle Scholar
  95. Hodes, G., D. Cahen and J. Manasson (1976). Tungsten trioxide as a photoanode for a photoelectrochemical cell (pec). Nature, 260, 312–313.CrossRefGoogle Scholar
  96. Hoffmann, M.R., S.T. Martin, W.Y. Choi and D.W. Bahnemann (1995). Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95(1), 69–96.CrossRefGoogle Scholar
  97. Hsu, M.C., I.C. Leu, Y.M. Sun and M.H. Hon (2005). Fabrication of CdS@TiO2 coaxial composite nanocables arrays by liquid-phase deposition. Journal of Crystal Growth, 285(4), 642–648.CrossRefGoogle Scholar
  98. Hwang, D.W., J. Kim, T.J. Park and J.S. Lee (2002). Mg-doped WO3 as a novel photocatalyst for visible light-induced water splitting. Catalysis Letters, 80(1–2), 53–57.CrossRefGoogle Scholar
  99. Ihara, T., M. Miyoshi, Y. Iriyama, O. Matsumoto and S. Sugihara (2003). Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Applied Catalysis B-Environmental, 42(4), 403–409.CrossRefGoogle Scholar
  100. Iliev, V., D. Tomova, L. Bilyarska, A. Eliyas and L. Petrov (2006). Photocatalytic properties of TiO2 modified with platinum and silver nanoparticles in the degradation of oxalic acid in aqueous solution. Applied Catalysis B-Environmental, 63(3–4), 266–271.CrossRefGoogle Scholar
  101. Irie, M. (2000). Diarylethenes for memories and switches. Chemical Reviews, 100(5), 1685–1716.CrossRefGoogle Scholar
  102. Irie, H., Y. Watanabe and K. Hashimoto (2003). Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chemistry Letters, 32(8), 772–773.CrossRefGoogle Scholar
  103. Iwasaki, M., M. Hara H. Kawada, H. Tada and S. Ito (2000). Cobalt ion-doped TiO2 photocatalyst response to visible light. Journal of Colloid and Interface Science, 224(1), 202–204.CrossRefGoogle Scholar
  104. Jakob, M., H. Levanon and P.V. Kamat (2003). Charge distribution between UV-irradiated TiO2 and gold nanoparticles: Determination of shift in the fermi level. Nano Letters, 3(3), 353–358.CrossRefGoogle Scholar
  105. Jana, N.R., T.K. Sau and T. Pal (1999). Growing small silver particle as redox catalyst. Journal of Physical Chemistry B, 103(1), 115–121.CrossRefGoogle Scholar
  106. Jang, J.S., S.H. Choi, H. Park, W. Choi and J.S. Lee (2006). A composite photocatalyst of CdS nanoparticles deposited on TiO2 nanosheets. Journal of Nanoscience and Nanotechnology, 6(11), 3642–3646.CrossRefGoogle Scholar
  107. Jeong, L.H., J.H. Ahn, B.H. Kim, Y.S. Jeon, K.O. Jeon and K.S. Hwang (2005). Effect of Fe-doping on the crystallinity and the optical properties of TiO2 thin films. Journal of the Korean Physical Society, 46(2), 559–561.Google Scholar
  108. Jin, R.C., Y.W. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz and J.G. Zheng (2001). Photoinduced conversion of silver nanospheres to nanoprisms. Science, 294(5548), 1901–1903.CrossRefGoogle Scholar
  109. Jing, D.W. and L.J. Guo (2006). A novel method for the preparation of a highly stable and active CdS photocatalyst with a special surface nanostructure. Journal of Physical Chemistry B, 110(23), 11139–11145.CrossRefGoogle Scholar
  110. Jing, L.Q., Z.L. Xu, Y.G. Du, X.J. Sun, L. Wang, X.Q. Zhou, H.Y. Shan and W.M. Cai (2002). Investigation on photocatalytic oxidation degradation of n-C7H16 over zno ultrafine particles. Chemical Journal of Chinese Universities-Chinese, 23(5), 871–875.Google Scholar
  111. Jing, L.Q., X.J. Sun, B.F. Xin, B.Q. Wang, W.M. Cai and H.G. Fu (2004a). The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity. Journal of Solid State Chemistry, 177(10), 3375–3382.CrossRefGoogle Scholar
  112. Jing, L.Q., B.F. Xin F.L. Yuan, B.Q. Wang, K.Y. Shi, W.M. Cai and H.G. Fu (2004b). Deactivation and regeneration of ZnO and TiO2 nanoparticles in the gas phase photocatalytic oxidation of n-C7H16 or SO2. Applied Catalysis A-General, 275(1–2), 49–54.Google Scholar
  113. Jing, D.W., Y.J. Zhang and L.J. Guo (2005). Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution. Chemical Physics Letters, 415(1–3), 74–78.CrossRefGoogle Scholar
  114. Kamat, P.V. (1997). Native and surface modified semiconductor nanoclusters. Molecular Level Artificial Photosynthetic Materials, 44, 273–343.Google Scholar
  115. Kamat, P.V., M. Flumiani and G.V. Hartland (1998). Picosecond dynamics of silver nanoclusters. Photoejection of electrons and fragmentation. Journal of Physical Chemistry B, 102(17), 3123–3128.Google Scholar
  116. Kanai, N., T. Nuida, K. Ueta, K. Hashimoto, T. Watanabe and H. Ohsaki (2004). Photocatalytic efficiency of TiO2 ∕ SnO2 thin film stacks prepared by DC magnetron sputtering. Vacuum, 74(3–4), 723–727.CrossRefGoogle Scholar
  117. Karakitsou, K.E. and X.E. Verykios (1993). Effects of altervalent cation doping of TiO2 on its performance as a photocatalyst for water cleavage. Journal of Physical Chemistry, 97(6), 1184–1189.CrossRefGoogle Scholar
  118. Karvinen, S.M. (2003). The effects of trace element doping on the optical properties and photocatalytic activity of nanostructured titanium dioxide. Industrial and Engineering Chemistry Research, 42(5), 1035–1043.CrossRefGoogle Scholar
  119. Kawahara, T., Y. Konishi, H. Tada, N. Tohge and S. Ito (2001). Patterned TiO2/SnO2 bilayer type photocatalyst. 2. Efficient dehydrogenation of methanol. Langmuir, 17(23), 7442–7445.Google Scholar
  120. Kawahara, K., K. Suzuki, Y. Ohka and T. Tatsuma (2005). Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism. Physical Chemistry Chemical Physics, 7(22), 3851–3855.CrossRefGoogle Scholar
  121. Kawahara, T., K. Yamada and H. Tada (2006). Visible light photocatalytic decomposition of 2-naphthol by anodic-biased α-Fe2O3 film. Journal of Colloid and Interface Science, 294(2), 504–507CrossRefGoogle Scholar
  122. Kay, A. and M. Grätzel (2002). Dye-sensitized core-shell nanocrystals: Improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chemistry of Materials, 14(7), 2930–2935.CrossRefGoogle Scholar
  123. Keller, V., P. Bernhardt and F. Garin (2003). Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt∕TiO2 and WO3 ∕ TiO2 catalysts. Journal of Catalysis, 215(1), 129–138.CrossRefGoogle Scholar
  124. Khan, S.U.M. and J. Akikusa (1999). Photoelectrochemical splitting of water at nanocrystalline n-Fe2O3 thin-film electrodes. Journal of Physical Chemistry B, 103(34), 7184–7189.CrossRefGoogle Scholar
  125. Khodja, A.A., T. Sehili, J.F. Pilichowski and P. Boule (2001). Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. Journal of Photochemistry and Photobiology A-Chemistry, 141(2–3), 231–239.CrossRefGoogle Scholar
  126. Kikkawa, H., B. O’Regan and M.A. Anderson (1991). The photoelectrochemical properties of Nb-doped TiO2 semiconducting ceramic membrane. Journal of Electroanalytical Chemistry, 309(1–2), 91–101.CrossRefGoogle Scholar
  127. Kim, S., S.J. Hwang and W.Y. Choi (2005). Visible light active platinum-ion-doped TiO2 photocatalyst. Journal of Physical Chemistry B, 109(51), 24260–24267.CrossRefGoogle Scholar
  128. Kim, D.H., K.S. Lee, Y.S. Kim, Y.C. Chung and S.J. Kim (2006a). Photocatalytic activity of Ni 8 wt%-doped TiO2 photocatalyst synthesized by mechanical alloying under visible light. Journal of the American Ceramic Society, 89(2), 515–518.CrossRefGoogle Scholar
  129. Kim, K., C. Seo and H. Cheong (2006b). Photochromic mechanism in a-WO3 thin films based on Raman spectroscopic studies. Journal of the Korean Physical Society, 48(6), 1657–1660.Google Scholar
  130. Kisch, H. and H. Weiss (2002). Tuning photoelectrochemical and photocatalytic properties through electronic semiconductor–support interaction. Advanced Functional Materials, 12(8), 483–488.CrossRefGoogle Scholar
  131. Kiyonaga, T., T. Mitsui, M. Torikoshi, M. Takekawa, T. Soejima and H. Tada (2006). Ultrafast photosynthetic reduction of elemental sulfur by Au nanoparticle-loaded TiO2. Journal of Physical Chemistry B, 110(22), 10771–10778.CrossRefGoogle Scholar
  132. Klosek, S. and D. Raftery (2001). Visible light driven v-doped TiO2 photocatalyst and its photooxidation of ethanol. Journal of Physical Chemistry B, 105(14), 2815–2819.CrossRefGoogle Scholar
  133. Kong, Y.C., D.P. Yu, B. Zhang, W. Fang and S.Q. Feng (2001). Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Applied Physics Letters, 78(4), 407–409.CrossRefGoogle Scholar
  134. Kormann, C., D.W. Bahnemann and M.R. Hoffmann (1988). Preparation and characterization of quantum-size titanium dioxide. Journal of Physical Chemistry, 92(18), 5196–5201.CrossRefGoogle Scholar
  135. Kraeutler, B. and A.J. Bard (1978). Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on TiO2 powder and other substrates [12]. Journal of the American Chemical Society, 100(13), 4317–4318.Google Scholar
  136. Kumar, A. and A.K. Jain (2001). Photophysics and photochemistry of colloidal CdS-TiO2 coupled semiconductors – photocatalytic oxidation of indole. Journal of Molecular Catalysis A-Chemical, 165(1–2), 265–273.CrossRefGoogle Scholar
  137. Kumar, A. and N. Mathur (2004). Photocatalytic oxidation of aniline using Ag+-loaded TiO2 suspensions. Applied Catalysis A-General, 275(1–2), 189–197.CrossRefGoogle Scholar
  138. Kuznetsov, V.N. and N. Serpone (2006). Visible light absorption by various titanium dioxide specimens. Journal of Physical Chemistry B, 110, 25203–25209.CrossRefGoogle Scholar
  139. Kwon, Y.T., K.Y. Song, W.I. Lee, G.J. Choi and Y.R. Do (2000). Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction. Journal of Catalysis, 191(1), 192–199.CrossRefGoogle Scholar
  140. Lee, J.S. and W.Y. Choi (2004). Effect of platinum deposits on TiO2 on the anoxic photocatalytic degradation pathways of alkylamines in water: Dealkylation and n-alkylation. Environmental Science and Technology, 38(14), 4026–4033.CrossRefGoogle Scholar
  141. Lee, D.H., Y.S. Cho, W.I. Yi, T.S. Kim, J.K. Lee and H.J. Jung (1995). Metalorganic chemical-vapor-deposition of TiO2-n anatase thin-film on Si substrate. Applied Physics Letters, 66(7), 815–816.CrossRefGoogle Scholar
  142. Lee, S.S., C.Y. Fan, T.P. Wu and S.L. Anderson (2004). Co oxidation on \({\mathrm{Au\mbox{ -}n/TiO}}_{2}\) catalysts produced by size-selected cluster deposition. Journal of the American Chemical Society, 126(18), 5682–5683.CrossRefGoogle Scholar
  143. Lee, K., N.H. Leea, S.H. Shin, H.G. Lee and S.J. Kim (2006). Hydrothermal synthesis and photocatalytic characterizations of transition metals doped nano TiO2 sols. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 129(1–3), 109–115.Google Scholar
  144. Leland, J.K. and A.J. Bard (1987). Photochemistry of colloidal semiconducting iron oxide polymorphs. Journal of Physical Chemistry, 91, 5076–5083.CrossRefGoogle Scholar
  145. Levy, B., W. Liu and S.E. Gilbert (1997). Directed photocurrents in nanostructured TiO2 ∕ SnO2 heterojunction diodes. Journal of Physical Chemistry B, 101(10), 1810–1816.CrossRefGoogle Scholar
  146. Li, X.Z. and F.B. Li (2001). Study of \({\mathrm{Au/Au}}^{3+} -{\mathrm{TiO}}_{2}\) photocatalysts toward visible photooxidation for water and wastewater treatment. Environmental Science and Technology, 35(11), 2381–2387.CrossRefGoogle Scholar
  147. Li, Y., G.W. Meng, L.D. Zhang and F. Phillipp (2000). Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Applied Physics Letters, 76(15), 2011–2013.CrossRefGoogle Scholar
  148. Li, D., H. Haneda, S. Hishita and N. Ohashi (2005a). Visible-light-driven N-F-codoped TiO2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification. Chemistry of Materials, 17(10), 2596–2602.Google Scholar
  149. Li, D., H. Haneda, S. Hishita, N. Ohashi and N.K. Labhsetwar (2005b). Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde. Journal of Fluorine Chemistry, 126(1), 69–77.CrossRefGoogle Scholar
  150. Li, Y.Z., D.S. Hwang, N.H. Lee and S.J. Kim (2005c). Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst. Chemical Physics Letters, 404(1–3), 25–29.CrossRefGoogle Scholar
  151. Lin, Z.S., A. Orlov, R.M. Lambert and M.C. Payne (2005). New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2. Journal of Physical Chemistry B, 109(44), 20948–20952.CrossRefGoogle Scholar
  152. Lindgren, T., J.M. Mwabora, E. Avendano, J. Jonsson, A. Hoel, C.G. Granqvist and S.E. Lindquist (2003). Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. Journal of Physical Chemistry B, 107(24), 5709–5716.CrossRefGoogle Scholar
  153. Linsebigler, A.L., G.Q. Lu and J.T. Yates (1995). Photocatalysis on TiO2 surfaces – principles, mechanisms, and selected results. Chemical Reviews, 95(3), 735–758.CrossRefGoogle Scholar
  154. Linsebigler, A., C. Rusu and J.T. Yates (1996). Absence of platinum enhancement of a photoreaction on TiO2–Co photooxidation on Pt∕TiO2(110). Journal of the American Chemical Society, 118(22), 5284–5289.CrossRefGoogle Scholar
  155. Litter, M.I. and J.A. Navio (1996). Photocatalytic properties of iron-doped titania semiconductors. Journal of Photochemistry and Photobiology A-Chemistry, 98(3), 171–181.CrossRefGoogle Scholar
  156. Lu, T.C., Y.Z. Liu, L.B. Lin, X.T. Zu, J.M. Zhu and L.P. Wu (2001a). Influence of transition-metal Cr doping on optical properties of rutile single crystal. Journal of Inorganic Materials, 16(2), 373–376.Google Scholar
  157. Lu, T.C., S.Y. Wu, L.B. Lin and W.C. Zheng (2001b). Defects in the reduced rutile single crystal. Physica B-Condensed Matter, 304(1–4), 147–151.CrossRefGoogle Scholar
  158. Ma, T.L., M. Akiyama, E. Abe and I. Imai (2005). High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode. Nano Letters, 5(12), 2543–2547.CrossRefGoogle Scholar
  159. Macyk, W., G. Burgeth and H. Kisch (2003). Photoelectrochemical properties of platinum(IV) chloride surface modified TiO2. Photochemical and Photobiological Sciences, 2(3) 322–328.CrossRefGoogle Scholar
  160. Martyanov, I.N., S. Uma, S. Rodrigues and K.J. Klabunde (2004). Structural defects cause TiO2-based photocatalysts to be active in visible light. Chemical Communications 2004(21), 2476–2477.CrossRefGoogle Scholar
  161. Meissner, D. and R. Memming (1988). Photoelectrochemistry of cadmium sulfide. 1. Reanalysis of photocorrosion and flat-band potential. Journal of Physical Chemistry, 92, 3476–3483.Google Scholar
  162. Meissner, D., R. Memming, B. Kastening and D. Bahnemann (1986). Fundamental problems of water splitting at cadmium-sulfide. Chemical Physics Letters, 127(5), 419–423.CrossRefGoogle Scholar
  163. Memming, R. (2001). Semiconductor electrochemistry. Weinheim, Wiley-VCHGoogle Scholar
  164. Mendive, C.B., D.W. Bahnemann and M.A. Blesa (2005). Microscopic characterization of the photocatalytic oxidation of oxalic acid adsorbed onto TiO2 by FTIR-ATR. Catalysis Today, 101(3–4), 237–244.CrossRefGoogle Scholar
  165. Mendive, C.B., T. Bredow, M.A. Blesa and D.W. Bahnemann (2006). ATR-FTIR measurements and quantum chemical calculations concerning the adsorption and photoreaction of oxalic acid on TiO2. Physical Chemistry Chemical Physics, 8(27), 3232–3247.CrossRefGoogle Scholar
  166. Mendive, C.B., T. Bredow, A. Feldhoff, M. Blesa and D. Bahnemann (2008). Adsorption of oxalate on rutile particles in aqueous solutions: A spectroscopic, electron-microscopic and theoretical study. Physical Chemistry Chemical Physics, 10(14), 1960–1974.CrossRefGoogle Scholar
  167. Miyake, H. and H. Kozuka (2005). Photoelectrochemical properties of Fe2O3 − Nb2O5 films prepared by sol–gel method. Journal of Physical Chemistry B, 109(38), 17951–17956.CrossRefGoogle Scholar
  168. Miyauchi, M., A. Nakajima, K. Hashimoto and T. Watanabe (2000). A highly hydrophilic thin film under 1 muW∕cm2 UV illumination. Advanced Materials, 12(24), 1923–1927.CrossRefGoogle Scholar
  169. Miyauchi, M., A.K. Nakajima, T. Watanabe and K. Hashimoto (2002). Photoinduced hydrophilic conversion of TiO2 ∕ WO3 layered thin films. Chemistry of Materials, 14(11), 4714–4720.CrossRefGoogle Scholar
  170. Miyauchi, M., A. Ikezawa, H. Tobimatsu, H. Irie and K. Hashimoto (2004). Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films. Physical Chemistry Chemical Physics, 6(4), 865–870.CrossRefGoogle Scholar
  171. Mohamed, M.M. and M.M. Al-Esaimi (2006). Characterization, adsorption and photocatalytic activity of vanadium-doped TiO2 and sulfated TiO2 (rutile) catalysts: Degradation of methylene blue dye. Journal of Molecular Catalysis A-Chemical, 255(1–2), 53–61.CrossRefGoogle Scholar
  172. Monllor-Satoca, D., L. Borja, A. Rodes, R. Gomez and P. Salvador (2006). Photoelectrochemical behavior of nanostructured WO3 thin-film electrodes: The oxidation of formic acid. ChemPhysChem, 7(12), 2540–2551.CrossRefGoogle Scholar
  173. Morikawa, T., R. Asahi, T. Ohwaki, K. Aoki and Y. Taga (2001). Band-gap narrowing of titanium dioxide by nitrogen doping. Japanese Journal of Applied Physics Part 2-Letters, 40(6A), L561–L563Google Scholar
  174. Mrowetz, M., W. Balcerski, A.J. Colussi and M.R. Hoffmann (2004). Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination. Journal of Physical Chemistry B, 108(45), 17269–17273.CrossRefGoogle Scholar
  175. Murakoshi, K., H. Tanaka, Y. Sawai and Y. Nakato (2002). Photoinduced structural changes of silver nanoparticles on glass substrate in solution under an electric field. Journal of Physical Chemistry B, 106(12), 3041–3045.CrossRefGoogle Scholar
  176. Nahar, S., K. Hasegawa and S. Kagaya (2006). Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles. Chemosphere, 65(11), 1976–1982.CrossRefGoogle Scholar
  177. Nakajima, H., T. Mori and M. Watanabe (2004a). Influence of platinum loading on photoluminescence of TiO2 powder. Journal of Applied Physics, 96(1), 925–927.CrossRefGoogle Scholar
  178. Nakamura, R., T. Tanaka and Y. Nakato (2004b). Mechanism for visible light responses in anodic photocurrents at n-doped TiO2 film electrodes. Journal of Physical Chemistry B, 108(30), 10617–10620.CrossRefGoogle Scholar
  179. Nakato, Y., K. Ueda, H. Yano and H. Tsubomura (1988). Effect of microscopic discontinuity of metal overlayers on the photovoltages in metal-coated semiconductor–liquid junction photoelectrochemical cells for efficient solar energy conversion. Journal of Physical Chemistry, 92, 2316–2324.CrossRefGoogle Scholar
  180. Naoi, K., Y. Ohko and T. Tatsuma (2004). TiO2 films loaded with silver nanoparticles: Control of multicolor photochromic behavior. Journal of the American Chemical Society, 126(11), 3664–3668.CrossRefGoogle Scholar
  181. Naoi, K., Y. Ohko and T. Tatsuma (2005). Switchable rewritability of Ag − TiO2 nanocomposite films with multicolor photochromism. Chemical Communications 2005(10), 1288–1290.CrossRefGoogle Scholar
  182. Narayanan, R. and M.A. El-Sayed (2003). Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles. Journal of the American Chemical Society, 125(27), 8340–8347.CrossRefGoogle Scholar
  183. Navio, J.A., G. Colon, M. Trillas, J. Peral, X. Domenech, J.J. Testa, J. Padron, D. Rodriguez and M.I. Litter (1998). Heterogeneous photocatalytic reactions of nitrite oxidation and Cr(VI) reduction on iron-doped titania prepared by the wet impregnation method. Applied Catalysis B-Environmental, 16(2), 187–196.CrossRefGoogle Scholar
  184. Navio, J.A., J.J. Testa, P. Djedjeian, J.R. Padron, D. Rodriguez and M.I. Litter (1999). Iron-doped titania powders prepared by a sol–gel method. Part II: Photocatalytic properties. Applied Catalysis A-General, 178(2), 191–203.Google Scholar
  185. Ohko, Y., T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota and A. Fujishima (2003). Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nature Materials, 2(1), 29–31.CrossRefGoogle Scholar
  186. Ohmori, T., H. Takahashi, H. Mametsuka and E. Suzuki (2000). Photocatalytic oxygen evolution on α-Fe2O3 films using Fe3 + ion as a sacrificial oxidizing agent. Physical Chemistry Chemical Physics, 2(15), 3519–3522.CrossRefGoogle Scholar
  187. Ohno, T., T. Mitsui and M. Matsumura (2003). Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chemistry Letters, 32(4), 364–365.CrossRefGoogle Scholar
  188. Ohno, T., M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura (2004a). Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis A-General, 265(1), 115–121.CrossRefGoogle Scholar
  189. Ohno, T., T. Tsubota, M. Toyofuku and R. Inaba (2004b). Photocatalytic activity of a TiO2 photocatalyst doped with C4 + and S4 + ions having a rutile phase under visible light. Catalysis Letters, 98(4), 255–258.CrossRefGoogle Scholar
  190. Ohno, T., Z. Miyamoto, K. Nishijima, H. Kanemitsu and X.Y. Feng (2006). Sensitization of photocatalytic activity of S- or N-doped TiO2 particles by adsorbing Fe3 + cations. Applied Catalysis A-General, 302(1), 62–68.CrossRefGoogle Scholar
  191. Okazaki, K., Y. Morikawa, S. Tanaka, K. Tanaka and M. Kohyama (2004). Electronic structures of Au on TiO2(110) by first-principles calculations. Physical Review B, 69(23), 8CrossRefGoogle Scholar
  192. Ollis, D.F., E. Pelizzetti and N. Serpone (1991). Photocatalyzed destruction of water contaminants. Environmental Science and Technology, 25(9), 1522–1529.CrossRefGoogle Scholar
  193. O’Regan, B. and M. Grätzel (1991). A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737–740.CrossRefGoogle Scholar
  194. Osterwalder, J., T. Droubay, T. Kaspar, J. Williams, C.M. Wang and S.A. Chambers (2005). Growth of Cr-doped TiO2 films in the rutile and anatase structures by oxygen plasma assisted molecular beam epitaxy. Thin Solid Films, 484(1–2), 289–298.CrossRefGoogle Scholar
  195. Ozgur, U., Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho and H. Morkoc (2005). A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 98(4), 103Google Scholar
  196. Pal, B. and M. Sharon (1998). Photocatalytic degradation of salicylic acid by colloidal Fe2O3 particles. Journal of Chemical Technology and Biotechnology, 73(3), 269–273.CrossRefGoogle Scholar
  197. Pan, J.H. and W.I. Lee (2006). Preparation of highly ordered cubic mesoporous WO3 ∕ TiO2 films and their photocatalytic properties. Chemistry of Materials, 18(3), 847–853.CrossRefGoogle Scholar
  198. Papaefthimiou, S., G. Leftheriotis and P. Yianoulis (2001). Advanced electrochromic devices based on WO3 thin films. Electrochimica Acta, 46(13–14), 2145–2150.CrossRefGoogle Scholar
  199. Papp, J., S. Soled, K. Dwight and A. Wold (1994). Surface-acidity and photocatalytic activity of TiO2, WO3 ∕ TiO2, and MoO3 ∕ TiO2 photocatalysts. Chemistry of Materials, 6(4), 496–500.CrossRefGoogle Scholar
  200. Pearton, S.J., D.P. Norton, K. Ip, Y.W. Heo and T. Steiner (2005). Recent progress in processing and properties of ZnO. Progress in Materials Science, 50(3), 293–340.CrossRefGoogle Scholar
  201. Pradhan, N., A. Pal and T. Pal (2001). Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir, 17(5), 1800–1802.CrossRefGoogle Scholar
  202. Pulgarin, C. and J. Kiwi (1995). Iron oxide-mediated degradation, photodegradation, and biodegradation of aminophenols. Langmuir, 11(2), 519–526.CrossRefGoogle Scholar
  203. Quan, X., S. Chen, J. Su, J.W. Chen and G.H. Chen (2004). Synergetic degradation of 2,4-D by integrated photo- and electrochemical catalysis on a Pt doped TiO2 ∕ Ti electrode. Separation and Purification Technology, 34(1–3), 73–79.CrossRefGoogle Scholar
  204. Radecka, M., M. Wierzbicka, S. Komornicki and M. Rekas (2004). Influence of Cr on photoelectrochemical properties of TiO2 thin films. Physica B-Condensed Matter, 348(1–4), 160–168.CrossRefGoogle Scholar
  205. Ranjit, K.T. and B. Viswanathan (1997). Synthesis, characterization and photocatalytic properties of iron-doped TiO2 catalysts. Journal of Photochemistry and Photobiology A-Chemistry, 108(1), 79–84.CrossRefGoogle Scholar
  206. Richard, C. (1994). Photocatalytic reduction of benzoquinone in aqueous ZnO or TiO2 suspensions. New Journal of Chemistry, 18(4), 443–445.Google Scholar
  207. Richard, C. and P. Boule (1995). Reactive species involved in photocatalytic transformations on zinc-oxide. Solar Energy Materials and Solar Cells, 38(1–4), 431–440.CrossRefGoogle Scholar
  208. Richard, C., A.M. Martre and P. Boule (1992). Photocatalytic transformation of 2,5-furandimethanol in aqueous ZnO suspensions. Journal of Photochemistry and Photobiology A-Chemistry, 66(2), 225–234.CrossRefGoogle Scholar
  209. Robel, I., V. Subramanian, M. Kuno and P.V. Kamat (2006). Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. Journal of the American Chemical Society, 128(7), 2385–2393.Google Scholar
  210. Rodriguez, J.A., J. Hrbek, J. Dvorak, T. Jirsak and A. Maiti (2001). Interaction of sulfur with TiO2 (110): Photoemission and density-functional studies. Chemical Physics Letters, 336(5–6), 377–384.CrossRefGoogle Scholar
  211. Rossetti, R., J.L. Ellison, J.M. Gibson and L.E. Brus (1984). Size effects in the excited electronic states of small colloidal CdS crystallites. Journal of Chemical Physics, 80(9), 4464–4469.CrossRefGoogle Scholar
  212. Roucoux, A., J. Schulz and H. Patin (2002). Reduced transition metal colloids: A novel family of reusable catalysts? Chemical Reviews, 102(10), 3757–3778.CrossRefGoogle Scholar
  213. Saha, N.C. and H.G. Tompkins (1992). Titanium nitride oxidation chemistry – an X-ray photoelectron-spectroscopy study. Journal of Applied Physics, 72(7), 3072–3079.CrossRefGoogle Scholar
  214. Sahoo, C., A.K. Gupta and A. Pal (2005). Photocatalytic degradation of crystal violet (Ci basic violet 3) on silver ion doped TiO2. Dyes and Pigments, 66(3), 189–196.CrossRefGoogle Scholar
  215. Sakatani, Y., D. Grosso, L. Nicole, C. Boissiere, G. Soler-Illia and C. Sanchez (2006). Optimised photocatalytic activity of grid-like mesoporous TiO2 films: Effect of crystallinity, pore size distribution, and pore accessibility. Journal of Materials Chemistry, 16(1), 77–82.CrossRefGoogle Scholar
  216. Sakthivel, S. and H. Kisch (2003). Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide. Chemphyschem, 4(5), 487–490.CrossRefGoogle Scholar
  217. Sakthivel, S., B. Neppolian, M. Palanichamy, B. Arabindoo and V. Murugesan (1999). Photocatalytic degradation of leather dye, acid green 16 using ZnO in the slurry and thin film forms. Indian Journal of Chemical Technology, 6(3), 161–165.Google Scholar
  218. Sakthivel, S., B. Neppolian, M. Palanichamy, B. Arabindoo and V. Murugesan (2001). Photocatalytic degradation of leather dye over ZnO catalyst supported on alumina and glass surfaces. Water Science and Technology, 44(5), 211–218.Google Scholar
  219. Sakthivel, S., B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy and V. Murugesan (2003). Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Materials and Solar Cells, 77(1), 65–82.CrossRefGoogle Scholar
  220. Sakthivel, S., M.V. Shankar, M. Palanichamy, B. Arabindoo, D.W. Bahnemann and V. Murugesan (2004). Enhancement of photocatalytic activity by metal deposition: Characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Research, 38(13), 3001–3008.CrossRefGoogle Scholar
  221. Sano, T., N. Negishi, D. Mas and K. Takeuchi (2000). Photocatalytic decomposition of N2O on highly dispersed Ag+ ions on TiO2 prepared by photodeposition. Journal of Catalysis, 194(1), 71–79.CrossRefGoogle Scholar
  222. Sant, P.A. and P.V. Kamat (2002). Interparticle electron transfer between size-quantized CdS and TiO2 semiconductor nanoclusters. Physical Chemistry Chemical Physics, 4(2), 198–203.CrossRefGoogle Scholar
  223. Santato, C., M. Odziemkowski, M. Ulmann and J. Augustynski (2001). Crystallographically oriented mesoporous WO3 films: Synthesis, characterization, and applications. Journal of the American Chemical Society, 123(43), 10639–10649.CrossRefGoogle Scholar
  224. Schierbaum, K.D., U.K. Kirner, J.F. Geiger and W. Gopel (1991). Schottky-barrier and conductivity gas sensors based upon Pd∕SnO2 and Pt∕TiO2. Sensors and Actuators B-Chemical, 4(1–2), 87–94.CrossRefGoogle Scholar
  225. Sclafani, A. and J.M. Herrmann (1998). Influence of metallic silver and of platinum–silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media. Journal of Photochemistry and Photobiology A-Chemistry, 113(2), 181–188.CrossRefGoogle Scholar
  226. Serpone, N. (2006). Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? Journal of Physical Chemistry B, 110(48), 24287–24293.CrossRefGoogle Scholar
  227. Serpone, N, E. Borgarello and M. Grätzel (1984). Visible-light induced generation of hydrogen from H2S in mixed semiconductor dispersions – Improved efficiency through inter-particle electron-transfer. Journal of The Chemical Society – Chemical Communications, 6, 342–344.Google Scholar
  228. Serpone, N., D. Lawless, J. Disdier and J.M. Herrmann (1994). Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids – naked and with the lattice doped with Cr3 +, Fe3 +, and V5 + cations. Langmuir, 10(3), 643–652.CrossRefGoogle Scholar
  229. Serpone, N., D. Lawless, R. Khairutdinov and E. Pelizzetti (1995). Subnanosecond relaxation dynamics in TiO2 colloidal sols (particle sizes \(\mathrm{Rp} = 1.0 - 13.4\,\mathrm{nm}\)). Relevance to heterogeneous photocatalysis. Journal of Physical Chemistry, 99(45), 16655 –16661.Google Scholar
  230. Seven, O., B. Dindar, S. Aydemir, D. Metin, M.A. Ozinel and S. Icli (2004). Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara desert dust. Journal of Photochemistry and Photobiology A-Chemistry, 165(1–3), 103–107.CrossRefGoogle Scholar
  231. Shah, S.I., W. Li, C.P. Huang, O. Jung and C. Ni (2002). Study of Nd3 +, Pd2 +, Pt4 +, and Fe3 + dopant effect on photoreactivity of TiO2 nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 99, 6482–6486.CrossRefGoogle Scholar
  232. Shang, J., W.Q. Yao, Y.F. Zhu and N.Z. Wu (2004). Structure and photocatalytic performances of glass/SnO2 ∕ TiO2 interface composite film. Applied Catalysis A-General, 257(1), 25–32.CrossRefGoogle Scholar
  233. Sharma, R.K. and M.C. Bhatnagar (1999). Improvement of the oxygen gas sensitivity in doped TiO2 thick films. Sensors and Actuators B-Chemical, 56(3), 215–219.CrossRefGoogle Scholar
  234. Shi, Q., D. Yang, Z.Y. Jiang and J. Li (2006). Visible-light photocatalytic regeneration of NADH using p-doped TiO2 nanoparticles. Journal of Molecular Catalysis B-Enzymatic, 43(1–4), 44–48.CrossRefGoogle Scholar
  235. Shigesato, Y. (1991). Photochromic properties of amorphous WO3 films. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes and Review Papers, 30(7), 1457–1462.Google Scholar
  236. Siemon, U., D. Bahnemann, J.J. Testa, D. Rodriguez, M.I. Litter and N. Bruno (2002). Heterogeneous photocatalytic reactions comparing TiO2 and Pt∕TiO2. Journal of Photochemistry and Photobiology A-Chemistry, 148(1–3), 247–255.CrossRefGoogle Scholar
  237. So, W.W. K.J. Kim and S.J. Moon (2004). Photo-production of hydrogen over the CdS–TiO2 nano-composite particulate films treated with TiCl4. International Journal of Hydrogen Energy, 29(3), 229–234.Google Scholar
  238. Sonawane, R.S. and M.K. Dongare (2006). Sol–gel synthesis of Au∕TiO2 thin films for photocatalytic degradation of phenol in sunlight. Journal of Molecular Catalysis A-Chemical, 243(1), 68–76.CrossRefGoogle Scholar
  239. Spanhel, L., H. Weller and A. Henglein (1987). Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles. Journal of the American Chemical Society, 109, 6632–6635.Google Scholar
  240. Sreethawong, T., Y. Suzuki and S. Yoshikawa (2006). Platinum-loaded mesoporous titania by single-step sol–gel process with surfactant template: Photocatalytic activity for hydrogen evolution. Comptes Rendus Chimie, 9(2), 307–314.CrossRefGoogle Scholar
  241. Srinivasan, S., J. Wade and E.K. Stefanakos (2006). Visible light photocatalysis via CdS∕TiO2 nanocompositematerials. Journal of Nanomaterials, 2006, 87326(1–7).Google Scholar
  242. Stathatos, E. and P. Lianos (2000). Photocatalytically deposited silver nanoparticles on mesoporous TiO2 films. Langmuir, 16(5), 2398–2400.CrossRefGoogle Scholar
  243. Studenikin, S.A., N. Golego and M. Cocivera (1998). Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. Journal of Applied Physics, 84(4), 2287–2294.CrossRefGoogle Scholar
  244. Su, L.Y., J.H. Fang and Z.H. Lu (1997). Photochromic and photoelectrochemical behavior of thin semiconductor WO3 films. Materials Chemistry and Physics, 51(1), 85–87.CrossRefGoogle Scholar
  245. Subramanian V., E.E. Wolf and P.V. Kamat (2003). Influence of metal/metal ion concentration on the photocatalytic activity of TiO2–Au composite nanoparticles. Langmuir, 19(2), 469–474.CrossRefGoogle Scholar
  246. Subramanian, V., E.E. Wolf and P.V. Kamat (2004). Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration. Journal of the American Chemical Society, 126(15), 4943–4950.Google Scholar
  247. Sun, B., A.V. Vorontsov and P.G. Smirniotis (2003). Role of platinum deposited on TiO2 in phenol photocatalytic oxidation. Langmuir, 19(8), 3151–3156.CrossRefGoogle Scholar
  248. Sung-Suh, H.M., J.R. Choi, H.J. Hah, S.M. Koo and Y.C. Bae (2004). Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. Journal of Photochemistry and Photobiology A-Chemistry, 163(1–2), 37–44.CrossRefGoogle Scholar
  249. Tada, H., K. Teranishi and S. Ito (1999). Additive effect of sacrificial electron donors on Ag∕TiO2 photocatalytic reduction of bis(2-dipyridyl)disulfide to 2-mercaptopyridine in aqueous media. Langmuir, 15(20), 7084–7087.CrossRefGoogle Scholar
  250. Tada, H., K. Teranishi, Y. Inubushi and S. Ito (2000). Ag nanocluster loading effect an TiO2 photocatalytic reduction of bis(2-dipyridyl)disulfide to 2-mercaptopyridine by H2O. Langmuir, 16(7), 3304–3309.CrossRefGoogle Scholar
  251. Tada, H., T. Ishida, A. Takao and S. Ito (2004). Drastic enhancement of TiO2-photocatalyzed reduction of nitrobenzene by loading Ag clusters. Langmuir, 20(19), 7898–7900.CrossRefGoogle Scholar
  252. Tada, H., T. Mitsui, T. Kiyonaga, T. Akita and K. Tanaka (2006). All-solid-state z-scheme in \({\mathrm{CdS{ - }Au{ - }TiO}}_{2}\) three-component nanojunction system. Nature Materials, 5(10), 782–786.CrossRefGoogle Scholar
  253. Takeshita, K., A. Yamashita, T. Ishibashi, H. Onishi, K. Nishijima and T. Ohno (2006). Transient IR absorption study of charge carriers photogenerated in sulfur-doped TiO2. Journal of Photochemistry and Photobiology A-Chemistry, 177(2–3), 269–275.CrossRefGoogle Scholar
  254. Tan, T.T.Y., C.K. Yip, D. Beydoun and R. Amal (2003). Effects of nano-Ag particles loading on TiO2 photocatalytic reduction of selenate ions. Chemical Engineering Journal, 95(1–3), 179–186.CrossRefGoogle Scholar
  255. Tang, J., Y.Y. Wu, E.W. McFarland and G.D. Stucky (2004). Synthesis and photocatalytic properties of highly crystalline and ordered mesoporous TiO2 thin films. Chemical Communications 2004(14), 1670–1671.CrossRefGoogle Scholar
  256. Teoh, W.Y., R. Amal, L. Madler and S.E. Pratsinis (2007). Flame sprayed visible light-active \({\mathrm{Fe{ - }TiO}}_{2}\) for photomineralisation of oxalic acid. Catalysis Today, 120(2), 203–213.CrossRefGoogle Scholar
  257. Tian, F.H. and C.B. Liu (2006). DFT description on electronic structure and optical absorption properties of anionic s-doped anatase TiO2. Journal of Physical Chemistry B, 110(36), 17866–17871.CrossRefGoogle Scholar
  258. Tian, Y. and T. Tatsuma (2005). Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. Journal of the American Chemical Society, 127(20), 7632–7637.CrossRefGoogle Scholar
  259. Tristao, J.C., F. Magalhaes, P. Corio and M.T.C. Sansiviero (2006). Electronic characterization and photocatalytic properties of CdS∕TiO2 semiconductor composite. Journal of Photochemistry and Photobiology A-Chemistry, 181(2–3), 152–157.CrossRefGoogle Scholar
  260. Tsuge, Y., K. Inokuchi, K. Onozuka, O. Shingo, S. Sugi, M. Yoshikawa and S. Shiratori (2006). Fabrication of porous TiO2 films using a spongy replica prepared by layer-by-layer self-assembly method: Application to dye-sensitized solar cells. Thin Solid Films, 499(1–2), 396–401.CrossRefGoogle Scholar
  261. Uchida, H., S. Katoh and M. Watanabe (1998). Photocatalytic degradation of trichlorobenzene using immobilized TiO2 films containing poly(tetrafluoroethylene) and platinum metal catalyst. Electrochimica Acta, 43(14–15), 2111–2116.CrossRefGoogle Scholar
  262. Umebayashi, T., T. Yamaki, H. Itoh and K. Asai (2002). Band gap narrowing of titanium dioxide by sulfur doping. Applied Physics Letters, 81, 454–456.CrossRefGoogle Scholar
  263. Umebayashi, T., T. Yamaki, T. Sumita, S. Yamamoto, S. Tanaka and K. Asai (2003a). UV-ray photoelectron and ab initio band calculation studies on electronic structures of Cr- or Nb-ion implanted titanium dioxide. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 206, 264–267.CrossRefGoogle Scholar
  264. Umebayashi, T., T. Yamaki, S. Tanaka and K. Asai (2003b). Visible light-induced degradation of methylene blue on S-doped TiO2. Chemistry Letters, 32(4), 330–331.CrossRefGoogle Scholar
  265. Vinodgopal, K. and P.V. Kamat (1995). Enhanced rates of photocatalytic degradation of an azo-dye using SnO2 ∕ TiO2 coupled semiconductor thin-films. Environmental Science and Technology, 29(3), 841–845.CrossRefGoogle Scholar
  266. Vinodgopal, K., I. Bedja and P.V. Kamat (1996). Nanostructured semiconductor films for photocatalysis. Photoelectrochemical behavior of SnO2 ∕ TiO2 composite systems and its role in photocatalytic degradation of a textile azo dye. Chemistry of Materials, 8(8), 2180–2187.Google Scholar
  267. Wan, Q., Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li and C.L. Lin (2004). Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Applied Physics Letters, 84(18), 3654–3656.CrossRefGoogle Scholar
  268. Wang, H. and J.P. Lewis (2006). Second-generation photocatalytic materials: Anion-doped TiO2. Journal of Physics-Condensed Matter, 18(2), 421–434.CrossRefGoogle Scholar
  269. Wang, Y.Q., H.M. Cheng, Y.Z. Hao, J.M. Ma, W.H. Li and S.M. Cai (1999). Photoelectrochemical properties of metal-ion-doped TiO2 nanocrystalline electrodes. Thin Solid Films, 349(1–2), 120–125.CrossRefGoogle Scholar
  270. Wang, C.Y., D.W. Bahnemann and J.K. Dohrmann (2000a). A novel preparation of iron-doped TiO2 nanoparticles with enhanced photocatalytic activity. Chemical Communications 2000(16), 1539–1540.CrossRefGoogle Scholar
  271. Wang, Y.Q., H.M. Cheng, L. Zhang, Y.Z. Hao, J.M. Ma, B. Xu and W.H. Li (2000b). The preparation, characterization, photoelectrochemical and photocatalytic properties of lanthanide metal-ion-doped TiO2 nanoparticles. Journal of Molecular Catalysis A-Chemical, 151(1–2), 205–216.CrossRefGoogle Scholar
  272. Wang, C., D.W. Bahnemann and J.K. Dohrmann (2001a). Determination of photonic efficiency and quantum yield of formaldehyde formation in the presence of various TiO2 photocatalysts. Water Science and Technology, 44(5), 279–286.Google Scholar
  273. Wang, J.A., R. Limas-Ballesteros, T. Lopez, A. Moreno, R. Gomez, O. Novaro and X. Bokhimi (2001b). Quantitative determination of titanium lattice defects and solid-state reaction mechanism in iron-doped TiO2 photocatalysts. Journal of Physical Chemistry B, 105(40), 9692–9698.CrossRefGoogle Scholar
  274. Wang, C., J.C. Zhao, X.M. Wang, B.X. Mai, G.Y. Sheng, P. Peng and J.M. Fu (2002a). Preparation, characterization and photocatalytic activity of nano-sized ZnO∕SnO2 coupled photocatalysts. Applied Catalysis B-Environmental, 39(3), 269–279.CrossRefGoogle Scholar
  275. Wang, C.Y., J. Rabani, D.W. Bahnemann and J.K. Dohrmann (2002b). Photonic efficiency and quantum yield of formaldehyde formation from methanol in the presence of various TiO2 photocatalysts. Journal of Photochemistry and Photobiology A-Chemistry, 148(1–3), 169–176.CrossRefGoogle Scholar
  276. Wang, C.Y., C. Böttcher, D.W. Bahnemann and J.K. Dohrmann (2003a). A comparative study of nanometer sized Fe(III)-doped TiO2 photocatalysts: Synthesis, characterization and activity. Journal of Materials Chemistry, 13(9), 2322–2329.CrossRefGoogle Scholar
  277. Wang, P., S.M. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, T. Sekiguchi and M. Grätzel (2003b). A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Materials, 2(6), 402–407.CrossRefGoogle Scholar
  278. Wang, C.Y., R. Pagel, D.W. Bahnemann and J.K. Dohrmann (2004a). Quantum yield of formaldehyde formation in the presence of colloidal TiO2-based photocatalysts: Effect of intermittent illumination, platinization, and deoxygenation. Journal of Physical Chemistry B, 108(37), 14082–14092.CrossRefGoogle Scholar
  279. Wang, X.D., C.J. Summers and Z.L. Wang (2004b). Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Letters, 4(3), 423–426.CrossRefGoogle Scholar
  280. Wang, Y.M., S.W. Liu, M.K. Lu S.F. Wang, F. Gu, X.Z. Gai, X.P. Cui and J. Pan (2004c). Preparation and photocatalytic properties of Zr4 +-doped TiO2 nanocrystals. Journal of Molecular Catalysis A-Chemical, 215(1–2), 137–142.CrossRefGoogle Scholar
  281. Wang, C.Y., R. Pagel, J.K. Dohrmann and D.W. Bahnemann (2006a). Antenna mechanism and deaggregation concept: Novel mechanistic principles for photocatalysis. Comptes Rendus Chimie, 9(5–6), 761–773.CrossRefGoogle Scholar
  282. Wang, G., W. Lu, J.H. Li, J. Choi, Y.S. Jeong, S.Y. Choi, J.B. Park, M.K. Ryu and K. Lee (2006b). V-shaped tin oxide nanostructures featuring a broad photocurrent signal: An effective visible-light-driven photocatalyst. Small, 2(12), 1436–1439.CrossRefGoogle Scholar
  283. Wang, J.Y., Z.H. Liu, Q. Zheng, Z.K. He and R.X. Cai (2006c). Preparation of photosensitized nanocrystalline TiO2 hydrosol by nanosized cds at low temperature. Nanotechnology, 17(18), 4561–4566.CrossRefGoogle Scholar
  284. Wang, X.H., J.G. Li, H. Kamiyama, Y. Moriyoshi and T. Ishigaki (2006d). Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron(III)-doped TiO2 nanopowders under UV and visible light irradiation. Journal of Physical Chemistry B, 110(13), 6804–6809.CrossRefGoogle Scholar
  285. Warrier, M., M.K.F. Lo, H. Monbouquette and M.A. Garcia-Garibay (2004). Photocatalytic reduction of aromatic azides to amines using CdS and CdSe nanoparticles. Photochemical and Photobiological Sciences, 3(9), 859–863.CrossRefGoogle Scholar
  286. Weiss, H., A. Fernandez and H. Kisch (2001). Electronic semiconductor–support interaction – a novel effect in semiconductor photocatalysis. Angewandte Chemie-International Edition, 40(20), 3825–3827.CrossRefGoogle Scholar
  287. Weisz, A.D., A.E. Regazzoni and M.A. Blesa (2001). ATR-FTIR study of the stability trends of carboxylate complexes formed on the surface of titanium dioxide particles immersed in water. Solid State Ionics, 143(1), 125–130.CrossRefGoogle Scholar
  288. Weisz, A.D., A.E. Regazzoni and M.A. Blesa (2007). Stability of surface complexes formed at the TiO2/water interface. Croatica Chemica Acta, 80(3–4), 325–332.Google Scholar
  289. Wilke, K. and H.D. Breuer (1999). The influence of transition metal doping on the physical and photocatalytic properties of titania. Journal of Photochemistry and Photobiology A-Chemistry, 121(1), 49–53.CrossRefGoogle Scholar
  290. Wong, E.M. and P.C. Searson (1999). ZnO quantum particle thin films fabricated by electrophoretic deposition. Applied Physics Letters, 74(20), 2939–2941.CrossRefGoogle Scholar
  291. Wood, A., M. Giersig and P. Mulvaney (2001). Fermi level equilibration in quantum dot-metal nanojunctions. Journal of Physical Chemistry B, 105(37), 8810–8815.CrossRefGoogle Scholar
  292. Wu, L., J.C. Yu and X. Fu (2006). Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation. Journal of Molecular Catalysis AChemical, 244(1–2), 25–32.CrossRefGoogle Scholar
  293. Xin, B.F., L.Q. Jing, Z.Y. Ren, B.Q. Wang and H.G. Fu (2005). Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2. Journal of Physical Chemistry B, 109(7), 2805–2809.CrossRefGoogle Scholar
  294. Xu, N., M. Sun, Y.W. Cao, J.N. Yao and E.G. Wang (2000). Influence of pH on structure and photochromic behavior of nanocrystalline WO3 films. Applied Surface Science, 157(1–2), 81–84.CrossRefGoogle Scholar
  295. Xu A.W., Y. Gao and H.Q. Liu (2002). The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. Journal of Catalysis, 207(2), 151–157.CrossRefGoogle Scholar
  296. Yamamoto, T., F. Yamashita, I. Tanaka, E. Matsubara and A. Muramatsu (2004). Electronic states of sulfur doped TiO2 by first principles calculations. Materials Transactions, 45, 1987–1990.CrossRefGoogle Scholar
  297. Yamashita, H., M. Harada, J. Misaka, M. Takeuchi, B. Neppolian and M. Anpo (2003). Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catalysis Today, 84(3–4), 191–196.CrossRefGoogle Scholar
  298. Yang, Y., X.J. Li, J.T. Chen and L.Y. Wang (2004). Effect of doping mode on the photocatalytic activities of Mo∕TiO2. Journal of Photochemistry and Photobiology A-Chemistry, 163(3), 517–522.CrossRefGoogle Scholar
  299. Yao, J.N., K. Hashimoto and A. Fujishima (1992). Photochromism induced in an electrolytically pretreated MoO3 thin-film by visible-light. Nature, 355(6361), 624–626.CrossRefGoogle Scholar
  300. Yatmaz, H.C., A. Akyol and M. Bayramoglu (2004). Kinetics of the photocatalytic decolorization of an azo reactive dye in aqueous ZnO suspensions. Industrial and Engineering Chemistry Research, 43(19), 6035–6039.CrossRefGoogle Scholar
  301. Yeber, M.C., J. Rodriguez, J. Freer, N. Duran and H.D. Mansilla (2000). Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO. Chemosphere, 41(8), 1193–1197.CrossRefGoogle Scholar
  302. Yin, H.B., Y. Wada, T. Kitamura, T. Sakata, H. Mori and S. Yanagida (2001). Enhanced photocatalytic dechlorination of 1,2,3,4-tetrachlorobenzene using nanosized CdS∕TiO2 hybrid photocatalyst under visible light irradiation. Chemistry Letters (4), 334–335.CrossRefGoogle Scholar
  303. Yoshihara, T., R. Katoh, A. Furube, Y. Tamaki, M. Murai, K. Hara, S. Murata, H. Arakawa and M. Tachiya (2004). Identification of reactive species in photoexcited nanocrystalline TiO2 films by wide-wavelength-range (400–2,500 nm) transient absorption spectroscopy. Journal of Physical Chemistry B, 108(12), 3817–3823.CrossRefGoogle Scholar
  304. Yu, J.G. and X.J. Zhao (2000). Ag-doped TiO2 composite thin films prepared by sol–gel and its photocatalytic activity. Rare Metal Materials and Engineering, 29(6), 390–393.Google Scholar
  305. Yu, J.C., J.G. Yu and J.C. Zhao (2002a). Enhanced photocatalytic activity of mesoporous and ordinary TiO2 thin films by sulfuric acid treatment. Applied Catalysis B-Environmental, 36(1), 31–43.CrossRefGoogle Scholar
  306. Yu, J.G., J.C. Yu, B. Cheng and X.J. Zhao (2002b). Photocatalytic activity and characterization of the sol–gel derived Pb-doped TiO2 thin films. Journal of Sol–Gel Science and Technology, 24(1), 39–48.Google Scholar
  307. Yu, J.G., J.C. Yu, W.K. Ho and Z.T. Jiang (2002c). Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films. New Journal of Chemistry, 26(5), 607–613.CrossRefGoogle Scholar
  308. Yu, J.C., L. Wu, J. Lin, P. Li and Q. Li (2003). Microemulsion-mediated solvothermal synthesis of nanosized CdS-sensitized TiO2 crystalline photocatalyst. Chemical Communications, 9(13), 1552–1553.CrossRefGoogle Scholar
  309. Yu, J.C., W.K. Ho, J.G. Yu, H. Yip, P.K. Wong and J.C. Zhao (2005a). Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environmental Science and Technology, 39(4), 1175–1179.CrossRefGoogle Scholar
  310. Yu, J.G., J.F. Xiong, B. Cheng and S.W. Liu (2005b). Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Applied Catalysis B-Environmental, 60(3–4), 211–221.CrossRefGoogle Scholar
  311. Yu, J.G., M.H. Zhou, H.G. Yu, Q.J. Zhang and Y. Yu (2005c). Enhanced photoinduced super-hydrophilicity of the sol–gel-derived TiO2 thin films by Fe-doping. Materials Chemistry and Physics, 95(2–3), 193–196.Google Scholar
  312. Yu, J.G., H.G. Yu, C.H. Ao, S.C. Lee, J.C. Yu and W.K. Ho (2006). Preparation, characterization and photocatalytic activity of in situ Fe-doped TiO2 thin films. Thin Solid Films, 496(2), 273–280.CrossRefGoogle Scholar
  313. Yuan Z.H., J.H. Jia and L.D. Zhang (2002). Influence of Co-doping of Zn(II) plus Fe(III) on the photocatalytic activity of TiO2 for phenol degradation. Materials Chemistry and Physics, 73(2–3), 323–326.CrossRefGoogle Scholar
  314. Zang, L., C. Lange, I. Abraham, S. Storck, W.F. Maier and H. Kisch (1998). Amorphous microporous titania modified with platinum(IV) chloride – a new type of hybrid photocatalyst for visible light detoxification. Journal of Physical Chemistry B, 102(52), 10765–10771.CrossRefGoogle Scholar
  315. Zhang, L.Z. and J.C. Yu (2005). A simple approach to reactivate silver-coated titanium dioxide photocatalyst. Catalysis Communications, 6(10), 684–687.CrossRefGoogle Scholar
  316. Zhang, M.L., T.C. An, X.H. Hu, C. Wang, G.Y. Sheng and J.M. Fu (2004). Preparation and photocatalytic properties of a nanometer \({\mbox{ ZnO\textendash SnO}}_{2}\) coupled oxide. Applied Catalysis A-General, 260(2), 215–222.CrossRefGoogle Scholar
  317. Zhang, X.W., M.H. Zhou and L.C. Lei (2006). Co-deposition of photocatalytic Fe doped TiO2 coatings by MOCVD. Catalysis Communications, 7(7), 427–431.CrossRefGoogle Scholar
  318. Zhao, G., H. Kozuka and T. Yoko (1996). Sol–gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles. Thin Solid Films, 277(1–2), 147–154.CrossRefGoogle Scholar
  319. Zhao, W., C.C. Chen, X.Z. Li, J.C. Zhao, H. Hidaka and N. Serpone (2002). Photodegradation of sulforhodamine-b dye in platinized titania dispersions under visible light irradiation: Influence of platinum as a functional co-catalyst. Journal of Physical Chemistry B, 106(19), 5022–5028.CrossRefGoogle Scholar
  320. Zheng, H.L., M.F. Tang, Y.K. Gong, X.J. Deng and B.H. Wu (2003). Study on preparation of lanthanum-doped TiO2 nanometer thin film materials and its photocatalytic activity. Spectroscopy and Spectral Analysis, 23(2), 246–248.Google Scholar
  321. Zhou, M.H., J.G. Yu and B. Cheng (2006). Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method. Journal of Hazardous Materials, 137(3), 1838–1847.CrossRefGoogle Scholar
  322. Zhu, J.F., Z.G. Deng, F. Chen, J.L. Zhang, H.J. Chen, M. Anpo, J.Z. Huang and L.Z. Zhang (2006). Hydrothermal doping method for preparation of \({\mathrm{Cr}}^{3+} -{\mathrm{TiO}}_{2}\) photocatalysts with concentration gradient distribution of Cr3 +. Applied Catalysis B-Environmental, 62(3–4), 329–335.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Huanjun Zhang
  • Guohua Chen
  • Detlef W. Bahnemann
    • 1
  1. 1.Institut für Technische ChemieLeibniz Universität HannoverHannoverGermany

Personalised recommendations