Skip to main content

Wet Electrolytic Oxidation of Organics and Application for Sludge Treatment

  • Chapter
  • First Online:
Electrochemistry for the Environment
  • 4891 Accesses

Abstract

Wet electrolytic oxidation (WEO) is electrochemical oxidation conducted at subcritical water temperature and pressure. Under these conditions, the electrolytic reaction of water is very different from the reaction usually seen in water electrolysis. Electrolysis of an aqueous NaCl solution at 250°C proceeds without the evolution of any oxygen, chlorine or even hydrogen. Rapid oxidation of organics to CO2 occurs in WEO with the production of hydrogen. Further addition of an oxidizer enhances the electrochemical oxidation of organics with the suppression of hydrogen evolution. AOX compounds found in usual electrooxidation are not formed in WEO treatment. When WEO is applied to sludge treatment, colors are drastically reduced and there is an increase in the yield of organic acids. The biodegradability increases by up to 50% and the treated water shows higher methane yields during anaerobic fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bard, A. J., Flarshein, W. M. and Johnston, K. P. (1988) High-pressure electrochemical oxidation of benzene at a lead dioxide electrode in aqueous bisulfate solution at 25°C to 250°C. J. Electrochem. Soc. 135, 1939–1944.

    Article  CAS  Google Scholar 

  • Cabrera, C. R. and Bard A. J. (1989) Electrochemistry in near-critical and supercritical fluids. Part 8. Methyl viologen, decamethylferrocene, Osbpy3 2 + and ferrocene in acetonitrile and the effect of pressure on diffusion coefficients under supercritical conditions. J. Electroanal. Chem. 273, 147–160.

    Article  CAS  Google Scholar 

  • Cabrera, C. R. Garcia, E. and Bard, A. J. (1989) Electrochemistry in near-critical and supercritical fluids. Part 7. SO2. J. Electroanal. Chem. 260, 457–460.

    Article  CAS  Google Scholar 

  • Cao, X. Q., Chen, J., Cao, Y. L., Zhu, J. Y. and Hao, X. D. (2006) Experimental study on sludge reduction by ultrasound. Water Sci Technol 54, 87–93.

    CAS  Google Scholar 

  • Comninellis, C. and Nerini, A. (1995) Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. J. Appl. Electrochem. 25, 23–28.

    Article  CAS  Google Scholar 

  • Crooks R. M. and Bard A. J. (1987) Electrochemistry in near-critical and supercritical fluids. 4. Nitrogen heterocycles, nitrobenzene and solvated electrons in ammonia at temperature to 150°C J. Phys. Chem. 91, 1274–1284.

    Article  CAS  Google Scholar 

  • Crooks, R. M. and Bard, A. J. (1988a) Electrochemistry in near-critical and supercritical fluids. Part VI. The electrochemistry of ferrocene and phenazine in acetonitrile between 25 and 300°C. J. Electroanal. Chem. 243, 117–131.

    Article  CAS  Google Scholar 

  • Crooks, R. M. and Bard, A. J. (1988b) Electrochemistry in near-critical and supercritical fluids. Part V. The dimerization of quinoline and acridine radical anions in ammonia from 70°C to 150°C. J. Electroanal. Chem. 240, 253–279.

    Article  CAS  Google Scholar 

  • Crooks, R. M., Fan, F. F. and Bard, A. J. (1984) Electrochemistry in near-critical and supercritical fluids. 1. Ammonia J. Am. Chem. Soc. 106, 6851–6852.

    Article  CAS  Google Scholar 

  • Flarshein, W. M. and Johnston, K. (1988) High-pressure electrochemical oxidation of benzene at a lead dioxide electrode in aqueous bisulfate solution at 25°C to 250°C. J. Electrochem. Soc.: Electrochem Sci Technol 135, 1939–1944.

    Google Scholar 

  • Flarshein, W. M., Tsou, Y., Trachtenberg, L., Johnston, K. P. and Bard, A. J. (1986) Electrochemistry in near-critical and supercritical fluids. 3. Studies of Br, I, and hydroquinone in aqueous solution. J. Phys. Chem. 90, 3857–3862.

    Article  Google Scholar 

  • Goto, M., Sasaki, M., Yamamoto, K., Kuroda, T. (2004) Hydrothermal electrolysis of bio-related compounds, Proceedings of Third International Meeting on High Pressure Chemical Engineering.

    Google Scholar 

  • Hogan, F., Mormede, S., Clark, P. and Crane, M. (2004) Ultrasonic sludge treatment for enhanced anaerobic digestion. Water Sci. Technol. 50, 25–32.

    CAS  Google Scholar 

  • Lendormi, T., Prevot, C., Doppenberg, F., Foussard, J. N. and Debellefontaine, H. (2001) Subcritical wet oxidation of municipal sewage sludge: comparison of batch and continuous experiments. Water Sci. Technol. 44, 161–169.

    CAS  Google Scholar 

  • Liu, C., Snyder, S. R. and Bard, A. J. (1997) Electrochemistry in near-critical and supercritical fluids. 9. Improved apparatus for water systems \(\left (2{3}^{\circ }\mathrm{C}{ - }38{5}^{\circ }\mathrm{C}\right )\). The oxidation of hydroquinone and iodide. J. Phys. Chem. 101, 1180–1185.

    CAS  Google Scholar 

  • MacDonalds, A. C., Fan, F. F. and Bard, A. J. (1986) Electrochemistry in near-critical and supercritical fluids. 2. Water. Experimental techniques and copper (II) system. J. Phys. Chem. 90, 196–202.

    Article  Google Scholar 

  • Rai, C. L., Struenkmann, G., Mueller, J. and Rao, P. G. (2004) Influence of ultrasonic disintegration on sludge growth reduction and its estimation by respirometry. Environ. Sci. Technol 38, 5779–5785.

    Article  CAS  Google Scholar 

  • Sakai, Y., Fuakase, T., Yasui, H. and Shibata, M. (1997) An activated sludge process without excess sludge production. Water Sci. Technol. 36, 163–170.

    Article  CAS  Google Scholar 

  • Saktaywin, W., Tsuno, H., Nagare, H., Soyama, T. and Weerapakkaroon (2005) Advanced sewage treatment process with excess sludge reduction and phosphorus recovery. Water Res 39, 902–910.

    Google Scholar 

  • Saktaywin, W., Tsuno, H., Nagare and Soyama, T. (2006) Operation of a new sewage treatment process with technologies of excess sludge reduction and phosphorus recovery. Water Sci. Technol. 53, 217–227.

    Google Scholar 

  • Sasaki, M., Yamamoto, K. and Goto M. (2007) Reaction mechanism and pathway for hydrothermal electrolysis of organic compounds J Mater Cycles Waste Manage 9(1), 40–46.

    CAS  Google Scholar 

  • Serikawa, R. M., Isaka, M., Su, Q., Usui, T., Nishimura, T., Sato, H. and Hamada, X. (2000) Wet electrolytic oxidation of organic pollutants in wastewater treatment. J. Appl. Electrochem. 30, 875–883.

    Article  CAS  Google Scholar 

  • Shananblesh, A. and Shimizu, Y. (2000) Treatment of sewage sludge using hydrothermal oxidation-technology application challenges. Water Sci. Technol. 41, 85–92.

    Google Scholar 

  • Ternes, T. A., Joss, A. and Siegrist H. (2004) Scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environ. Sci. Technol. 38, 393A–399A.

    Article  Google Scholar 

  • Yamazaki, N., Yasui, T. and Matsuoka, K. (1980) Hydrothermal decomposition of polychlorinated biphenils. Environ. Sci. Technol. 14, 550–552.

    Article  Google Scholar 

Download references

Acknowledgment

The author acknowledges the New Energy and Industrial Technology Development Organization (NEDO) of Japan for their financial support related to the treatment of organic sludge by WEO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto M. Serikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Serikawa, R.M. (2010). Wet Electrolytic Oxidation of Organics and Application for Sludge Treatment. In: Comninellis, C., Chen, G. (eds) Electrochemistry for the Environment. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68318-8_15

Download citation

Publish with us

Policies and ethics