Principles and Applications of Solid Polymer Electrolyte Reactors for Electrochemical Hydrodehalogenation of Organic Pollutants

  • Hua Cheng
  • Keith Scott


The ability to re-cycle halogenated liquid wastes, based on electrochemical hydrodehalogenation (EHDH), will provide a significant economic advantage and will reduce the environmental burden in a number of processes. The use of a solid polymer electrolyte (SPE) reactor is very attractive for this purpose. Principles and features of electrochemical HDH technology and SPE EHDH reactors are described. The SPE reactor enables selective dehalogenation of halogenated organic compounds in both aqueous and non-aqueous media with high current efficiency and low energy consumption. The influence of operating conditions, including cathode material, current density, reactant concentration and temperature on the HDH process and its stability are examined.


Current Efficiency Catalyst Layer Solid Polymer Electrolyte Moderate Current Density High Current Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the United Kingdom Engineering and Physical Sciences Research Council (EPSRC) for funding. The work was performed in research facilities provided through an EPSRC/HEFCE Joint Infrastructure Fund award (No. JIF4NESCEQ).


  1. Appleton, E. L. (1996) A nickel-iron wall against contaminated groundwater. Environ. Sci. Technol. 30, 536A–539A.CrossRefGoogle Scholar
  2. Aramendia, M. A., Borau, V., Garcia, I. M., Jimenez, C., Marinas, J. M. and Urbano, F. J. (1999) Influence of the reaction conditions and catalytic properties on the liquid-phase hydrobromination of bromobenzene over palladium supported catalysts: activity and deactivation. Appl. Catal. B: Environ. 20, 101–110.CrossRefGoogle Scholar
  3. Balko, E. N., Przybylski, E. and Trentini, F. V. (1993) Exhaustive liquid-phase catalytic hydrodehalogenation of chlorobenzenes. Appl. Catal. B: Environ. 2, 1–8.CrossRefGoogle Scholar
  4. Bonfatti, F., Ferro, S., Lavezzo, F., Malacarne, M., Lodi, G. and Battisti, A. De (1999) Electrochemical incineration of glucose as a model organic substrate. I. Role of the electrode material. J. Electrochem. Soc. 146, 2175–2179.Google Scholar
  5. Chen, G., Wang, Z. and Xia, D. (2004) Electrochemically reductive dechlorination of micro amounts of 2,4,6-trichlorophenol in aqueous medium on molybdenum oxide containing supported palladium. Electrochim. Acta 50, 933–937.CrossRefGoogle Scholar
  6. Cheng, I. F., Fernando, Q. and Korte, N. (1997) Electrochemical dechlorination of 4-chlorophenol to phenol. Environ. Sci. Technol. 31, 1074–1078.CrossRefGoogle Scholar
  7. Cheng, H., Scott, K. and Christensen, P. A. (2001) Electrochemical HDH of chlorinated organics. In: E. W. Brooman, C. M. Doyle, C. Cominellis and J. Winnick (Eds.), Energy and Electrochemical Processes for a Cleaner Environment, PV 2001–23, Proceedings of the International Symposium held during the 2001 Joint International Meeting of the ECS and ISE in San Francisco, CA, Fall 2001, pp. 45–58.Google Scholar
  8. Cheng, H., Scott, K. and Christensen, P. A. (2003a) Electrochemical hydrodechlorination of chlorinated phenols in aqueous solutions – Part I. Material aspects. J. Electrochem. Soc. 150, D17–D24.Google Scholar
  9. Cheng, H., Scott, K. and Christensen, P. A. (2003b) Electrochemical hydrodechlorination of chlorinated phenols in aqueous solutions – Part II. Effect of operating parameters. J. Electrochem. Soc. 150, D25–D29.Google Scholar
  10. Cheng, H., Scott, K. and Christensen, P. A. (2003c) Hydrodehylogenation of 2, 4-dibromophenol by electrochemical reduction. J. Appl. Electrochem. 33, 893–899.CrossRefGoogle Scholar
  11. Cheng, H., Scott, K. and Christensen, P. A. (2003d) Electrolysis cell and method, The UK patent application number: 0210017.0 (Application ref. RJW/NP5966247), 2003.Google Scholar
  12. Cheng, H., Scott, K. and Christensen, P. A. (2004a) Electrochemical hydrodehalogenation of 2, 4-dichlorophenol in paraffin oil and comparison with aqueous systems. J. Electroanal. Chem. 566, 131–138.CrossRefGoogle Scholar
  13. Cheng, H., Scott, K. and Christensen, P. A. (2004b) Feasibility study of electrochemical hydrodehalogenation of 2, 4-dibromophenol in a paraffin oil. Electrochim. Acta 49, 729–735.CrossRefGoogle Scholar
  14. Cheng, H., Scott, K. and Christensen, P. A. (2004c) Engineering aspects of electrochemical hydrodehalogenation of 2, 4-chlorophenol in a solid polymer electrolyte reactor. Appl. Catal. A: General 261, 1–6.CrossRefGoogle Scholar
  15. Cheng, H., Scott, K. and Christensen, P. A. (2004d) Influence of reactor design on electrochemical hydrodehalogenation of 2, 4-dibromophenol in a paraffin oil – cathode effect. Environ. Sci. Technol. 38, 638–642.CrossRefGoogle Scholar
  16. Cheng, H., Scott, K. and Christensen, P. A. (2004e) Design and operation of a solid polymer electrolyte reactor for electrochemical hydrodehalogenation. Chem. Eng. J. 102, 161–170.CrossRefGoogle Scholar
  17. Chetty, R., Christensen, P. A. and Golding, B. T. (2003) In situ FTIR studies on the electrochemical reduction of halogenated phenols. Chem. Commun. (8), 984–985.Google Scholar
  18. Chetty, R., Christensen, P. A., Golding, B. T. and Scott, K. (2004) Fundamental and applied studies on the electrochemical hydrodehalogenation of halogenated phenols at a palladised titanium electrode. Appl. Catal. A: General 271, 185–194.CrossRefGoogle Scholar
  19. Connors, T. F. and Rusling, J. F. (1983) Removal of chloride from 4-chlorobiphenyl and 4, 4-dichlorobiphenyl by electrocatalytic reduction. J. Electrochem. Soc. 130, 1120–1121.CrossRefGoogle Scholar
  20. Criddle, C. S. and McCarty, P. L. (1991) Electrolytic model system for reductive dehalogenation in aqueous environments. Environ. Sci. Technol. 25, 973–978.CrossRefGoogle Scholar
  21. Dabo, P., Cyr, A., Laplante, F., Jean, F., Menard, H. and Lessard, J. (2000) Electrocatalytic dehydrochlorination of pentachlorophenol to phenol or cyclohexanol. Environ. Sci. Technol. 34, 1265–1268.CrossRefGoogle Scholar
  22. Fennelly, J. P. and Roberts, A. L. (1998) Reaction of 1,1,1-trichloroethane with zero-valent metals and bimetallic reductants. Environ. Sci. Technol. 32, 1980–1988.CrossRefGoogle Scholar
  23. Grittini, C., Macomson, M., Fernando, Q. and Korte, N. (1995) Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Environ. Sci. Technol. 29, 2898–2900.CrossRefGoogle Scholar
  24. Hitchman, M. L., Spackman, R. A., Ross, N. C. and Agra, C. (1995) Disposal methods for chlorinated aromatic waste. Chem. Soc. Rev. 423–430.Google Scholar
  25. Kulikov, S. M., Plekhanov, V. P., Tsyganov, A. I., Schlimm, C. and Heitz, E. (1996) Electrochemical reductive dechlorination of chlororganic compounds on carbon cloth and metal-modified carbon cloth cathodes. Electrochim. Acta 41, 527–531.CrossRefGoogle Scholar
  26. Marrocino, J. M., Coeuret, F. and Langglois, S. (1987) A first investigation of flow-through porous electrodes made of metallic felts or foams. Electrochim. Acta 32, 1303–1309.CrossRefGoogle Scholar
  27. Matheson, L. J. and Tratnyek, P. G. (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 28, 2045–2053.CrossRefGoogle Scholar
  28. O’Hannesin, S. F. and Gillham, R. W. (1998) Long-term performance of an in situ “iron wall” for remediation of VOCs, Ground Water 36, 164–170.CrossRefGoogle Scholar
  29. Schmal, D., van Erkel, J. and van Duin, P. J. (1986) Electrochemical reduction of halogenated compounds in process waster water. Ichem. Symp. Ser. 98, 259–269.Google Scholar
  30. Tratnyek, P. G. (1996) Putting corrosion to use: remediating contaminated ground water with zero-valent metals. Chem. Ind. 499–503.Google Scholar
  31. Yak, H. K., Wenclawiak, B. W., Cheng, I. F., Doyle, J. G. and Wai, C. M. (1999) Reductive dechlorination of polychlorinated biphenyls by zerovalent iron in subcritical Water. Environ. Sci. Technol. 33, 1307–1310.CrossRefGoogle Scholar
  32. Zanaveskin, L. N., Averganov, V. A. and Treger, Y. A. (1996) Prospects for the development of methods for the processing of organohalogen waste. Characteristic features of the catalytic hydrogenolysis of halogen-containing compounds. Russ. Chem. Rev. 65, 617–624.Google Scholar
  33. Zhang, S. and Rusling, J. F. (1995) Dechlorination of polychlorinated biphenyls on soils and clay by electrolysis in a bicontinuous microemulsion. Environ. Sci. Technol. 29, 1195–1199.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Chemical Engineering and Advanced MaterialsNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations