Electroreduction of Halogenated Organic Compounds

  • Sandra Rondinini
  • Alberto Vertova


The electroreductive cleavage of the carbon–halogen bond in halogenated organic compounds has been extensively studied for more than 70 years, since it is prodromal to a large variety of synthetic applications in organic electrochemistry. Over the years the research interest have progressively included the environmental applications, since several organic halocompounds are known to have (or have had) a serious environmental impact because of their (present or past) wide use as cleaning agents, herbicides, cryogenic fluids, reagents (e.g. allyl and vinyl monomers) for large production materials, etc. Recent studies have also demonstrated the wide spread out- and in-door-presence of volatile organic halides, although at low level, in connexion with residential and non-residential (e.g. stores, restaurants and transportation) activities. In this context, the detoxification of emissions to air, water and land by the selective removal of the halogen group represents a valid treatment route, which, although not leading to the complete mineralization of the pollutants, produces less harmful streams to be easily treated by electrochemical or conventional techniques. The electroreduction process is analysed and discussed in terms of electrode material, reaction medium, cell design and operation, and of substrate classification.


Glassy Carbon Current Efficiency Hydrogen Evolution Reaction Solid Polymer Electrolyte Room Temperature Ionic Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial support of the MUR-Università degli Studi di Milano (FIRST) is gratefully acknowledged.


  1. Alatorre Ordaz, A., Manriquez Rocha, J., Acevedo Aguilar, F.J., Gutierrez Granados, S. and Bedioui, F. (2000) Electrocatalysis of the reduction of organic halide derivatives at modified electrodes coated by cobalt and iron macrocyclic complex-based films: Application to the electrochemical determination of pollutants. Analusis 28, 238–244.Google Scholar
  2. Alonso, F., Beletskaya, I.P. and Yus, M. (2002) Metal-mediated reductive hydrodehalogenation of organic halides. Chem. Rev. 102, 4009–4091.Google Scholar
  3. Andrieux, C.P. and Savéant, J.-M. (1986) Electrochemical reactions. In: Bernasconi, C.F. (Eds.) Investigations of Rates and Mechanisms of Reaction, Techniques of Chemistry, vol. 6, Ch 2.1, Wiley, New York, NY, p. 305.Google Scholar
  4. Ardizzone, S., Cappelletti, G., Mussini, P.R., Rondinini, S. and Doubova, L.M. (2002) Adsorption competition effects in the electrocatalytic reduction of organic halides on silver. J. Electroanal. Chem. 532, 285–293.Google Scholar
  5. Ardizzone, S., Cappelletti, G., Mussini, P.R., Rondinini, S. and Doubova, L.M. (2003a) Electrodeposited polycrystalline silver electrodes: Surface control for electrocatalytical studies. Russ. J. Electrochem. (translation of Elektrokhimija) 39, 170–176.Google Scholar
  6. Ardizzone, S., Cappelletti, G., Doubova, L.M., Mussini, P.R., Passeri, S. and Rondinini, S. (2003b) The role of surface morphology on the electrocatalytic reduction of organic halides on mono- and polycrystalline silver. Electrochim. Acta. 48, 3789–3796.Google Scholar
  7. Bailey, R.E. (2001) Global hexachlorobenzene emissions. Chemosphere 43, 2167–182.Google Scholar
  8. Baizer, M.M. and Chruma, J.L. (1972) Electrolytic reductive coupling. XXI. Reduction of organic halides in the presence of electrophiles. J. Org. Chem. 37, 1951–60.Google Scholar
  9. Baizer, M.M. and Wagenknecht, J.H. (1973) Electrolytic preparation of esters from organo halides. (Monsanto Co., USA) US Patent 3764492 19731009; Application: US 72–216721 19720110.Google Scholar
  10. Bard, A.J. and Faulkner, L.R. (1999) Electrochemical Methods, Wiley, New York, NY.Google Scholar
  11. Barhdadi, R., Courtinard, C., Nedelec, J.-Y. and Troupel, M. (2003) Room-temperature ionic liquids as new solvents for organic electrosynthesis. The first examples of direct or nickel-catalyzed electroreductive coupling involving organic halides. Chem. Commun. (Cambridge) 12, 1434–1435.Google Scholar
  12. Battistuzzi, G., Borsari, M. and Fontanesi, C. (1993) Theoretical study of the electroreduction of halogenated aromatic compounds. Part 2. Bromine and chlorine derivatives in different organic solvents. J. Chem. Soc. Faraday Trans. 89, 3931–3939.Google Scholar
  13. Betterton, E.A., Arnold, R.G., Kuhler, R.J. and Santo, G.A. (1995) Reductive dehalogenation of bromoform in aqueous solution. Environ. Health Perspect. 103(Suppl. 5), 89–91.Google Scholar
  14. Boronina, T., Klabunde, K.J. and Sergeev, G. (1995) Destruction of organohalides in water using metal particles: Carbon tetrachloride/water reaction with magnesium, tin, and zinc. Environ. Sci. Technol. 29, 1511–1517.Google Scholar
  15. Boye, B., Brillas, E., Marselli, B., Michaud, P.-A., Comninellis, C., Farnia, G. and Sandonà, G. (2006) Electrochemical incineration of chloromethylphenoxy herbicides in acid medium by anodic oxidation with boron-doped diamond electrode. Electrochim. Acta, 51, 2872–2880.Google Scholar
  16. Brillas, E., Boye, B., Sires, I., Garrido, J.A., Rodriguez, R.M., Arias, C., Cabot, P.-L. and Comninellis, Ch. (2004) Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode. Electrochim. Acta, 49, 4487–4496.Google Scholar
  17. Briois, C., Ryan, S., Tabor, D., Touati, A. and Gullett, B.K. (2007) Formation of polychlorinated dibenzo-p-dioxins and dibenzofurans from a mixture of chlorophenols over fly ash: Influence of water vapor. Environ. Sci. Technol. 41, 850–856.Google Scholar
  18. Brown, O.R. and Harrison, J.A. (1969) Reactions of cathodically generated radicals and anions. J. Electroanal. Chem. Int. Electrochem. 21, 387–407.Google Scholar
  19. Burris, D.R., Delcomyn, Smith and Roberts, L.A. (1996) Reductive dechlorination of tetrachloroethylene and trichloroethylene catalyzed by vitamin B-12 in homogeneous and heterogeneous systems. Environ. Sci. Technol. 30, 3047–3052.Google Scholar
  20. Cabot, P.L., Centelles, M., Segarra, L. and Casado, J. (1997) Palladium-assisted electrodehalogenation of 1,1,2-trichloro-1,2,2-trifluoroethane on lead cathodes combined with hydrogen diffusion anodes. J. Electrochem. Soc. 144, 3749–3757.Google Scholar
  21. Cabot, P.L., Segarra, L. and Casado, J. (2004) Electrodegradation of chlorofluorocarbons in a laboratory-scale flow cell with a hydrogen diffusion anode. J. Electrochem. Soc. 151, B98–B104.Google Scholar
  22. Canizares, P., Lobato, J., Paz, R., Rodrigo, M.A. and Saez, C. (2005) Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes. Water Res. 39, 2687–2703.Google Scholar
  23. Chaussard, J., Troupel, M., Robin, Y., Jacob, C. and Jubasz, J.P. (1989) Scale-up of electrocarboxylation reactions with a consumable anode. J. Appl. Electrochem. 19, 345–348.Google Scholar
  24. Chen, G. (2004) Electrochemical technologies in wastewater treatment. Sep. Purif. Technol, 38, 11–41.Google Scholar
  25. Chen, G., Betterton, E.A. and Arnold, R.G. (1999) Electrolytic oxidation of trichloroethylene using a ceramic anode. J. Appl. Electrochem. 29, 961–970.Google Scholar
  26. Chen, G., Betterton, E.A., Arnold, R.G. and Ela, W.P. (2003) Electrolytic reduction of trichloroethylene and chloroform at a Pt- or Pd-coated ceramic cathode. J. Appl. Electrochem. 33, 161–169.Google Scholar
  27. Cheng, I.F., Fernando, Q. and Korte, N. (1997) Electrochemical dechlorination of 4-chlorophenol to phenol. Environ. Sci. Technol. 31, 1074–1078.Google Scholar
  28. Cheng, H., Scott, K. and Christensen, P.A. (2003a) Electrochemical hydrodehalogenation of chlorinated phenols in aqueous solutions. J. Electrochem. Soc. 150, D17–D24.Google Scholar
  29. Cheng, H., Scott, K. and Christensen, P.A. (2003b) Electrochemical hydrodehalogenation of chlorinated phenols in aqueous solutions. J. Electrochem. Soc. 150, D25–D29.Google Scholar
  30. Cheng, H., Scott, K. and Christensen, P.A. (2003c) Hydrodehalogenation of 2,4-dibromophenol by electrochemical reduction. J. Appl. Electrochem. 33, 893–899.Google Scholar
  31. Cheng, H., Scott, K. and Christensen, P.A. (2004a) Feasibility study of electrochemical hydrodehalogenation of 2,4-dibromophenol in a paraffin oil. Electrochim. Acta 49, 729–735.Google Scholar
  32. Cheng, H., Scott, K. and Christensen, P.A. (2004b) Design and operation of a solid polymer electrolyte reactor for electrochemical hydrodehalogenation. Chem. Eng. J. (Amsterdam) 102, 161–170.Google Scholar
  33. Cheng, H., Scott, K. and Christensen, P.A. (2004c) Engineering aspects of electrochemical hydrodehalogenation of 2,4-dichlorophenol in a solid polymer electrolyte reactor. Appl. Catal. A: General 261, 1–6.Google Scholar
  34. Cheng, H., Scott, K. and Christensen, P.A. (2004d) Electrochemical hydrodehalogenation of 2,4-dichlorophenol in paraffin oil and comparison with aqueous systems. J. Electroanal. Chem. 566, 131–138.Google Scholar
  35. Cheng, H., Scott, K. and Christensen, P.A. (2004e) Electrochemical hydrodehalogenation of 2,4-dibromophenol in paraffin oil using a solid polymer electrolyte reactor. Environ. Sci. Technol. 38, 638–642.Google Scholar
  36. Cherepy, N.J. and Wildenschild, D. (2003) Electrolyte management for effective long-term electro-osmotic transport in low-permeability soils. Environ. Sci. Technol. 37, 3024–3030.Google Scholar
  37. Chetty, R., Christensen, P.A., Golding, B.T. and Scott, K. (2004) Fundamental and applied studies on the electrochemical hydrodehalogenation of halogenated phenols at a palladised titanium electrode. Appl. Catal. A: General 271, 185–194.Google Scholar
  38. Comninellis, Ch. and Nerini, A. (1995) Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. J. Appl. Electrochem. 25, 23–28.Google Scholar
  39. Compton, R.G., Marken, F. and Rebbitt, T.O. (1996) Sonovoltammetric measurement of the rates of electrode processes with fast coupled homogeneous kinetics: Making macroelectrodes behave like microelectrodes. Chem. Commun. (Cambridge) 1017–1018.Google Scholar
  40. Costentin, C., Robert, M. and Savéant, J.-M. (2003) Successive removal of chloride ions from organic polychloride pollutants. Mechanisms of reductive electrochemical elimination in aliphatic gem-polychlorides, α, β-polychloroalkenes, and α, β-polychloroalkanes in mildly protic medium. J. Am. Chem. Soc. 125, 10729–10739.Google Scholar
  41. Costentin, C., Robert, M. and Savéant, J.-M. (2006a) Electron transfer and bond breaking: Recent advances. Chem. Phys. 324, 40–56.Google Scholar
  42. Costentin, C., Robert, M. and Savéant, J.-M. (2006b) Electrochemical concerted proton and electron transfers. Potential-dependent rate constant, reorganization factors, proton tunneling and isotope effects. J. Electroanal. Chem. 588, 197–206.Google Scholar
  43. Delcomyn, C.A., Smith, M.H. and Roberts, L.A. (1996) Reductive dechlorination of tetrachloroethylene and trichloroethylene catalyzed by vitamin B-12 in homogeneous and heterogeneous systems. Environ. Sci. Technol. 30, 3047–3052.Google Scholar
  44. De Lima Leite, R.H., Cognet, P., Wilhelm, A.-M. and Delmas, H. (2002) Anodic oxidation of 2,4-dihydroxybenzoic acid for wastewater treatment: Study of ultrasound activation. Chem. Eng. Sci. 57, 767–778.Google Scholar
  45. De Lima Leite, R.H., Cognet, P., Wilhelm, A.-M. and Delmas, H. (2003) Anodic oxidation of 2,4-dihydroxybenzoic acid for wastewater treatment. J. Appl. Electrochem. 33, 693–701.Google Scholar
  46. Delli, E., Kyriacou, G. and Lambrou, C. (1998) Electrochemical reduction of CCl2F2 on Nafion solid polymer electrolyte composite electrodes. Chem. Commun. (Cambridge). 16, 1693–1694.Google Scholar
  47. Deutscher, R.L. and Cathro, K.J (2001) Organochlorine formation in magnesium electrowinning cells. Chemosphere 43, 147–155.Google Scholar
  48. Doherty, A.P., Koshechko, V., Titov, V. and Mishura, A. (2007) Freon electrochemistry in room-temperature ionic liquids. J. Electroanal. Chem. 602, 91–95.Google Scholar
  49. Dombek, T., Davis, D., Stine, J. and Klarup, D. (2004) Degradation of terbutylazine (2-chloro-4-ethylamino-6-terbutylamino-1,3,5- triazine), deisopropyl atrazine (2-amino-4-chloro-6-ethylamino-1,3,5-triazine), and chlorinated dimethoxy triazine (2-chloro-4,6-dimethoxy-1,3, 5-triazine) by zero valent iron and electrochemical reduction. Environ. Pollut. 129, 267–275.Google Scholar
  50. EC 850/2004 Persistent Organic Pollutants. O. J. Eur. Union, 30.04.2004, L158/1–43.Google Scholar
  51. EC Decision, Proposal COM (2004) 537, 04.08.2004. Amendments to Annexes I–III of the 1998 Protocol to the 1979 Convention on Long Range Transboundary Air Pollution on Persistent Organic Pollutants and to Annexes A–C of the Stockholm Convention on Persistent Organic Pollutants.Google Scholar
  52. EC Regulation, Proposal COM (2006) 242, 31.05.2006, Amending Annex IV to Regulation (EC) No 850/2004 of the European Parliament and of the Council on Persistent Organic Pollutants and Amending Directive 79/117/EEC.Google Scholar
  53. EC Regulation, Proposal COM (2006) 252, 31.05.2006, Amending Annex V to Regulation (EC) No 850/2004 of the European Parliament and of the Council on Persistent Organic Pollutants and Amending Directive 79/117/EEC.Google Scholar
  54. Falciola, L., Gennaro, A., Isse, A.A., Mussini, P.R. and Rossi M. (2006) The solvent effect in the electrocatalytic reduction of organic bromides on silver. J. Electroanal. Chem. 593, 47–56.Google Scholar
  55. Fan, C., Zhuang, Y., Li, G., Zhu, J., Zhu, D. (2000) Direct electrochemistry and enhanced catalytic activity for hemoglobin in a sodium montmorillonite film. Electroanalysis 12, 1156–1158.Google Scholar
  56. Farrell, J., Kason, M., Melitas, N. and Li, T. (2000) Investigation of the long-term performance of zerovalent iron for reductive dechlorination of trichloroethylene. Environ. Sci. Technol. 34, 514–521.Google Scholar
  57. Fedurco, M., Sartoretti, C.J. and Augustynski, J. (2001) Reductive cleavage of the carbon-halogen bond in simple methyl and methylene halides. Reactions of the methyl radical and carbene at the polarized electrode/aqueous solution interface. Langmuir 17, 2380–2387.Google Scholar
  58. Feldberg, S.W. (1969) Digital simulation. In: Bard, A.J. (Ed.) Electroanalytical Chemistry, vol. 3, CRC, Boca Raton, FL.Google Scholar
  59. Fiori, G., Mussini, P.R., Rondinini, S. and Vertova, A. (2002) Selective dehalogenation of bromophenols on ag electrocatalyst. Ann. Chim. (Milan) 92, 963–972.Google Scholar
  60. Fiori, G., Rondinini, S., Sello, G., Vertova, A., Cirja, M. and Conti, L. (2005) Electroreduction of volatile organic halides on activated silver cathodes. J. Appl. Electrochem. 35, 363–368.Google Scholar
  61. Fontana, A. (1993) Electrochemical methods in organic chemistry. II: Industrial applications Chim. Nouv. 11, 1232–1236.Google Scholar
  62. Foresti, M.L., Innocenti, M., Forni, F. and Guidelli, R. (1998) Electrosorption valency and partial charge transfer in halide and sulfide adsorption on Ag(111). Langmuir 14, 7008–7016.Google Scholar
  63. Fram, M.S., Berghouse, J.K., Bergamaschi, B.A., Fujii, R., Goodwin, K.D. and Clark, J.F. (2002) Water-quality monitoring and studies of the formation and fate of trihalomethanes during the third injection, storage, and recovery test at Lancaster, Antelope Valley, California, March 1998 through April 1999. US Geological Survey, Open-File Report 02–102, Sacramento, CA, USA.Google Scholar
  64. Gassman, J., Voss, J. and Adiwidjaja, G. (1995) Electroreduction of organic compounds. 25. Electrochemical dehalogenation of chlorinated insecticides. Zeit. Natur. B: Chem. Sci. 50, 953–958.Google Scholar
  65. Gennaro, A., Sanchez-Sanchez, C.M., Isse, A.A. and Montiel V. (2004) Electrocatalytic synthesis of 6-aminonicotinic acid at silver cathodes under mild conditions. Electrochem. Commun. 6, 627–631.Google Scholar
  66. Georgolios, N., Kyriacou, G. and Ritzoulis, G. (2001) Electrochemical reduction of dichlorodifluoromethane on silver and lead electrodes. J. Appl. Electrochem. 31, 207–212.Google Scholar
  67. Gherardini, L., Michaud, P.A., Panizza, M., Comninellis, Ch. and Vatistas N. (2001) Electrochemical oxidation of 4-chlorophenol for wastewater treatment: Definition of normalized current efficiency. J. Electrochem. Soc. 148, D78–D82.Google Scholar
  68. Golinske, D. and Voss, J. (2005) Electroreduction of organic compounds, 35. Quantum chemical calculations of reaction pathways for the cathodic dehalogenation of chloro-dibenzo-furans and oligo-chlorobenzenes. Zeit. Natur. B: Chem. Sci. 60, 780–786.Google Scholar
  69. Guerrini, M., Mussini, P.R., Rondinini, S., Torri, G. and Vismara, E. (1998) Electrochemical reduction of halogenosugars on silver: A new approach to C-disaccharides. Chem. Commun. 15, 1575–1575.Google Scholar
  70. Hammerich, O. (2001) Methods for studies of electrochemical reactions. In: Lund, H. and Hammerich, O. (Eds) Organic Electrochemistry, 4th ed., Marcel Dekker, New York, NY, pp. 95–182.Google Scholar
  71. He, J., Saez, A.E., Ela, W.P., Betterton, E.A. and Arnold, R.G. (2004a) Destruction of aqueous-phase carbon tetrachloride in an electrochemical reactor with a porous cathode. Ind. Eng. Chem. Res. 43, 913–923.Google Scholar
  72. He, J., Ela, W.P., Betterton, E.A., Arnold, R.G. and Saez, A.E. (2004b) Reductive dehalogenation of aqueous-phase chlorinated hydrocarbons in an electrochemical reactor. Ind. Eng. Chem. Res. 43, 7965–7974.Google Scholar
  73. Horanyi, G. and Torkos, K. (1982) Electrocatalytic reduction of some halogenated derivatives of methane and acetic acid at a platinized platinum electrode in acid medium. J. Electroanal. Chem. Int. Electrochem. 140, 329–346.Google Scholar
  74. Hori, Y., Murata, K. and Oku, T. (2003) Electrochemical dechlorination of chlorinated hydrocarbons – electrochemical reduction of chloroform in acetonitrile/water mixtures at high current density. Chem. Lett. 32, 230–231.Google Scholar
  75. Inokuchi, T. and Kusumoto, M. (2001) Selective dehalogenation of 6,6-dibromopenicillanates by indirect electroreduction with diphenyl diselenide as a recyclable mediator. J. Electroanal. Chem. 507, 34–36.Google Scholar
  76. Isse, A.A. and Gennaro, A. (2002a) Electrocatalytic carboxylation of benzyl chlorides at silver cathodes in acetonitrile. Chem. Commun. (Cambridge) 2798–2799.Google Scholar
  77. Isse, A.A. and Gennaro, A. (2002b) Electrochemical synthesis of cyanoacetic acid from chloroacetonitrile and carbon dioxide. J. Electrochem. Soc. 149, D113–D117.Google Scholar
  78. Isse, A.A. and Gennaro, A. (2003) Electrochemical reduction of benzyl bromide in the presence of carbon dioxide. Indian J. Chem. Sec. A Inorg. Phys. Theor. Anal. Chem. 42, 751–757.Google Scholar
  79. Isse, A.A. and Gennaro, A. (2004) Homogeneous reduction of haloacetonitriles by electrogenerated aromatic radical anions: Determination of the reduction potential of CH2CN. J. Phys. Chem. A 108, 4180–4186.Google Scholar
  80. Isse, A.A., Galia, A., Belfiore, C., Silvestri, G. and Gennaro, A. (2002) Electrochemical reduction and carboxylation of halobenzophenones. J. Electroanal. Chem. 526, 41–52.Google Scholar
  81. Isse, A.A., Ferlin, M.G. and Gennaro, A. (2005a) Electrocatalytic reduction of arylethyl chlorides at silver cathodes in the presence of carbon dioxide: Synthesis of 2-arylpropanoic acids. J. Electroanal. Chem. 581, 38–45.Google Scholar
  82. Isse, A.A., Scialdone, O., Galia A. and Gennaro A. (2005b) The influence of aluminium cations on electrocarboxylation processes in undivided cells with Al sacrificial anodes. J. Electroanal. Chem. 585, 220–229.Google Scholar
  83. Isse, A.A., Falciola, L., Mussini, P.R. and Gennaro, A. (2006a) Relevance of electron transfer mechanism in electrocatalysis: The reduction of organic halides at silver electrodes. Chem. Commun. 344–346.Google Scholar
  84. Isse, A.A., Gottardello, S., Maccato, C. and Gennaro A. (2006b) Silver nanoparticles deposited on glassy carbon. Electrocatalytic activity for reduction of benzyl chloride. Electrochem. Commun. 8, 1707–1712.Google Scholar
  85. Isse, A.A., De Giusti, A. and Gennaro, A. (2006c) One- versus two-electron reaction pathways in the electrocatalytic reduction of benzyl bromide at silver cathodes. Tetrahedron Lett. 47, 7735–7739.Google Scholar
  86. Isse, A.A., De Giusti, A., Gennaro, A., Falciola, L. and Mussini, P.R. (2006d) Electrochemical reduction of benzyl halides at a silver electrode. Electrochim. Acta 51, 4956–4964.Google Scholar
  87. Iwakura, C., Tsuchiyama, Y., Higashiyama, K., Higuchi, E. and Inoue, H. (2004) Successive hydrogenation and dechlorination systems using palladized ion exchange membranes. J. Electrochem. Soc. 151, D1–D5.Google Scholar
  88. Ju, X., Hecht, M., Galhotra, R.A., Ela, W.P., Betterton, E.A., Arnold, R.G. and Saez, A.E. (2006) Destruction of gas-phase trichloroethylene in a modified fuel cell. Environ. Sci. Technol. 40, 612–617.Google Scholar
  89. Juttner, K., Galla, U. and Schmieder, H. (2000) Electrochemical approaches to environmental problems in the process industry. Electrochim. Acta 45, 2575–2594.Google Scholar
  90. Kimbrough, D.E. and Suffet, I.H. (2002) Electrochemical removal of bromide and reduction of THM formation potential in drinking water. Water Res. 36, 4902–4906.Google Scholar
  91. Kluyev, N., Cheleptchikov, A., Brodsky, E., Soyfer, V. and Zhilnikov, V. (2002) Reductive dechlorination of polychlorinated dibenzo-p-dioxins by zerovalent iron in subcritical water. Chemosphere 46, 1191–1193.Google Scholar
  92. Kolthoff, I.M. and Lingane, J.J. (1941) Polarography, Interscience, New York, NY.Google Scholar
  93. Korshin, G.V. and Jensen, M.D. (2001) Electrochemical reduction of haloacetic acids and exploration of their removal by electrochemical treatment. Electrochim. Acta 47, 747–751.Google Scholar
  94. Koshechko, V.G. and Kiprianova, L.A. (1999) Electrochemically activated insertion of fluoroalkyl groups into organic and inorganic substrates. Theor. Exp. Chem. (Translation of Teoreticheskaya i Eksperimental’naya Khimiya) 35, 18–36.Google Scholar
  95. Koshechko, V.G., Titov, V.E. and Sednev, D.V. (1994) New route for producing acrylic acid copolymers, based on electrochemical carboxylation of poly(vinyl halide)s and polybutadiene. Polymer 35, 1787–1788.Google Scholar
  96. Köster, F., Dinjus, E. and Dunach, E. (2001) Electrochemical selective incorporation of CO2 into terminal alkynes and diynes. Eur. J. Org. Chem. 13, 2507.Google Scholar
  97. Kotsinaris, A., Kyriacou, G. and Lambrou, Ch. (1998) Electrochemical reduction of dichloromethane to higher hydrocarbons. J. Appl. Electrochem. 28, 613–616.Google Scholar
  98. Kulikov, S.M., Plekhanov, V.P., Tsyganok, A.I., Schlimm, C. and Heitz, E. (1996) Electrochemical reductive dechlorination of chloroorganic compounds on carbon cloth and metal-modified carbon cloth cathodes. Electrochim. Acta 41, 527–31.Google Scholar
  99. Kuznetsov, A.M., German, E.D., Masliy, A.N. and Korshin, G.V. (2004) A density functional study of dissociative electron transfer reactions with participation of halogenated methanes. J. Electroanal. Chem. 573, 315–325.Google Scholar
  100. Laine D.F. and Cheng I.F. (2007) The destruction of organic pollutants under mild reaction conditions: A review. Microchem. J. 85, 183–193.Google Scholar
  101. Leonel, E., Paugam, J.P., Condon-Gueugnot, S. and Nedelec, J.-Y. (1998) Cyclopropane formation by electroreductive coupling of activated olefins and gem-polyhalo compounds. Tetrahedron 54, 3207–3218.Google Scholar
  102. Li, T. and Farrell, J. (2000) Reductive dechlorination of trichloroethene and carbon tetrachloride using iron and palladized-iron cathodes. Environ. Sci. Technol. 34, 173–179.Google Scholar
  103. Lin, C.H. and Tseng, S.K. (2000) Electrochemically reductive dechlorination of chlorophenol using nickel and zinc electrodes. Water Sci. Technol. 42, 167–172.Google Scholar
  104. Liu, Z., Arnold, R.G., Betterton, E.A. and Festa, K.D. (1999) Electrolytic reduction of CCl4. Effects of cathode material and potential on kinetics, selectivity, and product stoichiometry. Environ. Eng. Sci. 16, 1–13.Google Scholar
  105. Liu, Z., Betterton, E.A. and Arnold, R.G. (2000) Electrolytic reduction of low molecular weight chlorinated aliphatic compounds: Structural and thermodynamic effects on process kinetics. Environ. Sci. Technol. 34, 804–811.Google Scholar
  106. Liu, Z., Arnold, R.G., Betterton, E.A. and Smotkin, E. (2001) Reductive dehalogenation of gas-phase chlorinated solvents using a modified fuel cell. Environ. Sci. Technol 35, 4320–4326.Google Scholar
  107. Liu, P.Y., Zheng, M.H. and Xu, X.B. (2002) Phototransformation of polychlorinated dibenzo-p-dioxins from photolysis of pentachlorophenol on soils surface. Chemosphere 46, 1191–1193.Google Scholar
  108. Liu, H.-H., Wan, Y.-Q. and Zou, G.-L. (2006) Direct electrochemistry and electrochemical catalysis of immobilized haemoglobin in an ethanol-water mixture. Anal. Bioanal. Chem. 385, 1470–1476.Google Scholar
  109. Lowry, GV and Johnson, KM. (2004) Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ. Sci. Technol. 38, 5208–5216.Google Scholar
  110. Lund, H. (2002) A century of organic electrochemistry. J. Electrochem. Soc. 149, S21–S33.Google Scholar
  111. Ma, X., Liu, X., Xiao, H., Li, G. (2005) Direct electrochemistry and electrocatalysis of haemoglobin in poly-3-hydroxybutyrate membrane. Biosens. Bioelectron. 20, 1836–1842.Google Scholar
  112. Magdesieva, T.V., Graczyk, M., Vallat, A., Nikitin, O.M., Demyanov, P.I., Butin, K.P. and Vorotyntsev, M.A. (2006) Electrochemically reduced titanocene dichloride as a catalyst of reductive dehalogenation of organic halides. Electrochim. Acta 52, 1265–1280.Google Scholar
  113. Maran, F., Wayner, D.D.M. and Workentin, M.S. (2001) Kinetics and mechanism of the dissociative reduction of C–X and X–X bonds (X = O, S). Adv. Phys. Org. Chem. 36, 85–166.Google Scholar
  114. Marcus, R.A. (1964) Chemical and electrochemical electron-transfer theory. Annu. Rev. Phys. Chem. 15, 155–196.Google Scholar
  115. Meites, L. (1965) Polarographic Techniques, 2nd ed., Wiley-Interscience, New York, NY.Google Scholar
  116. Migani, A. and Illas, F. (2006) A systematic study of the structure and bonding of halogens on low-index transition metal surfaces. J. Phys. Chem. 110, 11894–11906.Google Scholar
  117. Miller, L.L. and Riekena, E. (1969) The electrochemical reduction of vynil bromides. J. Org. Chem. 34, 3359–3362.Google Scholar
  118. Mishra, D. and Farrell, J. (2005) Understanding nitrate reactions with zerovalent iron using tafel analysis and electrochemical impedance spectroscopy. Environ. Sci. Technol. 39, 645–650.Google Scholar
  119. Miyoshi, K., Kamegaya, Y. and Matsumura, M. (2004a) Electrochemical reduction of organohalogen compound by noble metal sintered electrode. Chemosphere 56, 187–193.Google Scholar
  120. Miyoshi, K., Kamegaya, Y. and Matsumura, M. (2004b) Destruction of 1, 2, 3-trichlorobenzene in sediment extract by Na ion supply system. Electrochemistry 72, 830–832.Google Scholar
  121. Miyoshi, K., Alfafara, C.G., Matsumura, M. (2004c) Dechlorination of organohalogen compounds by an electrocatalytic cation supply system. J. Electroanal. Chem. 568, 293–300.Google Scholar
  122. Moglie, Y., Alonso, F., Vitale, C., Yus, M. and Radivoy, G. (2006) Active-iron-promoted hydrodehalogenation of organic halides. Appl. Catal. A: General 313, 94–100.Google Scholar
  123. Montecatini Edison S.p.a., (1969) Italian Patent, 852,487.Google Scholar
  124. Mussini, P.R., Ardizzone, S., Cappelletti, G., Longhi, M., Rondinini, S. and Doubova, L.M. (2003) Surface screening effects by specifically adsorbed halide anions in the electrocatalytic reduction of a model organic halide at mono- and polycrystalline silver in acetonitrile. J. Electroanal. Chem. 552, 213–221.Google Scholar
  125. Muthuraman, G. and Pillai, K.C. (2006) Dechlorination of β-methylallyl chloride by electrogenerated Co(I)bipyridine3 +: An electrochemical study in the presence of cationic surfactants. J. Colloid Interface Sci. 297, 687–695.Google Scholar
  126. Naumczyk, J., Szpyrkowicz, L., De Faveri, M.D. and Zilio-Grandi F. (1996) Electrochemical treatment of tannery wastewater containing high strength pollutants. Process Saf. Environ. Protect. 74, 59–68.Google Scholar
  127. Nedelec, J.-Y., Perichon, J. and Troupel, M. (1997) Organic electroreductive coupling reactions using transition metal complexes as catalysts. Top. Curr. Chem. 185, 141–173.Google Scholar
  128. Nunnecke, D. and Voss, J. (1999) Electroreduction of organic compounds. Part 32. Indirect electrodehalogenation of chloro arenes in methanol mediated by nickel complexes. Acta Chem. Scand. 53, 824–829.Google Scholar
  129. Öberg, T., Öhrström, T. and Bergström, J. (2007) Metal catalyzed formation of chlorinated aromatic compounds: A study of the correlation pattern in incinerator fly ash. Chemosphere 67, S185–S190.Google Scholar
  130. Oturan, M.A., Oturan, N., Lahitte, C. and Trevin, S. (2001) Production of hydroxyl radicals by electrochemically assisted Fenton’s reagent: Application to the mineralization of an organic micropollutant, pentachlorophenol. J. Electroanal. Chem. 507, 96–102.Google Scholar
  131. Pause, L., Robert, M. and Savéant, J.-M. (2000) Reductive cleavage of carbon tetrachloride in a polar solvent. An example of a dissociative electron transfer with significant attractive interaction between the caged product fragments. J. Am. Chem. Soc. 122, 9829–9835.Google Scholar
  132. Perichon, J., Sock, O. and Troupel, M. (1986) Electrosynthesis of carboxylic acids. Ger. Offen. DE 3522304 A1 19860102 Patent Application: DE 85–3522304 19850621. Priority: FR 84–9787 19840621, p. 32.Google Scholar
  133. Persinger, J.D., Hayes, J.L., Klein, L.J., Peters, D.G., Karty, J.A. and Reilly, J.P. (2004) Catalytic reduction of 1,1,2-trichloro-1,2,2-trifluoroethane (CFC-113) by cobalt(I) salen electrogenerated at vitreous carbon cathodes. J. Electroanal. Chem. 568, 157–165.Google Scholar
  134. Peters, D.G. (2001) Halogenated organic compounds. In: H. Lund and O. Hammerich (Eds.) Organic Electrochemistry, 4th ed., Marcel Dekker, New York, NY, pp. 341–377.Google Scholar
  135. Pletcher, D. (1982) Industrial Electrochemistry, Chapman and Hall, London.Google Scholar
  136. Polcaro, A.M., Mascia, M., Palmas, S. and Vacca, A. (2004) Electrochemical degradation of diuron and dichloroaniline at BDD electrode. Electrochim. Acta 49, 649–656.Google Scholar
  137. Ragaini, V., Selli, E., Bianchi L.C. and Pirola C. (2001) Sono-photocatalytic degradation of 2-chlorophenol in water: Kinetic and energetic comparison with other techniques. Ultrason. Sonochem. 8, 251–258.Google Scholar
  138. Robert, M. and Savéant, J.-M. (2005) Electroenzymatic reactions. Investigation of a reductive dehalogenase by means of electrogenerated redox cosubstrates. J. Am. Chem. Soc. 127, 13583–13588.Google Scholar
  139. Roberts, A.L., Totten, L.A., Arnold, W.A., Burris, D.R. and Campbell, T.J. (1996) Reductive elimination of chlorinated ethylenes by zerovalent metals. Environ. Sci. Technol. 30, 2654–2659.Google Scholar
  140. Rodrigo, M.A., Michaud, P.A., Duo, I., Panizza, M., Cerisola, G. and Comninellis, Ch. (2001) Oxidation of 4-chlorophenol at boron-doped diamond electrode for wastewater treatment. J. Electrochem. Soc. 148, D60–D64.Google Scholar
  141. Rondinini, S. and Vertova, A. (2004) Electrocatalysis on silver and silver alloys for dichloromethane and trichloromethane dehalogenation. Electrochim. Acta 49, 4035–4046.Google Scholar
  142. Rondinini, S., Mussini, P.R., Sello, G., Vismara, E. (1998) Glycosyl halides as building blocks for the electrosynthesis of glycosides. J. Electrochem. Soc. 145, 1108–1112.Google Scholar
  143. Rondinini, S., Mussini, P.R., Cantù, G. and Sello, G. (1999) Cathode and medium effects on the electroreductive glucosidation of phenols. Phys. Chem. Chem. Phys. 1, 2989–2995.Google Scholar
  144. Rondinini, S., Mussini, P.R., Crippa, F. and Sello, G. (2000) Electrocatalytic potentialities of silver as a cathode for organic halide reductions. Electrochem. Commun. 2, 491–496.Google Scholar
  145. Rondinini, S., Mussini, P.R., Specchia, M. and Vertova, A. (2001a) The electrocatalytic performance of silver in the reductive dehalogenation of bromophenols. J. Electrochem Soc. 148, D102–D107.Google Scholar
  146. Rondinini, S., Mussini, P.R., Muttini, P. and Sello, G. (2001b) Silver as a powerful electrocatalyst for organic halide reduction: The critical role of molecular structure. Electrochim. Acta, 46, 3245–3258.Google Scholar
  147. Rusling, J.F., Miaw, C.L. and Couture, E.C. (1990) Electrocatalytic dehalogenation of α-haloacetic acids by vitamin B12. Inorg. Chem. 29, 2025–2027.Google Scholar
  148. Ryu, J.-Y., Choi, K.-C. and Mulholland, J.A. (2006) Polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofurna (PCDF) isomer patterns from municipal waste combustion: Formation mechanism fingerprints. Chemosphere. 65, 1526–1536.Google Scholar
  149. Sanecki, P.T. and Skitał, P.M. (2007) The electroreduction of alkyl iodides and polyiodides. The kinetic model of EC(C)E and ECE-EC(C)E mechanisms with included transfer coefficient variability. Electrochim. Acta 52, 4675–4684.Google Scholar
  150. Savall, A., Abdelhedi, R., Dalbéra, S. and Bouguerra, M.L. (1990a) Reduction electrochimique du trichloro-1,1,2-trifluoroethane: Effet catalytique de l’ion ammonium. Electrochim. Acta, 35, 1727–1737.Google Scholar
  151. Savall, A., Abdelhedi, R., Dalbéra, S. and Bouguerra, M.L. (1990b) Réduction électrochimique du trichloro-1,1,2 trifluoroéthane: étude de la corrosion chimique de cathodes de zinc. J. Appl. Electrochem. 20, 1045–1052.Google Scholar
  152. Savéant, J.-M. (1987) A simple model for the kinetics of dissociative electron transfer in polar solvents. Application to the homogeneous and heterogeneous reduction of alkyl halides. J. Am. Chem. Soc. 109, 6788–6795.Google Scholar
  153. Savéant, J.-M. (2000) Electron transfer, bond breaking and bond formation. Adv. Phys. Org. Chem. 35, 117–192.Google Scholar
  154. Schizodimou, A., Kyriacou, G. and Lambrou, C. (1999) Electrochemical reduction of dichlorodifluoromethane in acetonitrile medium to useful fluorinated compounds. J. Electroanal. Chem. 471, 26–31.Google Scholar
  155. Schnabel, C., Worner, M., Gonzalez, B., Del Olmo, I. and Braun, A.M., (2001) Photoelectrochemical characterization of p- and n-doped single crystalline silicon carbide and photoinduced reductive dehalogenation of organic pollutants at p-doped silicon carbide. Electrochim. Acta 47, 719–727.Google Scholar
  156. Scialdone, O., Galia, A., La Rocca, C. and Filardo, G. (2005) Influence of the nature of the substrate and of operative parameters in the electrocarboxylation of halogenated acetophenones and benzophenones. Electrochim. Acta 50, 3231–3242.Google Scholar
  157. Simonet, J. (2005) The one electron reduction of primary alkyl iodides at palladiated surfaces. A convenient and general source of alkyl radicals. J. Electroanal. Chem. 583, 34–45.Google Scholar
  158. Simonet, J. (2006) The platinized platinum interface in super-dry solvents: Cathodic reversible reactivity and morphology modifications in the presence of tetramethylammonium salts. J. Electroanal. Chem. 593, 3–14.Google Scholar
  159. Simonet, J. and Peters, D.G. (2004) Electrochemical conversion of primary alkyl halides to alkenes at platinum cathodes. J. Electrochem. Soc. 151, D7–D12.Google Scholar
  160. Simonet, J., Poizot, P. and Laffont, L. (2006) A copper–palladium alloy usable as cathode material mode of formation and first examples of catalytic cleavages of carbon-halide bonds. J. Electroanal. Chem. 591, 19–26.Google Scholar
  161. Sonoyama, N. and Sakata, T. (1998) Electrochemical decomposition of CFC-12 using gas diffusion electrodes. Environ. Sci. Technol. 32, 375–378.Google Scholar
  162. Sonoyama, N., Ezaki, K., Fujii, H. and Sakata, T. (2002) Electrochemical conversion of CFC-12 to tetrafluoroethylene: Electrochemical formation of difluorocarbene. Electrochim. Acta, 47, 3847–3851.Google Scholar
  163. Stock, N.L. and Bunce, N.J. (2002) Electrocatalytic dechlorination of atrazine. Can. J. Chem. 80, 200–206.Google Scholar
  164. Stromberg, J.R., Wnuk, J.D., Pinlac, R.A.F. and Meyer, G.J. (2006) Multielectron transfer at heme-functionalized nanocrystalline TiO2: Reductive dechlorination of DDT and CCl4 forms stable carbene compounds. Nanoletters 6, 1284–1286.Google Scholar
  165. Takita, Y., Yamada, H., Hashira, M. and Ishihara, T. (1990) Conversion of 1,1,2-Trichloro-1,2,2-trifluoroethane (CFC 113) over TiO2-supported metal and metal oxide catalysts. Chem. Lett. 715–718.Google Scholar
  166. Titov, V.E., Mishura, A.M. and Koshechko, V.G. (2006) The effect of the cathode material on the electrochemical activation and dehalogenation of C-2 freons. Theor. Exp. Chem. 42, 224–228.Google Scholar
  167. Tsai, Y-C., Coles, B.A., Compton, R.G. and Marken, F. (2002) Microwave activation of electrochemical processes: Enhanced electrodehalogenation in organic solvent media. J. Am. Chem. Soc. 124, 9784–9788.Google Scholar
  168. Tsyganok, A.I. and Otsuka, K. (1999) Selective dechlorination of chlorinated phenoxy herbicides in aqueous medium by electrocatalytic reduction over palladium-loaded carbon felt. Appl. Catal. B. Environ. 22, 15–26.Google Scholar
  169. Tsyganok, A., Otsuka, K., Yamanaka, I., Plekhanov, V. and Kulikov, S. (1996) Selective electrochemical dehalogenation of 2,4-dichlorophenoxy acetic acid in MeCN at room temperature. Chem Lett. 25, 261–262.Google Scholar
  170. Tsyganok, A.I., Yamanaka, I. and Otsuka, K. (1998) Pd-loaded carbon felt as the cathode for selective dechlorination of 2,4-dichlorophenoxyacetic acid in aqueous solution. J. Electrochem. Soc. 145, 3844–3850.Google Scholar
  171. Tsyganok, A.I., Yamanaka, I. and Otsuka, K. (1999) Dechlorination of chloroaromatics by electrocatalytic reduction over palladium-loaded carbon felt at room temperature. Chemosphere 39, 1819–1831.Google Scholar
  172. Uchini, M., Hirano, T., Satoh, H., Nakagawa, M. and Wakamiya, J. (2005) The severity of Minamata disease declined in 25 years: Temporal profile of the neurological findings analyzed by multiple logistic regression model. Tohoku J. Exp. Med. 205, 53–63.Google Scholar
  173. Valette, G., Hamelin, A. and Parsons, R. (1978) Specific adsorption on silver single crystals in aqueous solutions. Z. Phys. Chem. Neue Fol. 113, 71–89.Google Scholar
  174. Vaze, A. and Rusling, J.F. (2006) Microemulsion-controlled reaction sites in biocatalytic films for electrochemical reduction of vicinal dibromides. Langmuir 22, 10788–10795.Google Scholar
  175. von Stackelberg, M. and Stracke, W. (1949) Das Polarographische Verhalten ungesättiger und halogenierte Kohlenwasserstoffe. Z. Elektrochem. Angew. Phys. Chem. 53, 118–125.Google Scholar
  176. Wang, J., Blowers, P. and Farrell, J. (2004) Understanding reduction of carbon tetrachloride at nickel surfaces. Environ. Sci. Technol. 38, 1576–1581.Google Scholar
  177. Warren, K.D., Arnold, R.G., Bishop, T.L., Lindholm, L.C. and Betterton, E.A. (1995) Kinetics and mechanism of reductive dehalogenation of carbon tetrachloride using zero-valence metals. J Hazard. Mater. 41, 217–227.Google Scholar
  178. Wawzonek, S. and Willging, S. (1977) Continuous electrochemical preparation of chlorotrifluoroethylene. J. Electrochem. Soc. 124, 860–861.Google Scholar
  179. Wendt, H. and Kreysa, G. (1999) Electrochemical Engineering. Science and Technology in Chemical and Other Industries, Springer-Verlag, Berlin.Google Scholar
  180. Winkel, A. and Proske, G. (1936) Über die elektrolytische Reduktion organischer Verbindungen an den Quecksilber-tropfelektrode. Ber. Dtsch. Chem. Ges. B 69, Mitteil I, 693–706; Mitteil II, 1917–1929.Google Scholar
  181. Wright, M., Honeychurch, M.J., Hill, H. and Allen O. (1999) Bioelectrochemical dehalogenations via direct electrochemistry of poly(ethylene oxide)-modified myoglobin. Electrochem. Commun. 1, 609–613.Google Scholar
  182. Zhang, N., Blowers, P. and Farrell, J. (2005) Ab initio study of carbon-chlorine bond cleavage in carbon tetrachloride. Environ. Sci. Technol. 39, 612–617.Google Scholar
  183. Zhou, D.-L., Carrero, H. and Rusling, J.F. (1996) Radical vs anionic pathway in mediated electrochemical reduction of benzyl bromide in a bicontinuous microemulsion. Langmuir 12, 3067–3074.Google Scholar
  184. Zuman, P. (1967) Substituent Effects in Organic Polarography, Plenum, New York, NY.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Dipartimento di Chimica Fisica ed ElettrochimicaUniversità degli Studi di MilanoMilanItaly

Personalised recommendations