Skip to main content

Electroflotation

  • Chapter
  • First Online:
Electrochemistry for the Environment

Abstract

Electroflotation (EF) is the flotation using electrolytically generated bubbles of hydrogen and oxygen for separating suspended substances from aqueous phases. This process was first proposed by Elmore in 1905 for flotation of valuable minerals from ores. Compared with the conventional dissolved air flotation (DAF), EF has many advantages, including high flotation efficiency, compact units, easy operation, and less maintenance. Therefore, EF is an attractive alternative to DAF. This technique has been proven very effective in treating oily wastewater or oil-water emulsion, mining wastewater, groundwater, food processing wastewater, restaurant wastewater, industrial sewage, heavy metals containing effluent, and many other water and wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, N. and Jameson, G.J. (1985) The effect of bubble size on the rate of flotation of fine particles. Int. J. Miner. Process 14, 195–215.

    Article  CAS  Google Scholar 

  • Alexandrova, L., Nedialkova, T. and Nishkov, I. (1994) Electroflotation of metal ions in waste water. Int. J. Miner. Process. 41, 285–294.

    Article  CAS  Google Scholar 

  • Alves, V.A., Silva, L. A. D. Boodts, J.F.C. and Trasatti, S. (1994) Kinetics and mechanism of oxygen evolution on IrO2-based electrodes containing Ti and Ce acidic solutions. Electrochim Acta 39, 1585–1589.

    Article  CAS  Google Scholar 

  • Alves, V.A., Silva, L.A.D., Oliveira, E.D. and Boodts, J.F.C. (1998) Investigation under conditions of accelerated anodic corrosion of the effect of TiO2 substitution by CeO2 on the stability of Ir-based ceramic coatings. Mater. Sci. Forum 289–292, 655–666.

    Article  Google Scholar 

  • Balmer, L.M. and Foulds, A.W. (1986) Separation oil from oil-in-water emulsions by electroflocculation/electroflotation. Filtr. Separ 23(11/12), 366–369.

    CAS  Google Scholar 

  • Beer, H.B. (1972) Electrode and coating therefore. USA Patent 3,632,498.

    Google Scholar 

  • Burns, S.E., Yiacoumi, S. and Tsouris, C. (1997) Microbubble generation for environmental and industrial separations. Separ. Purif. Technol. 11, 221–232.

    Article  CAS  Google Scholar 

  • Cardarelli, F., Taxil, P., Savall, A., Comninellis, Ch., Manoli, G. and Leclerc, O. (1998) Preparation of oxygen evolving electrodes with long service life under extreme conditions. J. Appl. Electrochem. 28, 245–250.

    Article  CAS  Google Scholar 

  • Casqueira, R.G., Torem, M.L. and Kohler, H.M. (2006) The removal of zinc from liquid streams by electroflotation. Miner. Eng. 19, 1388–1392.

    Article  CAS  Google Scholar 

  • Chen, X.M. (2002) High-performance electrodes for wastewater treatment. PhD thesis presented to the Hong Kong University of Science and Technology.

    Google Scholar 

  • Chen, G. (2004) Electrochemical technologies in wastewater treatment Separ. Purif. Technol. 38, 11–41.

    Article  Google Scholar 

  • Chen, X.M. and Chen, G. (2005) Investigation of Ti ∕ IrO2–Sb2O5–SnO2 electrodes for O2 evolution. J. Electrochem. Soc. 152(7), J59–J64.

    Article  CAS  Google Scholar 

  • Chen, G., Chen, X.M. and Yue, P.L. (2000) Electrocoagulation and electroflotation of restaurant wastewater. J. Environ. Eng.-ASCE 126, 858–863.

    Google Scholar 

  • Chen, X.M., Chen, G. and Yue, P. L. (2001) Stable Ti ∕ IrO x − Sb2O5 − SnO2 anode for O2 evolution with low Ir content. J. Phys. Chem. B 105, 4623–4628.

    Article  CAS  Google Scholar 

  • Chen, G., Chen, X.M. and Yue, P.L. (2002a) Electrochemical behaviour of Novel Ti ∕ IrO x –Sb2O5–SnO2 anodes. J. Phys. Chem. B 106, 4364–4369.

    Article  CAS  Google Scholar 

  • Chen, X.M., Chen, G. and Yue, P.L. (2002b) Investigation on the electroysis voltage of electrocoagulation. Chem. Eng. Sci. 57, 2449–2455.

    Article  CAS  Google Scholar 

  • Chen, X.M., Chen, G. and Yue, P.L. (2002c) Novel electrode system for electroflotation of wastewaters, Environ. Sci. Technol. 36(4), 778–783.

    Article  CAS  Google Scholar 

  • Choi, Y.G., Kim, H.S., Park, Y.H., Jeong, S.H., Son, D.H., Oh, Y.K. and Yeom, I.T. (2005) Improvement of the thickening and dewatering characteristics of activated sludge by electroflotation (EF) Water. Sci. Technol. 52(10–11), 219–226.

    CAS  Google Scholar 

  • Comninellis, Ch. and Vercesi, G.P. (1991) Characterization of DSA-type oxygen evolving electrodes: choice of a coating. J. Appl. Electrochem. 21, 335–345.

    Article  CAS  Google Scholar 

  • De Rijk, S.E., van der Graaf, J.H.J.M. and den Blanken, J.G. (1994) Bubble size in flotation thickening. Water Res. 28, 465–473.

    Article  Google Scholar 

  • Elmore, F.E. (1905) A process for separating certain constituents of subdivided ores and like substances, and apparatus therefore. British Patent 13,578.

    Google Scholar 

  • Fukui, Y. and Yuu, S. (1985) Removal of colloidal particles in electroflotation. AIChE J. 31(2), 201–208.

    Article  CAS  Google Scholar 

  • Gao, P., Chen, X.M, Shen, F. and Chen, G. (2005) Removal of chromium (VI) from wastewater by combined electrocoagulation-electroflotation without a filter. Separ. Purif. Technol. 43, 117–123.

    Article  CAS  Google Scholar 

  • Glembotskii, V. A., Mamakov, A.A., Ramanov, A. M. and Nenno, V.E. (1975) 11th International Mineral Processing Congress, Caglairi, pp. 562–581.

    Google Scholar 

  • Hernlem, B.J. and Tsai, L.S. (2000) Chlorine generation and disinfection by electroflotation. J. Food Sci. 65, 834–837.

    Article  CAS  Google Scholar 

  • Hine, F., Yasuda, M., Noda, T., Yoshida, T. and Okuda, J. (1979) Electrochemical behavior of the oxide-coated metal anodes. J. Electrochem. Soc. 126, 1439–1445.

    Article  CAS  Google Scholar 

  • Ho, C.C. and Chan, C.Y. (1986) The application of lead dioxide-coated titanium anode in the electroflotation of palm oil mill effluent. Water Res. 20, 1523–1527.

    Article  CAS  Google Scholar 

  • Hosny, A.Y. (1996) Separating oil from oil–water emulsions by electroflotation technique. Separ. Technol. 6, 9–17.

    Article  CAS  Google Scholar 

  • Ibrahim, M.Y., Mostafa, S.R., Fahmy, M.F.M. and Hafez, A.I. (2001) Utilization of electroflotation in remediation of oily waste water. Separ. Sci. Technol. 36, 3749–3762.

    Article  CAS  Google Scholar 

  • Il’in, V.I. and Kolesnikov, V.A. (2001) Electroflotation purification of radioactive waste waters. Atom. Energy 91, 551–554.

    Article  Google Scholar 

  • Il’in, V. I. and Sedashova, O.N. (1999) An electroflotation method and plant for removing oil products from effluents. Chem. Petrol. Eng. 35, 480–481.

    Article  Google Scholar 

  • Il’in, V.I., Kolesnikov, V.A. and Parshina, Y. I. (2002) Purification of highly concentrated industrial sewage from the porcelain and faience industry by the electric flotation method. Glass Ceram. 59(7–8), 242–244.

    Article  Google Scholar 

  • Ketkar, D.R., Mallikarjunan, R. and Venkatachalam, S. (1991) Electroflotation of quartz fines. Int. J. Miner. Process. 31, 127–138.

    Article  CAS  Google Scholar 

  • Khelifa, A., Moulay, S. and Naceur, A.W. (2005) Treatment of metal finishing effluents by the electroflotation technique. Desalination 181, 27–33.

    Article  CAS  Google Scholar 

  • Kubritskaya, T.D., Drako, I.V., Sorokina, V.N. and Drondina, R.V. (2000) Use of electrochemical methods to purify the waste water from the production of concentrates in the food industry. Surf. Eng. Appl. Electrochem. 6, 62–68.

    Google Scholar 

  • Llerena, C., Ho, J. C. K. and Piron, D.L. (1996) Effect of pH on electroflotation of sphalerite. Chem. Eng. Commun. 155, 217–228.

    Article  CAS  Google Scholar 

  • Mallikarjunan, R. and Venkatachalam, S. (1984) Electroflotation-a review. In: Proceeding of the International Symposium on Electrochemistry in Mineral and Metal Processing, 165th Meeting of Electrochemistry Society, Cincinnati, OH, USA, pp. 233–256.

    Google Scholar 

  • Mansour, L. B. and Chalbi, S. (2006) Removal of oil from oil/water emulsions using electroflotation process. J. Appl. Electrochem. 36, 577–581.

    Article  Google Scholar 

  • Mostefa, N.M. and Tir, M. (2004) Coupling flocculation with electroflotation for waste oil/water emulsion treatment: Optimization of the operating conditions. Desalination 161, 115–121.

    Article  CAS  Google Scholar 

  • Mraz, R. and Krysa, J. (1994) Long service life IrO2 ∕ Ta2O5 electrodes for electroflotation. J. Appl. Electrochem. 24, 1262–1266.

    Article  CAS  Google Scholar 

  • Novak, D.M., Tilak, B.V. and Conway, B.E. (1982) Fundamental and applied aspects of anodic chlorine production In: J.O. Bockris, B.E. Conway and R.E. White (Eds), Modern Aspects of Electrochemistry vol. 14 Plenum New York, NY, pp. 195–318.

    Google Scholar 

  • Park, J., Jung, Y., Han, M. and Lee, S. (2002) Simultaneous removal of cadmium and turbidity in contaminated soil-washing water by DAF and electroflotation. Water Sci. Technol. 46 (11–12), 225–230.

    Google Scholar 

  • Poon, C.P.C. (1997) Electroflotation for groundwater decontamination. J. Hazard. Mater. 55, 159–170.

    Article  CAS  Google Scholar 

  • Rolewicz, J., Comninellis, Ch., Plattner, E. and Hinden, J. (1988) Characterisation des electrodes de type DSA pour le degagement de O2 − I. l’electrode Ti ∕ IrO2–Ta2O5. Electrochim. Acta 33, 573–580.

    CAS  Google Scholar 

  • Scott, K. (1995) Electrochemical Processes for Clean Technology. Royal Society of Chemistry Cambridge.

    Google Scholar 

  • Shen, F., Chen, X.M., Gao, P. and Chen, G. (2003) Electrochemical removal of fluoride ions from industrial waste water. Chem. Eng. Sci. 58, 987–993.

    Article  CAS  Google Scholar 

  • Srinivasan, V. and Subbaiyan, M. (1989) Electroflotation studies on Cu, Ni, Zn, and Cd with ammonium dodecyl dithiocarbamate. Separ. Sci. Technol. 24, 145–150.

    Article  CAS  Google Scholar 

  • Tsai, L.S., Hernlem, B. and Huxsoll, C.C. (2002) Disinfection and solids removal of poultry chiller water by electroflotation. J. Food Sci. 67, 2160–2164.

    Article  CAS  Google Scholar 

  • Vercesi, G.P., Rolewicz, F. and Comninellis, Ch. (1991) Characterization of DSA-type oxygen evolving electrodes: choice of base metal Thermochim. Acta 176, 31–47.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueming Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chen, X., Chen, G. (2010). Electroflotation. In: Comninellis, C., Chen, G. (eds) Electrochemistry for the Environment. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68318-8_11

Download citation

Publish with us

Policies and ethics