Electroflotation (EF) is the flotation using electrolytically generated bubbles of hydrogen and oxygen for separating suspended substances from aqueous phases. This process was first proposed by Elmore in 1905 for flotation of valuable minerals from ores. Compared with the conventional dissolved air flotation (DAF), EF has many advantages, including high flotation efficiency, compact units, easy operation, and less maintenance. Therefore, EF is an attractive alternative to DAF. This technique has been proven very effective in treating oily wastewater or oil-water emulsion, mining wastewater, groundwater, food processing wastewater, restaurant wastewater, industrial sewage, heavy metals containing effluent, and many other water and wastewaters.


Specific Energy Consumption Hydrogen Bubble Suspended Substance Oily Wastewater Dimensionally Stable Anode 


  1. Ahmed, N. and Jameson, G.J. (1985) The effect of bubble size on the rate of flotation of fine particles. Int. J. Miner. Process 14, 195–215.CrossRefGoogle Scholar
  2. Alexandrova, L., Nedialkova, T. and Nishkov, I. (1994) Electroflotation of metal ions in waste water. Int. J. Miner. Process. 41, 285–294.CrossRefGoogle Scholar
  3. Alves, V.A., Silva, L. A. D. Boodts, J.F.C. and Trasatti, S. (1994) Kinetics and mechanism of oxygen evolution on IrO2-based electrodes containing Ti and Ce acidic solutions. Electrochim Acta 39, 1585–1589.CrossRefGoogle Scholar
  4. Alves, V.A., Silva, L.A.D., Oliveira, E.D. and Boodts, J.F.C. (1998) Investigation under conditions of accelerated anodic corrosion of the effect of TiO2 substitution by CeO2 on the stability of Ir-based ceramic coatings. Mater. Sci. Forum 289–292, 655–666.CrossRefGoogle Scholar
  5. Balmer, L.M. and Foulds, A.W. (1986) Separation oil from oil-in-water emulsions by electroflocculation/electroflotation. Filtr. Separ 23(11/12), 366–369.Google Scholar
  6. Beer, H.B. (1972) Electrode and coating therefore. USA Patent 3,632,498.Google Scholar
  7. Burns, S.E., Yiacoumi, S. and Tsouris, C. (1997) Microbubble generation for environmental and industrial separations. Separ. Purif. Technol. 11, 221–232.CrossRefGoogle Scholar
  8. Cardarelli, F., Taxil, P., Savall, A., Comninellis, Ch., Manoli, G. and Leclerc, O. (1998) Preparation of oxygen evolving electrodes with long service life under extreme conditions. J. Appl. Electrochem. 28, 245–250.CrossRefGoogle Scholar
  9. Casqueira, R.G., Torem, M.L. and Kohler, H.M. (2006) The removal of zinc from liquid streams by electroflotation. Miner. Eng. 19, 1388–1392.CrossRefGoogle Scholar
  10. Chen, X.M. (2002) High-performance electrodes for wastewater treatment. PhD thesis presented to the Hong Kong University of Science and Technology.Google Scholar
  11. Chen, G. (2004) Electrochemical technologies in wastewater treatment Separ. Purif. Technol. 38, 11–41.CrossRefGoogle Scholar
  12. Chen, X.M. and Chen, G. (2005) Investigation of Ti ∕ IrO2–Sb2O5–SnO2 electrodes for O2 evolution. J. Electrochem. Soc. 152(7), J59–J64.CrossRefGoogle Scholar
  13. Chen, G., Chen, X.M. and Yue, P.L. (2000) Electrocoagulation and electroflotation of restaurant wastewater. J. Environ. Eng.-ASCE 126, 858–863.Google Scholar
  14. Chen, X.M., Chen, G. and Yue, P. L. (2001) Stable Ti ∕ IrOx − Sb2O5 − SnO2 anode for O2 evolution with low Ir content. J. Phys. Chem. B 105, 4623–4628.CrossRefGoogle Scholar
  15. Chen, G., Chen, X.M. and Yue, P.L. (2002a) Electrochemical behaviour of Novel Ti ∕ IrOx–Sb2O5–SnO2 anodes. J. Phys. Chem. B 106, 4364–4369.CrossRefGoogle Scholar
  16. Chen, X.M., Chen, G. and Yue, P.L. (2002b) Investigation on the electroysis voltage of electrocoagulation. Chem. Eng. Sci. 57, 2449–2455.CrossRefGoogle Scholar
  17. Chen, X.M., Chen, G. and Yue, P.L. (2002c) Novel electrode system for electroflotation of wastewaters, Environ. Sci. Technol. 36(4), 778–783.CrossRefGoogle Scholar
  18. Choi, Y.G., Kim, H.S., Park, Y.H., Jeong, S.H., Son, D.H., Oh, Y.K. and Yeom, I.T. (2005) Improvement of the thickening and dewatering characteristics of activated sludge by electroflotation (EF) Water. Sci. Technol. 52(10–11), 219–226.Google Scholar
  19. Comninellis, Ch. and Vercesi, G.P. (1991) Characterization of DSA-type oxygen evolving electrodes: choice of a coating. J. Appl. Electrochem. 21, 335–345.CrossRefGoogle Scholar
  20. De Rijk, S.E., van der Graaf, J.H.J.M. and den Blanken, J.G. (1994) Bubble size in flotation thickening. Water Res. 28, 465–473.CrossRefGoogle Scholar
  21. Elmore, F.E. (1905) A process for separating certain constituents of subdivided ores and like substances, and apparatus therefore. British Patent 13,578.Google Scholar
  22. Fukui, Y. and Yuu, S. (1985) Removal of colloidal particles in electroflotation. AIChE J. 31(2), 201–208.CrossRefGoogle Scholar
  23. Gao, P., Chen, X.M, Shen, F. and Chen, G. (2005) Removal of chromium (VI) from wastewater by combined electrocoagulation-electroflotation without a filter. Separ. Purif. Technol. 43, 117–123.CrossRefGoogle Scholar
  24. Glembotskii, V. A., Mamakov, A.A., Ramanov, A. M. and Nenno, V.E. (1975) 11th International Mineral Processing Congress, Caglairi, pp. 562–581.Google Scholar
  25. Hernlem, B.J. and Tsai, L.S. (2000) Chlorine generation and disinfection by electroflotation. J. Food Sci. 65, 834–837.CrossRefGoogle Scholar
  26. Hine, F., Yasuda, M., Noda, T., Yoshida, T. and Okuda, J. (1979) Electrochemical behavior of the oxide-coated metal anodes. J. Electrochem. Soc. 126, 1439–1445.CrossRefGoogle Scholar
  27. Ho, C.C. and Chan, C.Y. (1986) The application of lead dioxide-coated titanium anode in the electroflotation of palm oil mill effluent. Water Res. 20, 1523–1527.CrossRefGoogle Scholar
  28. Hosny, A.Y. (1996) Separating oil from oil–water emulsions by electroflotation technique. Separ. Technol. 6, 9–17.CrossRefGoogle Scholar
  29. Ibrahim, M.Y., Mostafa, S.R., Fahmy, M.F.M. and Hafez, A.I. (2001) Utilization of electroflotation in remediation of oily waste water. Separ. Sci. Technol. 36, 3749–3762.CrossRefGoogle Scholar
  30. Il’in, V.I. and Kolesnikov, V.A. (2001) Electroflotation purification of radioactive waste waters. Atom. Energy 91, 551–554.CrossRefGoogle Scholar
  31. Il’in, V. I. and Sedashova, O.N. (1999) An electroflotation method and plant for removing oil products from effluents. Chem. Petrol. Eng. 35, 480–481.CrossRefGoogle Scholar
  32. Il’in, V.I., Kolesnikov, V.A. and Parshina, Y. I. (2002) Purification of highly concentrated industrial sewage from the porcelain and faience industry by the electric flotation method. Glass Ceram. 59(7–8), 242–244.CrossRefGoogle Scholar
  33. Ketkar, D.R., Mallikarjunan, R. and Venkatachalam, S. (1991) Electroflotation of quartz fines. Int. J. Miner. Process. 31, 127–138.CrossRefGoogle Scholar
  34. Khelifa, A., Moulay, S. and Naceur, A.W. (2005) Treatment of metal finishing effluents by the electroflotation technique. Desalination 181, 27–33.CrossRefGoogle Scholar
  35. Kubritskaya, T.D., Drako, I.V., Sorokina, V.N. and Drondina, R.V. (2000) Use of electrochemical methods to purify the waste water from the production of concentrates in the food industry. Surf. Eng. Appl. Electrochem. 6, 62–68.Google Scholar
  36. Llerena, C., Ho, J. C. K. and Piron, D.L. (1996) Effect of pH on electroflotation of sphalerite. Chem. Eng. Commun. 155, 217–228.CrossRefGoogle Scholar
  37. Mallikarjunan, R. and Venkatachalam, S. (1984) Electroflotation-a review. In: Proceeding of the International Symposium on Electrochemistry in Mineral and Metal Processing, 165th Meeting of Electrochemistry Society, Cincinnati, OH, USA, pp. 233–256.Google Scholar
  38. Mansour, L. B. and Chalbi, S. (2006) Removal of oil from oil/water emulsions using electroflotation process. J. Appl. Electrochem. 36, 577–581.CrossRefGoogle Scholar
  39. Mostefa, N.M. and Tir, M. (2004) Coupling flocculation with electroflotation for waste oil/water emulsion treatment: Optimization of the operating conditions. Desalination 161, 115–121.CrossRefGoogle Scholar
  40. Mraz, R. and Krysa, J. (1994) Long service life IrO2 ∕ Ta2O5 electrodes for electroflotation. J. Appl. Electrochem. 24, 1262–1266.CrossRefGoogle Scholar
  41. Novak, D.M., Tilak, B.V. and Conway, B.E. (1982) Fundamental and applied aspects of anodic chlorine production In: J.O. Bockris, B.E. Conway and R.E. White (Eds), Modern Aspects of Electrochemistry vol. 14 Plenum New York, NY, pp. 195–318.Google Scholar
  42. Park, J., Jung, Y., Han, M. and Lee, S. (2002) Simultaneous removal of cadmium and turbidity in contaminated soil-washing water by DAF and electroflotation. Water Sci. Technol. 46 (11–12), 225–230.Google Scholar
  43. Poon, C.P.C. (1997) Electroflotation for groundwater decontamination. J. Hazard. Mater. 55, 159–170.CrossRefGoogle Scholar
  44. Rolewicz, J., Comninellis, Ch., Plattner, E. and Hinden, J. (1988) Characterisation des electrodes de type DSA pour le degagement de O2 − I. l’electrode Ti ∕ IrO2–Ta2O5. Electrochim. Acta 33, 573–580.Google Scholar
  45. Scott, K. (1995) Electrochemical Processes for Clean Technology. Royal Society of Chemistry Cambridge.Google Scholar
  46. Shen, F., Chen, X.M., Gao, P. and Chen, G. (2003) Electrochemical removal of fluoride ions from industrial waste water. Chem. Eng. Sci. 58, 987–993.CrossRefGoogle Scholar
  47. Srinivasan, V. and Subbaiyan, M. (1989) Electroflotation studies on Cu, Ni, Zn, and Cd with ammonium dodecyl dithiocarbamate. Separ. Sci. Technol. 24, 145–150.CrossRefGoogle Scholar
  48. Tsai, L.S., Hernlem, B. and Huxsoll, C.C. (2002) Disinfection and solids removal of poultry chiller water by electroflotation. J. Food Sci. 67, 2160–2164.CrossRefGoogle Scholar
  49. Vercesi, G.P., Rolewicz, F. and Comninellis, Ch. (1991) Characterization of DSA-type oxygen evolving electrodes: choice of base metal Thermochim. Acta 176, 31–47.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Environmental Engineering DepartmentZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations