Advertisement

Basic Principles of the Electrochemical Mineralization of Organic Pollutants for Wastewater Treatment

  • Agnieszka Kapałka
  • György Fóti
  • Christos Comninellis
Chapter

Abstract

The electrochemical mineralization of organic pollutants is a new technology for treatment of dilute wastewater (COD < 5 g∕L). In this method, utilizing the electrical energy, a complete oxidation of pollutants can be achieved on high oxidation power anodes. An ideal anode for this type of treatment is a boron-doped diamond electrode (BDD) characterized by a high reactivity toward organics oxidation. In the present work, both thermodynamic and kinetic aspects of organics mineralization are discussed. The proposed theoretical kinetic model of organics mineralization on BDD anodes is in excellent agreement with the experimental results. In addition, the economical aspect of electrochemical organics mineralization is reported.

Keywords

Chemical Oxygen Demand Current Efficiency Chemical Oxygen Demand Removal Oxygen Evolution Reaction Specific Energy Consumption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bellagamba, R., Michaud, P.-A., Comninellis, Ch. and Vatistas, N. (2002) Electro-combustion of polyacrylates with boron-doped diamond anodes. Electrochem. Commun. 4, 171–176.CrossRefGoogle Scholar
  2. Boye, B., Michaud, P.-A., Marselli, B., Dieng, M.M., Brillas, E. and Comninellis, Ch. (2002) Anodic oxidation of 4-chlorophenoxyacetic acid on synthetic boron-doped diamond electrodes. New Diam. Front. Carbon Technol. 12, 63–72.Google Scholar
  3. Boye, B., Brillas, E., Marselli, B., Michaud, P.-A., Comninellis, Ch. and Dieng, M.M. (2004) Electrochemical decontamination of waters by advanced oxidation processes (AOPS): Case of the mineralization of 2,4,5-T on BDD electrode. Bull. Chem. Soc. Ethiop. 18, 205–214.Google Scholar
  4. Boye, B., Brillas, E., Marselli, B., Michaud, P.-A., Comninellis, Ch., Farnia, G. and Sandonà, G. (2006) Electrochemical incineration of chloromethylphyenoxy herbicides in acid medium by anodic oxidation with boron-doped diamond electrodes. Electrochim. Acta 51, 2872–2880.CrossRefGoogle Scholar
  5. Brillas, E., Boye, B., Sires, I., Garrido, J.A., Rodriguez, R.M., Arias, C., Cabot, P.-L. and Comninellis, Ch. (2004) Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode. Electrochim. Acta 49, 4487–4496.CrossRefGoogle Scholar
  6. Chen, X., Gao, F., Chen, G. and Yue, P.L. (2003) High-performance Ti/BDD electrodes for pollutants oxidation. Environ. Sci. Technol. 37, 5021–5026.CrossRefGoogle Scholar
  7. Chen, X., Gao, F. and Chen, G. (2005) Comparison of Ti/BDD and Ti ∕ SnO2-Sb2O5 electrodes for pollutants oxidation. J. Appl. Electrochem. 35, 185–191.CrossRefGoogle Scholar
  8. Comninellis, Ch. (1992) Electrochemical treatment of wastewater. Gas Wasser Abwasser 72, 792–797.Google Scholar
  9. Comninellis, Ch. (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim. Acta 39, 1857–1862.CrossRefGoogle Scholar
  10. Comninellis, Ch. and De Battisti, A. (1996) Electrocatalysis in anodic oxidation of organics with simultaneous oxygen evolution. J. Chim. Phys. 93, 673–679.Google Scholar
  11. Comninellis, Ch. and Nerini, A. (1995) Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. J. Appl. Electrochem. 25, 23–28.CrossRefGoogle Scholar
  12. Comninellis, Ch. and Plattner, E. (1988) Electrochemical wastewater treatment. Chimia 42, 250–252.Google Scholar
  13. Comninellis, Ch. and Pulgarin, C. (1991) Anodic oxidation of phenol for wastewater treatment. J. Appl. Electrochem. 21, 703–708.CrossRefGoogle Scholar
  14. Comninellis, Ch. and Pulgarin, C. (1993) Electrochemical oxidation of phenol for wastewater treatment using tin dioxide anodes. J. Appl. Electrochem. 23, 108–112.CrossRefGoogle Scholar
  15. Fóti, G. and Comninellis, Ch. (2004) Electrochemical oxidation of organics on iridium oxide and synthetic diamond based electrodes. In: R.E. White, B.E. Conway, C.G. Vayenas and M.E. Gamboa-Adelco (Eds.), Modern Aspects of Electrochemistry, Vol. 37. Plenum, New York, NY, pp. 87–130.Google Scholar
  16. Fóti, G., Gandini, D. and Comninellis, Ch. (1997) Anodic oxidation of organics on thermally prepared oxide electrodes. In: M. Armand, J.O’M. Bockris, E.J. Cairns, M. Froment, Z. Galus, Y. Ito, R.F. Savinell, Z.W. Tian, S. Trasatti and T.J. VanderNoot (Eds.), Current Topics in Electrochemistry, Vol. 5. Research Trends, Trivandrum, pp. 71–91.Google Scholar
  17. Fóti, G., Gandini, D., Comninellis, Ch., Perret, A. and Haenni, W. (1999) Oxidation of organics by intermediates of water discharge on IrO2 and synthetic diamond anodes. Electrochem. Solid-State Lett. 2, 228–230.CrossRefGoogle Scholar
  18. Fryda, M., Herrmann, D., Schäfer, L., Klages, C.-P., Perret, A., Haenni, W., Comninellis, Ch. and Gandini, D. (1999) Properties of diamond electrodes for wastewater treatment. New Diam. Front. Carbon Technol. 9, 229–240.Google Scholar
  19. Gandini, D., Mahé, E., Michaud, P.-A., Haenni, W., Perret, A. and Comninellis, Ch. (2000) Oxidation of carboxylic acids at boron-doped diamond electrodes for wastewater treatment. J. Appl. Electrochem. 30, 1345–1350.CrossRefGoogle Scholar
  20. Haenni, W., Rychen, P., Fryda, M. and Comninellis, Ch. (2004) Industrial applications of diamond electrodes. Semiconduct. Semimet. 77, 149–196.Google Scholar
  21. Iniesta, J., Michaud, P.-A., Panizza, M. and Comninellis, Ch. (2001a) Electrochemical oxidation of 3-methylpyridine at a boron-doped diamond electrode: Application to electroorganic synthesis and wastewater treatment. Electrochem. Commun. 3, 346–351.CrossRefGoogle Scholar
  22. Iniesta, J., Michaud, P.-A., Panizza, M., Cerisola, G., Aldaz, A. and Comninellis, Ch. (2001b) Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochim. Acta 46, 3573–3578.CrossRefGoogle Scholar
  23. Marselli, B., Garcia-Gomez, J., Michaud, P.-A., Rodrigo, M.A. and Comninellis, Ch. (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J. Electrochem. Soc. 150, D79–D83.CrossRefGoogle Scholar
  24. Martinez-Huitle, C.A., Quiroz, M.A., Comninellis, Ch, Ferro, S. and De Battisti, A. (2004) Electrochemical incineration of chloranilic acid using Ti ∕ IrO2, Pb ∕ PbO2 and Si/BDD electrodes. Electrochim. Acta 50, 949–956.CrossRefGoogle Scholar
  25. Michaud, P.-A., Panizza, M., Ouattara, L., Diaco, T., Foti, G. and Comninellis, Ch. (2003) Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes. J. Appl. Electrochem. 33, 151–154.CrossRefGoogle Scholar
  26. Montilla, F., Michaud, P.-A., Morallon, E., Vazquez, J.L. and Comninellis, Ch. (2001) Electrochemical oxidation of benzoic acid on boron doped diamond electrodes. Portug. Electrochim. Acta 19, 221–226.CrossRefGoogle Scholar
  27. Montilla, F., Michaud, P.-A., Morallon, E., Vazquez, J.L. and Comninellis, Ch. (2002) Electrochemical oxidation of benzoic acid at boron-doped diamond electrodes. Electrochim. Acta 47, 3509–3513.CrossRefGoogle Scholar
  28. Ouattara, L., Duo, I., Diaco, T., Ivandini, A., Honda, K., Rao, T., Fujishima, A. and Comninellis, Ch. (2003) Electrochemical oxidation of ethylenediaminetetraacetic acid (EDTA) on BDD electrodes: Application to wastewater treatment. New Diam. Front. Carbon Technol. 13, 97–108.Google Scholar
  29. Ouattara, L., Chowdhry, M.M. and Comninellis, Ch. (2004) Electrochemical treatment of industrial wastewater. New Diam. Front. Carbon Technol. 14, 239–247.Google Scholar
  30. Panizza, M., Michaud, P.-A., Cerisola, G. and Comninellis, Ch. (2001a) Anodic oxidation of 2-naphthol at boron-doped diamond electrodes. J. Electroanal. Chem. 507, 206–214.CrossRefGoogle Scholar
  31. Panizza, M., Michaud, P.-A., Cerisola, G. and Comninellis, Ch. (2001b) Electrochemical treatment of wastewaters containing organic pollutants on boron-doped diamond electrodes: Prediction of specific energy consumption and required electrode area. Electrochem. Commun. 3, 336–339.CrossRefGoogle Scholar
  32. Polcaro, A.M., Mascia, M., Palmas, S. and Vacca, A. (2004) Electrochemical degradation of diuron and dichloroaniline at BDD electrode. Electrochim. Acta 49, 649–656.CrossRefGoogle Scholar
  33. Polcaro, A.M., Vacca, A., Mascia, M. and Palmas, S. (2005) Oxidation at boron doped diamond electrodes: Effective method to mineralise triazines. Electrochim. Acta 50, 1841–1847.CrossRefGoogle Scholar
  34. Pulgarin, C., Adler, N., Peringer; P. and Comninellis, Ch. (1994) Electrochemical detoxification of a 1,4-benzoquinone solution in wastewater treatment. Water Res. 28, 887–893.Google Scholar
  35. Rodrigo, M.A., Michaud P.-A., Duo, I., Panizza, M., Cerisola, G. and Comninellis, Ch. (2001) Oxidation of 4-chlorophenol at boron-doped diamond electrode for wastewater treatment. J. Electrochem. Soc. 148, D60–D64.CrossRefGoogle Scholar
  36. Seignez, C., Pulgarin, C., Peringer, P., Comninellis, Ch. and Plattner, E. (1992) Degradation of industrial organic pollutants. Electrochemical and biological treatment and combined treatment. Swiss Chem. 14, 25–30.Google Scholar
  37. Simond, O., Schaller, V. and Comninellis, Ch. (1997) Theoretical model for the anodic oxidation of organics on metal oxide electrodes. Electrochim. Acta 42, 2009–2012.CrossRefGoogle Scholar
  38. Zanta, C.L.P.S., Michaud, P.-A., Comninellis, Ch., De Andrade, A.R. and Boodts, J.F.C. (2003) Electrochemical oxidation of p-chlorophenol on SnO2-Sb2O5 based anodes for wastewater treatment. J. Appl. Electrochem. 33, 1211–1215.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Agnieszka Kapałka
    • 1
  • György Fóti
  • Christos Comninellis
  1. 1.Institute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations