Stochastic Majorizations

  • Albert W. Marshall
  • Ingram Olkin
  • Barry C. Arnold
Part of the Springer Series in Statistics book series (SSS)


A comparison between two random vectors X and Y might be called 1 a stochastic majorization if the comparison reduces to the ordinary 2 majorization x y in case X and Y are degenerate at x and y; i.e.,\({\rm{P\{X = }}x{\rm{\} = 1, P\{ Y = y\} = 1}}{\rm{.}}\)


Convex Function Random Vector Joint Density Multinomial Distribution Normal Random Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Albert W. Marshall
    • 1
    • 2
  • Ingram Olkin
    • 3
  • Barry C. Arnold
    • 4
  1. 1.Department of StatisticsUniversity of British ColumbiaVancouverCanada
  2. 2.Lummi IslandUSA
  3. 3.Department of StatisticsStanford UniversityStanfordUSA
  4. 4.Department of StatisticsUniversity of CaliforniaRiversideUSA

Personalised recommendations