Photovoltaic - Electrolysis Cells

  • Craig A. Grimes
  • Oomman K. Varghese
  • Sudhir Ranjan


Solar Cell Hydrogen Production Amorphous Silicon Electrolysis Cell Water Splitting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cox KE (1976) Hydrogen from solar energy via water electrolysis. Proc 11th IECEC pp. 926–932Google Scholar
  2. 2.
    Costogue EN, Yasui RK (1977) Performance data for a terrestrial solar photovoltaic/water electrolysis experiment. Sol Energy 19:205–210Google Scholar
  3. 3.
    Esteve D, Ganibal C, Steinmetz D, Vialason A (1980) Performance of a photovoltaic electrolysis system. Proc 3rd word Hydrogen Energy Conference, Tokyo. V. 3, pp.1583–1603Google Scholar
  4. 4.
    Koukouvinos A, Lygerou V, Koumoutsos N (1982) Design of a system for solar energy storage via water electrolysis Int J Hydrogen Energy 7:645–650Google Scholar
  5. 5.
    Carpetis C (1982) A study of water electrolysis with photovoltaic solar energy conversion. Int J Hydrogen Energy 7:287–310CrossRefGoogle Scholar
  6. 6.
    Dahlberg R (1982) Replacement of fossil fuels by hydrogen. Int J Hydrogen Energy 7:121–142CrossRefGoogle Scholar
  7. 7.
    Estève D, Ganibal C, Steinmetz D, Vialaron A (1982) Performance of a photovoltaic electrolysis system. Int J Hydrogen Energy 7:711–716CrossRefGoogle Scholar
  8. 8.
    Dini D (1982) Hydrogen production through solar energy water electrolysis. Int J Hydrogen Energy 8:897–903CrossRefGoogle Scholar
  9. 9.
    Carpetis C (1984) An assessment of electrolytic hydrogen production by means of photovoltaic energy conversion. Int J Hydrogen Energy 9:969–991CrossRefGoogle Scholar
  10. 10.
    Murphy OJ, Bockris JOM (1984) Photovoltaic electrolysis: Hydrogen and electricity from water and light. Int J Hydrogen Energy 9:557–561CrossRefGoogle Scholar
  11. 11.
    Bockris JOM, Dandapani B, Cocke D, Ghoroghchian J (1985) On the splitting of water. Int J Hydrogen Energy 10:179–201CrossRefGoogle Scholar
  12. 12.
    Steeb H, Mehrmann A, Seeger W, Schnurnberger W (1985) Solar hydrogen production: Photovoltaic/electrolyzer system with active power conditioning. Int J Hydrogen Energy 10:353–358CrossRefGoogle Scholar
  13. 13.
    Kharkats YI, German ED, Kazarinov VE, Pshenichnikov AG, Pleskov YV.(1985) Hydrogen production by solar energy: Optimization of the plant “solar array + electrolyzer”. Int J hydrogen Energy 10:617–621Google Scholar
  14. 14.
    Delahoy AE, Gao SC, Murphy OJ, Kapur M, Bockris JOM (1985) A one-unit photovoltaic electrolysis system based on a triple stack of amorphous silicon (pin) cells. Int J Hydrogen Energy 10:113–116CrossRefGoogle Scholar
  15. 15.
    Appleby AJ, Delahoy SC, Gau SC, Murphy OJ, Kapur M, Bockris JOM (1985) An amorphous silicon-based one-unit photovoltaic electrolyzer. Int J Hydrogen Energy. 10:871–879Google Scholar
  16. 16.
    Fischer M (1986) Review of hydrogen production with photovoltaic electrolysis system. Int J Hydrogen Energy 11:495–501CrossRefGoogle Scholar
  17. 17.
    Siegel A, Schott T (1988) Optimization of photovoltaic hydrogen production. Int J Hydrogen Energy 13:659–675CrossRefGoogle Scholar
  18. 18.
    Lin GH, Kapur M, Kainthla RC, Bockris JOM (1989) One step method to produce hydrogen by a triple stack amorphous silicon solar cell. Apl Phys Lett 55:386–387CrossRefGoogle Scholar
  19. 19.
    Ogden JM, Williams RH (1990) Electrolytic hydrogen from thin-film solar cell. Int J Hydrogen Energy 15:155–169CrossRefGoogle Scholar
  20. 20.
    Arashi H, Naito H, Miura H (1991) Hydrogen production from high-temperature steam electrolysis using solar energy. Int J Hydrogen Energy 16:603–608CrossRefGoogle Scholar
  21. 21.
    Bard AJ, Fox MA (1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen: Acc Chem Res 28:141–145CrossRefGoogle Scholar
  22. 22.
    Abdel-Aal HK (1992) Storage and transport of solar energy on a massive scale: the hydrogen option. Int J Hydrogen Energy17:875–882CrossRefGoogle Scholar
  23. 23.
    Block DL, Melody I (1992) Efficiency and cost goals for photoenhanced hydrogen production processes. Int J Hydrogen Energy 17:853–861CrossRefGoogle Scholar
  24. 24.
    Barra L, Coiante D (1993) Hydrogen-photovoltaic stand-alone power stations: A sizing method. Int J Hydrogen Energy 18:337–344CrossRefGoogle Scholar
  25. 25.
    Gramaccio CA, Selvagi A,Galluzzi F(1993) Thin-flim multijunction solar cell for photoelectrolysis. Electochim Acta 38:111–113CrossRefGoogle Scholar
  26. 26.
    Kauranen PS, Lund PD, Vanhanen JP (1993) Control of battery backed photovoltaic hydrogen production. Int J Hydrogen Energy 18:383–390CrossRefGoogle Scholar
  27. 27.
    Bolton JR (1996) Solar photoproduction of hydrogen: review. Sol Energy 57:37–50CrossRefGoogle Scholar
  28. 28.
    Shukla PK, Karn RK, Singh AK, Srivastava ON (2002) Studies on PV assisted PEC solar cells for hydrogen production through photoelectrolysis of water. Int J Hydrogen Energy27:135–141CrossRefGoogle Scholar
  29. 29.
    Conibeer GJ, Richards BS (2007) A comparison of hydrogen storage technologies for solar-powered stand-alone power supplies: A photovoltaic system sizing approach. Int J Hydrogen Energy (in press)Google Scholar
  30. 30.
    Conibeer GJ, Richards BS (2007) A comparison of PV/electrolyser and photoelectrolytic technologies for use in solar to hydrogen energy storage systems. Int J Hydrogen Energy (in Press)Google Scholar
  31. 31.
    Yamaguchi K, Udono H (2007) Novel photosensitive materials for hydrogen generation through photovoltaic electricity. Int J Hydrogen Energy (in Press)Google Scholar
  32. 32.
    Ahmad GE, El Shenawy ET (2006) Optimized photovoltiac system for hydrogen production. Renewable Energy 31:1043–1054CrossRefGoogle Scholar
  33. 33.
    Miri R, Mraoui S (2007) Electrolytic process of hydrogen production by solar energy. Desalination 206:69–77CrossRefGoogle Scholar
  34. 34.
    Rzayeva MP, Salamov OM, Kerimov MK (2001) Modeling to get hydrogen and oxygen by solar water electrolysis. International Journal of Hydrogen Energy. 26:195–201CrossRefGoogle Scholar
  35. 35.
    Khaselev O, Turner JA (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting, Science 280:425–427CrossRefGoogle Scholar
  36. 36.
    Rocheleau RE, Miller EL, Misra A (1998) High efficiency photoelectrochemical hydrogen production using multijunction amorphous photoelectrode. Energy & Fuels 12:3–10CrossRefGoogle Scholar
  37. 37.
    Licht S, Ghosh S, Trbutsch, H, Fiecher (2002) High efficiency solar energy water splitting to generate hydrogen fuel: probing RuS2 enhancement of multiple band electrolysis. Sol Energy Mater Sol cells. 70:471–480Google Scholar
  38. 38.
    Miller EL, Rocheleau RE, Khan S A (2004) Hybrid multijunction photoelectrode for hydrogen production fabricated with amorphous silicon/germanium and iron oxide thin films Int J Hydrogen Energy 29:907–914CrossRefGoogle Scholar
  39. 39.
    Ingler WB, Khan SUM (2006) A self-driven p/n-Fe2O3 tandem photoelectrochemical cell for water splitting. 9:G144-G146Google Scholar
  40. 40.
    Weber MF, Dignam MJ (1986) Splitting water with semiconducting photoelectrodes–Efficiency considerations. Int J Hydrogen Energy 11:225–232CrossRefGoogle Scholar
  41. 41.
    Bolton JR, Strickler SJ, Connolly JS (1985) Limiting and realizable efficiencies of solar photolysis of water Nature 316:495–500CrossRefGoogle Scholar
  42. 42.
    Litcht S (2001) Multiple band gap semiconductor/electrolyte conversion. J Phys Chem B 105:6281CrossRefGoogle Scholar
  43. 43.
    Bilgen E (2001) Solar hydrogen from photovoltaic-electrolyzer systems. Energy Conversion and Management 42:1047–1057CrossRefGoogle Scholar
  44. 44.
    Litcht S (2005) solar water splitting to generate hydrogen fuel- a photothermal electrochemical analysis. Int J Hydrogen Energy 30:459–470CrossRefGoogle Scholar
  45. 45.
    Hanna MC, Nozik AJ (2006) Solar conversion efficiency of photovoltaic and photoelectrolysis cell with carrier multiplication absorbers. J Appl Phys 100:074510–074518CrossRefGoogle Scholar
  46. 46.
    Becquerel AE (1839) Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques. Comptes Rendus de L’Academie des Sciences :145–149. Republished:Becquerel AE (1841) Annalen der Physick und Chemie 54:8–34Google Scholar
  47. 47.
    Becquerel AE (1839) Memoire sur les effects d’electriques produits sous l’influence des rayons solaires. Comptes Rendus de L’Academie des Sciences 9:561–567. Republished: Becquerel AE (1841) Annalen der Physick und Chemie. 54:35–42Google Scholar
  48. 48.
    Fritts CE (1883) On a New Form of Selenium Photocell. Proc American Association for the Advancement of Science. 33:97 and American Journal of Science 26:465Google Scholar
  49. 49.
    RS Ohl (1946) Light sensitive electric device. US Patent US2402662Google Scholar
  50. 50.
    Chapin DM, Fuller CS, Pearson GL (1954) A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys 25:676–677CrossRefGoogle Scholar
  51. 51.
    Jenny DA, Loferski JJ, Rappaport P (1956) Photovoltaic effect in GaAs p-n junctions and solar energy conversion. Phys. Rev. 101:1208–1209CrossRefGoogle Scholar
  52. 52.
    Carlson DE, Wronksi CR (1976) Amorphous silicon solar cell. Appl Phys Lett 28:671–673CrossRefGoogle Scholar
  53. 53.
    Carlson DE (1977) Semiconductor device having a body of amorphous silicon. US Patent US4064521Google Scholar
  54. 54.
    Carlson DE (1989) Amorphous silicon solar cell. IEEE Trans Electron devices 36:2775–2780CrossRefGoogle Scholar
  55. 55.
    Olson JM (1987) Current and lattice matched tandem solar cell. US Patent 4667059Google Scholar
  56. 56.
    Olson JM, Kurtz SR (1993) Current-matched high-efficiency, multijunction monolithic solar cell. US patent US 5223043Google Scholar
  57. 57.
    Bertness KA, Kurtz SR, Friedman DJ, Kibbler AE, Crammer C (1994) 29.5% efficient GaInP/GaAs tandem solar cells. Appl Phys Lett 65:989–99CrossRefGoogle Scholar
  58. 58.
    King RR, Fetzer CM, Colter PC, Edmondson KM, Ermer JH, Cotal HL, Yoon H, Stavrides AP, Kinsey G, Krut DD, Karam NH (2002) 29th IEEE Photovolyaic Specialist Conference, pp.776–781Google Scholar
  59. 59.
    Wanlass MW, Ahrenkiel SP, Albin DS, Carapella JJ, Duda A, Emery K, Geisz JF, Jones K, Kurtz S, Moriarty T, Romero MJ. GaInP/GaAs/GaInAs Monolithic Tandem Cells for High-Performance Solar Concentrators. Optics & Photonics 2005 San Diego, California, USAGoogle Scholar
  60. 60.
    King RR, Law DC, Fetzer CM, Sherif RA, Edmondson KM, Kurtz S, Kinsey GS, Cotal HL, Krut DD, Ermer JH, Karam NH (2005) Pathways to 40%-efficient concentrator photovoltaics. 20th European Photovoltaic Solar Energy Conference and Exhibition, Barcelona, SpainGoogle Scholar
  61. 61.
    Bosi M, Pelosi C (2007)The potential of III-V semiconductors as terrestrial photovoltaic devices. Prog Photovolt: Res Appl 15:51–68Google Scholar
  62. 62.
    Yu KM, Walukiewicz W, Wu J, Shan W, Beeman JW, Sarpulla MA, Dubon OD, Becla P (2003) Diluted II-VI oxide semiconductors with multiple band gaps. Phys Rev Lett 91:246403–246405CrossRefGoogle Scholar
  63. 63.
    Luque A, Hegedus S (2003). Handbook of Photovoltaic Science and Engineering, John Wiley & Sons New YorkGoogle Scholar
  64. 64.
    Green MA (1992) Solar cells-operation principles, technology and system applications, 2nd ed. The University of New South Wales, Kensington, New South Wales, AustraliaGoogle Scholar
  65. 65.
    Green MA (2001) Third Generation Photovoltaics: Ultrahigh conversion efficiency at Low Cost. Prog Photovolt Res Appl 9:123–125CrossRefGoogle Scholar
  66. 66.
    Carlson DE (1977) Amorphous silicon solar cell. IEEE Trans Electron Devices. 24:449–454Google Scholar
  67. 67.
    Yang J, Banerjee A, Guha S (1997) Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies. Appl Phys Lett 70:2975–2978CrossRefGoogle Scholar
  68. 68.
    Guha S, Narsimhan KL, Pietruszko SM (1981). On light induced effect in amorphous hydrogenated silicon. J Appl Phys 52:859–860Google Scholar
  69. 69.
    Staebler DL, Wronski CR (1977) Reversible conductivity changes in discharge-produced amorphous Si. Appl Phys Lett 31:292–294CrossRefGoogle Scholar
  70. 70.
    Tsu DV, Chao BS, Ovshinsky SR, Guha S, Yang J (1997). Effect of hydrogen dilution on the structure of amorphous silicon alloy. Appl Phys Lett 71:1317–1319Google Scholar
  71. 71.
    Guha S, Yang J, Williamson DL, Lubianiker Y, Cohen JD, Mahan AH (1999) Structural, defect, and device behavior of hydrogenated amorphous Si near and above the onset of microcrystallinity. Appl Phys Lett 74:1860–1863CrossRefGoogle Scholar
  72. 72.
    Zeman M, Schropp REI (1998) Amorphous and microcrystalline silicon solar cells: Modeling, materials and device technology, Kluwer Academic Publishers, Dordrecht, pp.181–182Google Scholar
  73. 73.
    Koh J, Ferlauto AS, Rovira PI, Wronski CR, Collins RW (1999) Evolutionary phase diagram for plasma enhanced chemical vapor deposition of silicon thin films from hydrogen diluted silane. Appl Phys Lett 75:2286–2289CrossRefGoogle Scholar
  74. 74.
    Koh J, Lee Y, Fujiwara H, Wronski CR, Collins RW(1998) Optimization of hydrogenated amorphous silicon p-i-n solar cells with two steps i layers guided by real time ellipsometry. Appl Phys Lett 73:1526 1529CrossRefGoogle Scholar
  75. 75.
    Colins RW, Ferlauto AS, Ferreira GM, Chen C, Koh J, Koval RJ, Lee Y, Pearce JM, Wronski CR (2003) Evolution of microstrucutre and phase in amorphous, protocrystalline, and microcrystalline silicon studied by realtime spectroscopic ellipsometry. Sol Energy Mat Sol Cells 78:143–180CrossRefGoogle Scholar
  76. 76.
    Green MA, Emery K, King DL, Hishikawa Y, Warta W (2006) Solar efficiency Tables (version 28). Prog Photovolt: Res Appl 14:455–461CrossRefGoogle Scholar
  77. 77.
    B.O. Regan BO, Grätzel M (1991) A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 thin film. Nature 353:737–740Google Scholar
  78. 78.
    Nazeeruddin MK, Kay A, Rodocio I, Humphry Baker R, Muller E, Liska P, Vlachopoulos N, Gratzel (1993) Conversion of light to electricity by Cis-X2Bis(2,2′ -bipyridyl-4,4′ -dicarboxylate)ruthenium(II) charge-transfer sensitizers(X = Cl-, Br-, I-, CN- and SCN-) on nanocrystalline TiO2 electrodes. J Am Chem Soc 115:6382–6390Google Scholar
  79. 79.
    Han L, Fukui A, Fuke N, Koide N, Yamanaka R (2006) High efficiency of dye-sensitized solar cell and module. Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Hawai, USA pp. 179–182Google Scholar
  80. 80.
    Adachi M, Murata Y, Okada I, Yoshikawa S (2003) Formation of titania nanotube and applications for dye-sensitized solar cells. J Electrochem Soc 150:G488-G493CrossRefGoogle Scholar
  81. 81.
    Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Use of highly ordered TiO2 nanotube arrays in dye-sensitized solar cell. Nano lett 6:215–218CrossRefGoogle Scholar
  82. 82.
    Z. S. Wang, H. Kawauchi, T. Kashima, H. Arakawa. Significance influence of TiO2 photoelectrode on the energy conversion efficiency N719 dye-sensitized solar cell, Coord.Chem. Rev. 248, 1381–89 (2004)CrossRefGoogle Scholar
  83. 83.
    Kuang D, Ito S, Wenger B, Klein C, Moser JE, Baker RH, Zakeeruddin SM, Grätzel M (2006). High molar extinction coefficient heteroleptic ruthenium complxes for thin-film dye sensitized solar cells. J Am Chem Soc 128:4146–4154CrossRefGoogle Scholar
  84. 84.
    Wang P, Wenger B, Baker RH, Moser JE, Teuscher J, Kantlehner W, Mezger J, Stoyanov EV, Zakeeruddin SM, Grätzel M (2005) Charge Separation and Efficient Light Energy Conversion in Sensitized Mesoscopic Solar Cells based on binary ionic liquids. J Am Chem Soc 127:6850–6056CrossRefGoogle Scholar
  85. 85.
    Kato T, Okazaki A, Hayase S (2005) Latent gel electrolyte precursors for quasi-solid dye sensitized solar cell. Chem Commun 363–364Google Scholar
  86. 86.
    Wang P, Zakeeruddin SM, Moser JE, Nazeeruddin MK, Sekiguchi T, Gratzel M (2003) A stable-quasi-solid state dye-sensitized solar cell with amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Mater 2:402–406CrossRefGoogle Scholar
  87. 87.
    Muhida R, Park M, Dakkak M, Matsuura K, Tsuyoshi A, Michira M (2003) A maximum power point tracking for photovoltaic-SPE system using a maximum current controller. Sol Energy Mater Sol Cells 75:697–706CrossRefGoogle Scholar
  88. 88.
    Brinner A, Bussmann H, Hug W, Seeger W (1992) Test results of the HYSOLAR 10 kW Int J Hydrogen energy 17:187–197CrossRefGoogle Scholar
  89. 89.
    Brinner A.; for more details about 350 KW PV-electrolysis plantGoogle Scholar
  90. 90.
    Schug CA (1998) Operational characteristics of high-pressure, high-efficiency water-hydrogen-electrolysis. Int J Hydrogen Energy 23:1113–1120CrossRefGoogle Scholar
  91. 91.
    Ohmori T, Go H, Yamaguchi N, Nakayama A, Mametsuka H, Suzuki E (2001) Photovoltaic water electrolysis using the sputter-deposited a-Si/c-Si solar cells, Int J Hydrogen Energy 26, 661–664Google Scholar
  92. 92.
    Currao A, Reddy VR, van Veen MK, Schropp REI, Calzaferri G (2004) Water splitting with silver chloride photoanode and amorphous silicon solar cell. Photochem Photobio Sci 3:1017–1025CrossRefGoogle Scholar
  93. 93.
    Kocha SS, Montgomery D, Peterson MW, Turner JA (1998) Photoelectrochemical decomposition of water utilizing monolithic tandem cells, Sol Energy Mater Sol Cells 52:389–397CrossRefGoogle Scholar
  94. 94.
    Gao X, Kocha S, Frank AJ, Turner JA (1999) Photoelectrochemical decomposition of water using modified monolithic tandem cells, Int J Hydrogen Energy 24:319–325CrossRefGoogle Scholar
  95. 95.
    Khaselev O, Bansal A, Turner JA (2001) High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int J Hydrogen Energy, 26:127–132CrossRefGoogle Scholar
  96. 96.
    Licht S, Wang B, Mukerji S, Soga T, Umeno M, Tributsch H (2000). Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. J Phys Chem B,104:8920–8924CrossRefGoogle Scholar
  97. 97.
    Licht S, Wang B, Mukerji S, Soga T, Umeno M, Tributsch H (2001) Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting, Int J Hydrogen Energy 26:653–659CrossRefGoogle Scholar
  98. 98.
    Licht S, Halperin L, Kalina M, Zidman M, Halperin N (2003) Electrochemical potential tuned solar water splitting. Chem Commun 3006–3007Google Scholar
  99. 99.
    Yamada Y, Matsuki N, Ohmori T, Mametsuka H, Kondo M, Matsuda A, Suzuki E (2003) One chip photovoltaic water electrolysis device. Int J Hydrogen Energy 28:1167–1169CrossRefGoogle Scholar
  100. 100.
    Kelly NA, Gibson TL (2006) Design and Characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting. Int J Hydrogen Energy 31:1658–1673CrossRefGoogle Scholar
  101. 101.
    Dheere NG, Jahagirdar AH (2005) Photoelectrochemical water splitting for hydrogen production using combination of CIGS2 solar cell and RuO2 photocatalyst. Thin Solid Films 480–481:462–465CrossRefGoogle Scholar
  102. 102.
    Avachat US, Jahagirdar AH, Dheere NG (2006) Multiple band gap combination of thin film photovoltaic cell and a photoanode for efficient hydrogen and oxygen generation by water splitting. Sol Energy Mat Sol Cells 90:2464–2470CrossRefGoogle Scholar
  103. 103.
    Avachat US, Dheere NG (2006) Preparation and characterization of transparent conducting ZnTe:Cu back contact interface layer for CdS/CdTe solar cell for photoelectrochemical application. J Vac Sci Technol A 24:1664–1667CrossRefGoogle Scholar
  104. 104.
    Gratzel M (2005) Mesoscopic solar cells for electricity and hydrogen production from sunlight. Chem Lett 34:8–13CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Craig A. Grimes
    • 1
  • Oomman K. Varghese
    • 2
  • Sudhir Ranjan
    • 2
  1. 1.Department of Electrical Engineering Department of Materials Science & EngineeringPennsylvania State UniversityUniversity Park
  2. 2.Pennsylvania State University Materials Research InstituteUniversity Park

Personalised recommendations