Skip to main content

Photovoltaic - Electrolysis Cells

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cox KE (1976) Hydrogen from solar energy via water electrolysis. Proc 11th IECEC pp. 926–932

    Google Scholar 

  2. Costogue EN, Yasui RK (1977) Performance data for a terrestrial solar photovoltaic/water electrolysis experiment. Sol Energy 19:205–210

    Google Scholar 

  3. Esteve D, Ganibal C, Steinmetz D, Vialason A (1980) Performance of a photovoltaic electrolysis system. Proc 3rd word Hydrogen Energy Conference, Tokyo. V. 3, pp.1583–1603

    Google Scholar 

  4. Koukouvinos A, Lygerou V, Koumoutsos N (1982) Design of a system for solar energy storage via water electrolysis Int J Hydrogen Energy 7:645–650

    Google Scholar 

  5. Carpetis C (1982) A study of water electrolysis with photovoltaic solar energy conversion. Int J Hydrogen Energy 7:287–310

    Article  Google Scholar 

  6. Dahlberg R (1982) Replacement of fossil fuels by hydrogen. Int J Hydrogen Energy 7:121–142

    Article  Google Scholar 

  7. Estève D, Ganibal C, Steinmetz D, Vialaron A (1982) Performance of a photovoltaic electrolysis system. Int J Hydrogen Energy 7:711–716

    Article  Google Scholar 

  8. Dini D (1982) Hydrogen production through solar energy water electrolysis. Int J Hydrogen Energy 8:897–903

    Article  Google Scholar 

  9. Carpetis C (1984) An assessment of electrolytic hydrogen production by means of photovoltaic energy conversion. Int J Hydrogen Energy 9:969–991

    Article  Google Scholar 

  10. Murphy OJ, Bockris JOM (1984) Photovoltaic electrolysis: Hydrogen and electricity from water and light. Int J Hydrogen Energy 9:557–561

    Article  Google Scholar 

  11. Bockris JOM, Dandapani B, Cocke D, Ghoroghchian J (1985) On the splitting of water. Int J Hydrogen Energy 10:179–201

    Article  Google Scholar 

  12. Steeb H, Mehrmann A, Seeger W, Schnurnberger W (1985) Solar hydrogen production: Photovoltaic/electrolyzer system with active power conditioning. Int J Hydrogen Energy 10:353–358

    Article  Google Scholar 

  13. Kharkats YI, German ED, Kazarinov VE, Pshenichnikov AG, Pleskov YV.(1985) Hydrogen production by solar energy: Optimization of the plant “solar array + electrolyzer”. Int J hydrogen Energy 10:617–621

    Google Scholar 

  14. Delahoy AE, Gao SC, Murphy OJ, Kapur M, Bockris JOM (1985) A one-unit photovoltaic electrolysis system based on a triple stack of amorphous silicon (pin) cells. Int J Hydrogen Energy 10:113–116

    Article  Google Scholar 

  15. Appleby AJ, Delahoy SC, Gau SC, Murphy OJ, Kapur M, Bockris JOM (1985) An amorphous silicon-based one-unit photovoltaic electrolyzer. Int J Hydrogen Energy. 10:871–879

    Google Scholar 

  16. Fischer M (1986) Review of hydrogen production with photovoltaic electrolysis system. Int J Hydrogen Energy 11:495–501

    Article  Google Scholar 

  17. Siegel A, Schott T (1988) Optimization of photovoltaic hydrogen production. Int J Hydrogen Energy 13:659–675

    Article  Google Scholar 

  18. Lin GH, Kapur M, Kainthla RC, Bockris JOM (1989) One step method to produce hydrogen by a triple stack amorphous silicon solar cell. Apl Phys Lett 55:386–387

    Article  Google Scholar 

  19. Ogden JM, Williams RH (1990) Electrolytic hydrogen from thin-film solar cell. Int J Hydrogen Energy 15:155–169

    Article  Google Scholar 

  20. Arashi H, Naito H, Miura H (1991) Hydrogen production from high-temperature steam electrolysis using solar energy. Int J Hydrogen Energy 16:603–608

    Article  Google Scholar 

  21. Bard AJ, Fox MA (1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen: Acc Chem Res 28:141–145

    Article  Google Scholar 

  22. Abdel-Aal HK (1992) Storage and transport of solar energy on a massive scale: the hydrogen option. Int J Hydrogen Energy17:875–882

    Article  Google Scholar 

  23. Block DL, Melody I (1992) Efficiency and cost goals for photoenhanced hydrogen production processes. Int J Hydrogen Energy 17:853–861

    Article  Google Scholar 

  24. Barra L, Coiante D (1993) Hydrogen-photovoltaic stand-alone power stations: A sizing method. Int J Hydrogen Energy 18:337–344

    Article  Google Scholar 

  25. Gramaccio CA, Selvagi A,Galluzzi F(1993) Thin-flim multijunction solar cell for photoelectrolysis. Electochim Acta 38:111–113

    Article  Google Scholar 

  26. Kauranen PS, Lund PD, Vanhanen JP (1993) Control of battery backed photovoltaic hydrogen production. Int J Hydrogen Energy 18:383–390

    Article  Google Scholar 

  27. Bolton JR (1996) Solar photoproduction of hydrogen: review. Sol Energy 57:37–50

    Article  Google Scholar 

  28. Shukla PK, Karn RK, Singh AK, Srivastava ON (2002) Studies on PV assisted PEC solar cells for hydrogen production through photoelectrolysis of water. Int J Hydrogen Energy27:135–141

    Article  Google Scholar 

  29. Conibeer GJ, Richards BS (2007) A comparison of hydrogen storage technologies for solar-powered stand-alone power supplies: A photovoltaic system sizing approach. Int J Hydrogen Energy (in press)

    Google Scholar 

  30. Conibeer GJ, Richards BS (2007) A comparison of PV/electrolyser and photoelectrolytic technologies for use in solar to hydrogen energy storage systems. Int J Hydrogen Energy (in Press)

    Google Scholar 

  31. Yamaguchi K, Udono H (2007) Novel photosensitive materials for hydrogen generation through photovoltaic electricity. Int J Hydrogen Energy (in Press)

    Google Scholar 

  32. Ahmad GE, El Shenawy ET (2006) Optimized photovoltiac system for hydrogen production. Renewable Energy 31:1043–1054

    Article  Google Scholar 

  33. Miri R, Mraoui S (2007) Electrolytic process of hydrogen production by solar energy. Desalination 206:69–77

    Article  Google Scholar 

  34. Rzayeva MP, Salamov OM, Kerimov MK (2001) Modeling to get hydrogen and oxygen by solar water electrolysis. International Journal of Hydrogen Energy. 26:195–201

    Article  Google Scholar 

  35. Khaselev O, Turner JA (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting, Science 280:425–427

    Article  Google Scholar 

  36. Rocheleau RE, Miller EL, Misra A (1998) High efficiency photoelectrochemical hydrogen production using multijunction amorphous photoelectrode. Energy & Fuels 12:3–10

    Article  Google Scholar 

  37. Licht S, Ghosh S, Trbutsch, H, Fiecher (2002) High efficiency solar energy water splitting to generate hydrogen fuel: probing RuS2 enhancement of multiple band electrolysis. Sol Energy Mater Sol cells. 70:471–480

    Google Scholar 

  38. Miller EL, Rocheleau RE, Khan S A (2004) Hybrid multijunction photoelectrode for hydrogen production fabricated with amorphous silicon/germanium and iron oxide thin films Int J Hydrogen Energy 29:907–914

    Article  Google Scholar 

  39. Ingler WB, Khan SUM (2006) A self-driven p/n-Fe2O3 tandem photoelectrochemical cell for water splitting. 9:G144-G146

    Google Scholar 

  40. Weber MF, Dignam MJ (1986) Splitting water with semiconducting photoelectrodes–Efficiency considerations. Int J Hydrogen Energy 11:225–232

    Article  Google Scholar 

  41. Bolton JR, Strickler SJ, Connolly JS (1985) Limiting and realizable efficiencies of solar photolysis of water Nature 316:495–500

    Article  Google Scholar 

  42. Litcht S (2001) Multiple band gap semiconductor/electrolyte conversion. J Phys Chem B 105:6281

    Article  Google Scholar 

  43. Bilgen E (2001) Solar hydrogen from photovoltaic-electrolyzer systems. Energy Conversion and Management 42:1047–1057

    Article  Google Scholar 

  44. Litcht S (2005) solar water splitting to generate hydrogen fuel- a photothermal electrochemical analysis. Int J Hydrogen Energy 30:459–470

    Article  Google Scholar 

  45. Hanna MC, Nozik AJ (2006) Solar conversion efficiency of photovoltaic and photoelectrolysis cell with carrier multiplication absorbers. J Appl Phys 100:074510–074518

    Article  Google Scholar 

  46. Becquerel AE (1839) Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques. Comptes Rendus de L’Academie des Sciences :145–149. Republished:Becquerel AE (1841) Annalen der Physick und Chemie 54:8–34

    Google Scholar 

  47. Becquerel AE (1839) Memoire sur les effects d’electriques produits sous l’influence des rayons solaires. Comptes Rendus de L’Academie des Sciences 9:561–567. Republished: Becquerel AE (1841) Annalen der Physick und Chemie. 54:35–42

    Google Scholar 

  48. Fritts CE (1883) On a New Form of Selenium Photocell. Proc American Association for the Advancement of Science. 33:97 and American Journal of Science 26:465

    Google Scholar 

  49. RS Ohl (1946) Light sensitive electric device. US Patent US2402662

    Google Scholar 

  50. Chapin DM, Fuller CS, Pearson GL (1954) A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys 25:676–677

    Article  Google Scholar 

  51. Jenny DA, Loferski JJ, Rappaport P (1956) Photovoltaic effect in GaAs p-n junctions and solar energy conversion. Phys. Rev. 101:1208–1209

    Article  Google Scholar 

  52. Carlson DE, Wronksi CR (1976) Amorphous silicon solar cell. Appl Phys Lett 28:671–673

    Article  Google Scholar 

  53. Carlson DE (1977) Semiconductor device having a body of amorphous silicon. US Patent US4064521

    Google Scholar 

  54. Carlson DE (1989) Amorphous silicon solar cell. IEEE Trans Electron devices 36:2775–2780

    Article  Google Scholar 

  55. Olson JM (1987) Current and lattice matched tandem solar cell. US Patent 4667059

    Google Scholar 

  56. Olson JM, Kurtz SR (1993) Current-matched high-efficiency, multijunction monolithic solar cell. US patent US 5223043

    Google Scholar 

  57. Bertness KA, Kurtz SR, Friedman DJ, Kibbler AE, Crammer C (1994) 29.5% efficient GaInP/GaAs tandem solar cells. Appl Phys Lett 65:989–99

    Article  Google Scholar 

  58. King RR, Fetzer CM, Colter PC, Edmondson KM, Ermer JH, Cotal HL, Yoon H, Stavrides AP, Kinsey G, Krut DD, Karam NH (2002) 29th IEEE Photovolyaic Specialist Conference, pp.776–781

    Google Scholar 

  59. Wanlass MW, Ahrenkiel SP, Albin DS, Carapella JJ, Duda A, Emery K, Geisz JF, Jones K, Kurtz S, Moriarty T, Romero MJ. GaInP/GaAs/GaInAs Monolithic Tandem Cells for High-Performance Solar Concentrators. Optics & Photonics 2005 San Diego, California, USA

    Google Scholar 

  60. King RR, Law DC, Fetzer CM, Sherif RA, Edmondson KM, Kurtz S, Kinsey GS, Cotal HL, Krut DD, Ermer JH, Karam NH (2005) Pathways to 40%-efficient concentrator photovoltaics. 20th European Photovoltaic Solar Energy Conference and Exhibition, Barcelona, Spain

    Google Scholar 

  61. Bosi M, Pelosi C (2007)The potential of III-V semiconductors as terrestrial photovoltaic devices. Prog Photovolt: Res Appl 15:51–68

    Google Scholar 

  62. Yu KM, Walukiewicz W, Wu J, Shan W, Beeman JW, Sarpulla MA, Dubon OD, Becla P (2003) Diluted II-VI oxide semiconductors with multiple band gaps. Phys Rev Lett 91:246403–246405

    Article  Google Scholar 

  63. Luque A, Hegedus S (2003). Handbook of Photovoltaic Science and Engineering, John Wiley & Sons New York

    Google Scholar 

  64. Green MA (1992) Solar cells-operation principles, technology and system applications, 2nd ed. The University of New South Wales, Kensington, New South Wales, Australia

    Google Scholar 

  65. Green MA (2001) Third Generation Photovoltaics: Ultrahigh conversion efficiency at Low Cost. Prog Photovolt Res Appl 9:123–125

    Article  Google Scholar 

  66. Carlson DE (1977) Amorphous silicon solar cell. IEEE Trans Electron Devices. 24:449–454

    Google Scholar 

  67. Yang J, Banerjee A, Guha S (1997) Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies. Appl Phys Lett 70:2975–2978

    Article  Google Scholar 

  68. Guha S, Narsimhan KL, Pietruszko SM (1981). On light induced effect in amorphous hydrogenated silicon. J Appl Phys 52:859–860

    Google Scholar 

  69. Staebler DL, Wronski CR (1977) Reversible conductivity changes in discharge-produced amorphous Si. Appl Phys Lett 31:292–294

    Article  Google Scholar 

  70. Tsu DV, Chao BS, Ovshinsky SR, Guha S, Yang J (1997). Effect of hydrogen dilution on the structure of amorphous silicon alloy. Appl Phys Lett 71:1317–1319

    Google Scholar 

  71. Guha S, Yang J, Williamson DL, Lubianiker Y, Cohen JD, Mahan AH (1999) Structural, defect, and device behavior of hydrogenated amorphous Si near and above the onset of microcrystallinity. Appl Phys Lett 74:1860–1863

    Article  Google Scholar 

  72. Zeman M, Schropp REI (1998) Amorphous and microcrystalline silicon solar cells: Modeling, materials and device technology, Kluwer Academic Publishers, Dordrecht, pp.181–182

    Google Scholar 

  73. Koh J, Ferlauto AS, Rovira PI, Wronski CR, Collins RW (1999) Evolutionary phase diagram for plasma enhanced chemical vapor deposition of silicon thin films from hydrogen diluted silane. Appl Phys Lett 75:2286–2289

    Article  Google Scholar 

  74. Koh J, Lee Y, Fujiwara H, Wronski CR, Collins RW(1998) Optimization of hydrogenated amorphous silicon p-i-n solar cells with two steps i layers guided by real time ellipsometry. Appl Phys Lett 73:1526 1529

    Article  Google Scholar 

  75. Colins RW, Ferlauto AS, Ferreira GM, Chen C, Koh J, Koval RJ, Lee Y, Pearce JM, Wronski CR (2003) Evolution of microstrucutre and phase in amorphous, protocrystalline, and microcrystalline silicon studied by realtime spectroscopic ellipsometry. Sol Energy Mat Sol Cells 78:143–180

    Article  Google Scholar 

  76. Green MA, Emery K, King DL, Hishikawa Y, Warta W (2006) Solar efficiency Tables (version 28). Prog Photovolt: Res Appl 14:455–461

    Article  Google Scholar 

  77. B.O. Regan BO, Grätzel M (1991) A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 thin film. Nature 353:737–740

    Google Scholar 

  78. Nazeeruddin MK, Kay A, Rodocio I, Humphry Baker R, Muller E, Liska P, Vlachopoulos N, Gratzel (1993) Conversion of light to electricity by Cis-X2Bis(2,2′ -bipyridyl-4,4′ -dicarboxylate)ruthenium(II) charge-transfer sensitizers(X = Cl-, Br-, I-, CN- and SCN-) on nanocrystalline TiO2 electrodes. J Am Chem Soc 115:6382–6390

    Google Scholar 

  79. Han L, Fukui A, Fuke N, Koide N, Yamanaka R (2006) High efficiency of dye-sensitized solar cell and module. Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Hawai, USA pp. 179–182

    Google Scholar 

  80. Adachi M, Murata Y, Okada I, Yoshikawa S (2003) Formation of titania nanotube and applications for dye-sensitized solar cells. J Electrochem Soc 150:G488-G493

    Article  Google Scholar 

  81. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Use of highly ordered TiO2 nanotube arrays in dye-sensitized solar cell. Nano lett 6:215–218

    Article  Google Scholar 

  82. Z. S. Wang, H. Kawauchi, T. Kashima, H. Arakawa. Significance influence of TiO2 photoelectrode on the energy conversion efficiency N719 dye-sensitized solar cell, Coord.Chem. Rev. 248, 1381–89 (2004)

    Article  Google Scholar 

  83. Kuang D, Ito S, Wenger B, Klein C, Moser JE, Baker RH, Zakeeruddin SM, Grätzel M (2006). High molar extinction coefficient heteroleptic ruthenium complxes for thin-film dye sensitized solar cells. J Am Chem Soc 128:4146–4154

    Article  Google Scholar 

  84. Wang P, Wenger B, Baker RH, Moser JE, Teuscher J, Kantlehner W, Mezger J, Stoyanov EV, Zakeeruddin SM, Grätzel M (2005) Charge Separation and Efficient Light Energy Conversion in Sensitized Mesoscopic Solar Cells based on binary ionic liquids. J Am Chem Soc 127:6850–6056

    Article  Google Scholar 

  85. Kato T, Okazaki A, Hayase S (2005) Latent gel electrolyte precursors for quasi-solid dye sensitized solar cell. Chem Commun 363–364

    Google Scholar 

  86. Wang P, Zakeeruddin SM, Moser JE, Nazeeruddin MK, Sekiguchi T, Gratzel M (2003) A stable-quasi-solid state dye-sensitized solar cell with amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Mater 2:402–406

    Article  Google Scholar 

  87. Muhida R, Park M, Dakkak M, Matsuura K, Tsuyoshi A, Michira M (2003) A maximum power point tracking for photovoltaic-SPE system using a maximum current controller. Sol Energy Mater Sol Cells 75:697–706

    Article  Google Scholar 

  88. Brinner A, Bussmann H, Hug W, Seeger W (1992) Test results of the HYSOLAR 10 kW Int J Hydrogen energy 17:187–197

    Article  Google Scholar 

  89. Brinner A. http://www.hysolar.com; for more details about 350 KW PV-electrolysis plant

    Google Scholar 

  90. Schug CA (1998) Operational characteristics of high-pressure, high-efficiency water-hydrogen-electrolysis. Int J Hydrogen Energy 23:1113–1120

    Article  Google Scholar 

  91. Ohmori T, Go H, Yamaguchi N, Nakayama A, Mametsuka H, Suzuki E (2001) Photovoltaic water electrolysis using the sputter-deposited a-Si/c-Si solar cells, Int J Hydrogen Energy 26, 661–664

    Google Scholar 

  92. Currao A, Reddy VR, van Veen MK, Schropp REI, Calzaferri G (2004) Water splitting with silver chloride photoanode and amorphous silicon solar cell. Photochem Photobio Sci 3:1017–1025

    Article  Google Scholar 

  93. Kocha SS, Montgomery D, Peterson MW, Turner JA (1998) Photoelectrochemical decomposition of water utilizing monolithic tandem cells, Sol Energy Mater Sol Cells 52:389–397

    Article  Google Scholar 

  94. Gao X, Kocha S, Frank AJ, Turner JA (1999) Photoelectrochemical decomposition of water using modified monolithic tandem cells, Int J Hydrogen Energy 24:319–325

    Article  Google Scholar 

  95. Khaselev O, Bansal A, Turner JA (2001) High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int J Hydrogen Energy, 26:127–132

    Article  Google Scholar 

  96. Licht S, Wang B, Mukerji S, Soga T, Umeno M, Tributsch H (2000). Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. J Phys Chem B,104:8920–8924

    Article  Google Scholar 

  97. Licht S, Wang B, Mukerji S, Soga T, Umeno M, Tributsch H (2001) Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting, Int J Hydrogen Energy 26:653–659

    Article  Google Scholar 

  98. Licht S, Halperin L, Kalina M, Zidman M, Halperin N (2003) Electrochemical potential tuned solar water splitting. Chem Commun 3006–3007

    Google Scholar 

  99. Yamada Y, Matsuki N, Ohmori T, Mametsuka H, Kondo M, Matsuda A, Suzuki E (2003) One chip photovoltaic water electrolysis device. Int J Hydrogen Energy 28:1167–1169

    Article  Google Scholar 

  100. Kelly NA, Gibson TL (2006) Design and Characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting. Int J Hydrogen Energy 31:1658–1673

    Article  Google Scholar 

  101. Dheere NG, Jahagirdar AH (2005) Photoelectrochemical water splitting for hydrogen production using combination of CIGS2 solar cell and RuO2 photocatalyst. Thin Solid Films 480–481:462–465

    Article  Google Scholar 

  102. Avachat US, Jahagirdar AH, Dheere NG (2006) Multiple band gap combination of thin film photovoltaic cell and a photoanode for efficient hydrogen and oxygen generation by water splitting. Sol Energy Mat Sol Cells 90:2464–2470

    Article  Google Scholar 

  103. Avachat US, Dheere NG (2006) Preparation and characterization of transparent conducting ZnTe:Cu back contact interface layer for CdS/CdTe solar cell for photoelectrochemical application. J Vac Sci Technol A 24:1664–1667

    Article  Google Scholar 

  104. Gratzel M (2005) Mesoscopic solar cells for electricity and hydrogen production from sunlight. Chem Lett 34:8–13

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Grimes, C.A., Varghese, O.K., Ranjan, S. (2008). Photovoltaic - Electrolysis Cells. In: Grimes, C.A., Varghese, O.K., Ranjan, S. (eds) Light, Water, Hydrogen. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68238-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68238-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-33198-0

  • Online ISBN: 978-0-387-68238-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics