Skip to main content

Oxide Semiconductors: Suspended Nanoparticle Systems

  • Chapter
Light, Water, Hydrogen

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Google Scholar 

  2. Schrauzer GN, Guth TD (1977) Photolysis of water and photoreduction of nitrogen on titanium oxide. J Am Chem Soc 99:7189–7193

    Google Scholar 

  3. Kawai T, Sakata T (1980) Photocatalytic decomposition of gaseous water. Chem Phys Lett 72:87–89

    Google Scholar 

  4. Van Damme H, Hall WK (1979) On the photoassisted decomposition of water at the gas-solid interface on TiO2. J Am Chem Soc 101:4373–4374

    Google Scholar 

  5. Domen K, Naito S, Soma M, Onishi T, Tamaru K (1980) Photocatalytic decomposition of water vapor on a NiO-SrTiO3 catalyst. Chem Commun 543–544

    Google Scholar 

  6. Sato S, White JM (1980) Photodecomposition of water over Pt/TiO2 catalysts. Chem Phys Lett 72:83–86

    Google Scholar 

  7. Wagner FT, Somerjai GA (1980) Photocatalytic and Photoelectrochemical hydrogen production on strontium titanate single crystals. J Am Chem Soc 102:5494–5502

    Google Scholar 

  8. Wagner FT, Somerjai GA (1980) Photocatalytic production from water on Pt-free SrTiO3 in aqueous alkaline solution. Nature 285:559–560

    Google Scholar 

  9. Sato S, White JM (1981) Photocatalytic water decomposition and water-gas shift reactions over NaOH coated, platinized TiO2. J Catal 69:128–139

    Google Scholar 

  10. Duonghong D, Borgarello E, Grètzel M (1981) Dynamics of light induced water cleavage in colloidal system. J Am Chem Soc 103:4685–4690

    Google Scholar 

  11. Domen K, Naito S, Onishi T, Tamaru K (1982) Photocatalytic decomposition of liquid water on a NiO-SrTiO3 catalyst. Chem Phys Lett 92:433–434

    Google Scholar 

  12. Lehn JM, Sauvage JP, Ziessel R, Hilaire L (1982) Water photolysis by UV irradiation of rhodium loaded strontium titanate catalysts. Relation between catalytic activity and the nature of the deposit from combined photolysis and ESCA studies. Israel J Chem 22:168–172

    Google Scholar 

  13. Domen K, Kudo A, Onishi T (1986) Mechanism of photocatalytic decomposition of water into H2 and O2 over NiO-SrTiO3. J Catal 102:92–98

    Google Scholar 

  14. .Kudo A, Domen K, Maurya K, Aika K, Onishi T (1988) Photocatalytic decomposition of water over NiO-K4Nb6O17 catalysts. J Catal 111:67–76

    Google Scholar 

  15. Inoue Y, Kubokawa Y, sato K (1991) Photocatalytic activity of alkali-metal titanates combined with Ru in the decomposition of water. J Phys Chem 95:4059–4063

    Google Scholar 

  16. Inoue Y, Asai Y, sato K (1994) Photocatalysts with tunnel structures for decomposition of water. J Chem Soc Faraday Trans 90:797–802

    Google Scholar 

  17. Sayama K, Arakawa H (1994) Effect of Na2CO3 addition on photocatalytic decomposition of liquid water over various semiconductor catalysts. J. Photochem Photobiol A Chem 77:243–247

    Google Scholar 

  18. Sayama K, Arakawa H (2000) Oxide semiconductor materials for solar light energy Utilization. Res Chem Intermed 26:145–152

    Google Scholar 

  19. Baba R, Nakabayashi S, Fujishima A, Honda K (1985) Investigation of the mechanism of hydrogen evolution during photocatalytic water decomposition on metal-loaded semiconductor powders J Phys Chem 89:1902–1905

    Google Scholar 

  20. Aspnes DE, Heller A (1983) Photoelectrochemical hydrogen evolution and water- photolyzing semiconductor suspensions: Properties of platinum group metal catalyst emiconductor contacts in air and in hydrogen. J Phys Chem 87:4919–4929

    Google Scholar 

  21. Bard AJ, Fox MA (1995) Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc Chem Res 28:141–145

    Google Scholar 

  22. Ashok Kumar M (1998) An overview of semiconductor particulate system for photoproduction of hydrogen. Int J Hydrogen Energy 23:427–438

    Google Scholar 

  23. Kudo A, Kato H, Tsuji I (2004) Strategies for the development of visible-light-driven photocatalysts for water-splitting. Chem. Lett. 33, 1534–9

    Google Scholar 

  24. Takata T, Tanaka A, Hara M, Kondo JN, Domen K (1998) Recent progress of photocatalysts for overall water splitting. Catal Today 44:17–26

    Google Scholar 

  25. Kamat PV (1993) Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev 93: 267–300

    Google Scholar 

  26. Thompson TL, Yates J T (2005) TiO2-based photocatalysis: Surface defects, oxygen and charge transfer. Top Catal 35:197–210

    Google Scholar 

  27. Hagfeldt A, Gratzel M (1995) Light-Induced Redox Reactions in Nanocrystalline Systems Chem Rev 95:49–68

    Google Scholar 

  28. Hara M, Kondo T, komoda M, Ikeda S, Shinohara K, Tanaka A, Kondo JN, Domen K (1998) Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem Commun 357–358

    Google Scholar 

  29. Morikawa T, Asahi R, Ohwaki T, Aoki K, Taga, Y (2001) Bandgap narrowing of titanium dioxide by nitrogen doping. Jpn J Appl Phys Part 2-Lett. 40:L561-L563

    Google Scholar 

  30. Wang H, Lewis JP (2006) Second-generation photocatalytic materials: anion-doped TiO2. J. Phys.-C, 18, 421–434

    Google Scholar 

  31. A. Kudo (2003) Photocatalyst materials for water splitting. Catal Surv Asia 7:31–38

    Google Scholar 

  32. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent development in photocatalytic water splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews 11:401–425

    Google Scholar 

  33. Kudo A (2006) Development of photocatalyst materials for water splitting. Int J Hygrogen Energy 31:197–202

    Google Scholar 

  34. Murray CB, Kagan CR (2000) Synthesis and Characterization of monodispersed nanocystals and closed-packed nanocrystals assemblies. Annu. Rev Mater Sci 30, 545–610

    Google Scholar 

  35. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946

    Google Scholar 

  36. H. Hahn (1997) Gas phase synthesis of nanocrytalline materials. Nanostuct. Mater. 9:3–12

    Google Scholar 

  37. Swihart MT (2003) Vapor synthesis of nanoparticles. Curr. Opin. Colloid Interf. Sci. 8, 127–133

    Google Scholar 

  38. Wang Y, Ma C, Sun X, Li H (2002) Preparation of nanocrystalline metal oxide powders with the surfactant mediated method. Inorg Chem Commun 5:51–755

    Google Scholar 

  39. Zhang Z, Guo L, Wang W (2001) Synthesis and characterization of antimony oxide nanoparticles. J Mater Res 16:803–05

    Google Scholar 

  40. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) Low temperature oxidation of CO over gold supported TiO2, α -Fe2O3 and Co3O4. J catal 144:175–192

    Google Scholar 

  41. Liu ZL, Liu YZ, Yao KL, Ding ZH, Tao J, Wang X (2002) Synthesis and magnetic properties of Fe3O4 nanoparticles. J Mater Synth Process 10:83–87

    Google Scholar 

  42. Tang ZX, Sorenson CM, Klabunde KJ, Hajipanayis GC (1991) Size dependent Curie temperature in nanoscale MnFe2O4. Phy Rev Lett 67:3602–3605

    Google Scholar 

  43. You X, Chen, F, Zhang J, Anpo M (2005) A novel deposition-precipitation method for preparation of Ag-loaded TiO2. Catal Lett 102:247–250

    Google Scholar 

  44. Zanella R, Giogio S, Shin CH, Henry CR Louis C (2004) Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-preparation with NaOH and Urea. J Catal 222:257–267

    Google Scholar 

  45. Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1995) Photoassisted hydrogen production from a water-ethanol system: a comparison of activities of Au-TiO2 and Pt-TiO2. J Photochem Photobio A 89:177–189

    Google Scholar 

  46. Abe T, Suzuki, E, Nagoshi, K, Miyashita K, Kaneko M (1999) Electron source in photoinduced hydrogen production on Pt supported TiO2 particles. J Phys Chem 103:1119–1123

    Google Scholar 

  47. Chan SC, Barteau MA (2005) Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticles catalyst by photodeposition. Langmuir 23:5588–5595

    Google Scholar 

  48. Borgarello E, Serpone N, Emo G, Harris R, Pelizzetti E, Minero C (1986) Light-induced reduction of rhodium (III) and palladium (II) on titanium dioxide dispersions and the selective photochemical separation and recovery of gold (III), platinum (IV) and rhodium (III) in chloride media. Inorg Chem 25:4499–4503

    Google Scholar 

  49. Hwang DW, Kim J, Park TJ, Lee JS (2002) Mg-doped WO3 as a novel photocatayst for visible light-induced water splitting. Catal Lett 80:53–57

    Google Scholar 

  50. Galinksa A, Walendziewski J (2005) Photocatalytic water splitting over Pt-TiO2 in the presence of sacrificial reagents. Energy & Fuels 19:1143–1147

    Google Scholar 

  51. Cao Y, Hsu JC, Hong ZS, Deng JF, Fan KN (2002) Characterization of high-surface-area zirconia aerogel synthesized from alcohothermal and supercritical fluid drying techniques. Catal Lett 81:107–112

    Google Scholar 

  52. Bischoff BL, Anderson MA (1995) Peptization process in the sol-gel preparation of anatase TiO2. Chem Mater 7:1772–1778

    Google Scholar 

  53. Chang YS, Chang YH, Chen IG, Chen GJ, Chai YL (2002) Synthesis and characterization of zinc titanate nano-crystal powders by sol-gel technique. J Cryst Growth 243:319–326

    Google Scholar 

  54. Xuewen W, Zhiyong Z, Shuixian Z (2001) Preparation of nano-crystalline SrTiO3 powder in sol-gel process. Mater Sci Engg. B 86:29–33

    Google Scholar 

  55. Kohno M, Ogura S, Inoue Y (1996) Preparation of BaTi4O9 by a sol-gel method and its photocatalytic activity for water decomposition. J Mater Chem 6:1921–1924

    Google Scholar 

  56. Kim HG, Hwang DW, Bae SB, Jung JH, Lee JS (2003) Photocatalytic water splitting over La2Ti2O7 synthesized by the polymerizable complex method. Catal Lett 91:193–198

    Google Scholar 

  57. Yoshino M, Kakihana M, Cho WS, Kato H, Kudo A (2002) Polymerizable complex synthesis of pure Sr2NbxTa2 - xO7 solid solutions with high photocatalytic activities for water decomposition into H2 and O2. Chem Mater 14:3369–3376

    Google Scholar 

  58. Yener DO, Giesche H (2001) Synthesis or pure and manganese-, nickel- and zinc-doped ferrite particles in water-in-oil microemulsions. J Am Ceram Soc 84:1987–1995

    Google Scholar 

  59. Kapoor MP, Inagaki S, Yoshida H (2005) Novel zirconium-titanium phosphates mesoporous materials for hydrogen production by photoinduced water splitting. 109:9231–9238

    Google Scholar 

  60. Oguri Y, Riman RE, Bowen HK (1988) Processing of anatase prepared from hydrothermally treated alkoxy derived hydrous titania. J Mater Sci 23:2897–2904

    Google Scholar 

  61. Chen H, Ma J, Zhao Z, Qi L (1995) Hydrothermal preparation of uniform nanosize rutile and anatase particle. Chem Mater 7:663–671

    Google Scholar 

  62. Jeon S, Braun PV (2003) Hydrothermal synthesis of Er-doped luminescent TiO2 nanoparticles. Chem Mater 15:1256–1263

    Google Scholar 

  63. Lou H, Takata T, Lee Y, Zhao J, Domen K, Yan Y (2004) Photocatalytic activity enhancing for titanium dioxide by codoping with chlorine and bromine. Chem Mater 16:846–849

    Google Scholar 

  64. Yan M, Cheng F, Zhang J, Anpo M (2005) Preparation of controllable crystalline titania and study on the photocatalytic properties. J Phys Chem B 109:8673–8678

    Google Scholar 

  65. Ikeda S, Fuboki M, Takahara YK, Matsumura M (2006) Photocatalytic activity of hydrothermally synthesized tantalates pyrochlores for overall water splitting. Appl Catal A 300:186–190

    Google Scholar 

  66. Hulteen JC, Martin CR (1997) A general template base method for the preparation of nanomaterials. J Mater Chem 7:1075–1087

    Google Scholar 

  67. Shchukin DG, Schattka JH, Antonietti M, Curasu RA (2003) Photocatalytic properties of porous metal oxide networks formed by nanoparticles infiltration in a polymer gel template. J Phys Chem B. 107:952–957

    Google Scholar 

  68. Lensveld DJ, Mesu JG, van Dillen AJ, de Jong KP (2001) Synthesis and characterization of MCM-41 supported nickel oxide catalysts. Microporous Mesoporous Mat 44–45:401–407

    Google Scholar 

  69. Valdés-Solís T, Marbán G, Fuertes AB (2005) Preparation of nanosized perovskites and spinels through a silica xerogel template route. Chem Mater 17:1919–1922

    Google Scholar 

  70. Nasibulin AG, Richard O, Kauppinen EI, Brown DP, Jokiniemi JK, Altman IS (2002) Nanoparticle synthesis by copper(II) acetylacetonate vapor decomposition in the presence of oxygen. Aerosol Sci Technol 36:899–911

    Google Scholar 

  71. Schmechel R, Kennedy M, von Seggern H, winkler H, Kolbe M, Fischer RA, Xaomao L, Benker A, Winterer M, Hahn H (2001) Luminescence properties of nanocrystalline Y2O3:Eu3 + in different host materials. J Appl Phys 89: 1679–1686

    Google Scholar 

  72. Ahonen PP, Joutsensaari J, Richard O (2001) Mobility size development and the crystallization path during aerosol decomposition synthesis of TiO2 particles. J Aerosol Sci 32:615–630

    Google Scholar 

  73. Johannessen T, Jenson JR, Mosleh M, Johansen J, Quaade U, Livbjerg H (2002) Flame synthesis of nanoparticles: Application in catalysis and product/process engineering. Chem Eng Res Des 82:1444–1452

    Google Scholar 

  74. Mädler L, Kammler HK, Mueller R, Pratsinis SE. Controlled synthesis of nanostructured particles by flame spray pyrolysis. J Aerosol Sci 2002;33:369 –388

    Google Scholar 

  75. Flagan RC, Lunden MM (2004) Particle structure control in nanoparticle synthesis from the vapor phase. 204:113–124

    Google Scholar 

  76. Ohno T (2002) Morphology of composite nanoparticles of immiscible binary systems prepared by gas-evaporation technique and subsequent vapor condensation. J Nanoparticle Res 4:255 –260

    Google Scholar 

  77. Iwasaki M, Iwasaki Y, Tada H, Ito S (2004) One-pot process for anodic oxide films of titanium with high photocatalytic activity. Mater Trans 45:1607–1612

    Google Scholar 

  78. Harano A, Shimada K, Okubo T, Sadakata M. (2002) Crystal phases of TiO2 ultrafine particles prepared by laser ablation of solid rods. J Nanoparticle Res; 4:215–219

    Google Scholar 

  79. Iwabuchi A, Choo CK, Tanaka K Titania Nanoparticles Prepared with Pulsed Laser Ablation of Rutile Single Crystals in Water J Phys Chem B 108:10863–10871

    Google Scholar 

  80. Guimaraes JL, Abbate M, Betim SB, Alves MCM (2003) Preparation and characterization of TiO2 and V2O5 nanoparticles produced by ball-milling J Alloys & Compounds 352:16–20

    Google Scholar 

  81. Damonte LC, Zelis LAM, Soucase BM, Fenollosa MAH Nanoparticles of ZnO obtained by mechanical milling. Powder Tech 148: 15–19

    Google Scholar 

  82. Shimizu K, Itoh S, Hatamachi T, Kodama T, Sato M, Toda K (2005) Photocatalytic water splitting on Ni-intercalated Ruddlesden-Popper type H2La2/3Ta2O7. Chem Mater 17:5161–5166

    Google Scholar 

  83. Ebina Y, Sasaki T, Harada M, Watanabe M (2002) Restacked perovskite nanosheets and their Pt-loaded materials as photocatalysts Chem Mater 14: 4390–4395

    Google Scholar 

  84. Ebina Y, Sakai N, Sasaki T (2005) Photocatalyst of Lamellar Aggregates of RuOx Loaded Perovskite Nanosheets for Overall J Phys Chem B109:17212–17216

    Google Scholar 

  85. Cheng P, Li W, Zhou T, Jin Y, Gu M (2004) Physical and photocatalytic properties of zinc ferrite doped titania under visible light irradiation. J Photochem Photobiol A: Chem 168:97–101

    Google Scholar 

  86. Sreethawong T, Ngamsinlapasathian S, Suzuki Y, Yoshikawa S (2005) Nanocrystalline mesoporus Ta2-based photocatalysts prepapred by surfactant-assisted templating sol-gel process photocatalytic H2 evolution. J Mol Catal A:Chem 235:1–11

    Google Scholar 

  87. Wang D, Zou Z, Ye J (2005) Phtotcatalytic water splitting with the Cr-doped Ba2In2O5/In2O3 composite oxide semiconductors. Chem Mater 17:3255–3261

    Google Scholar 

  88. Liu SH, Wang HP (2002) Photocatalytic generation of hydrogen on Zr-MCM-41. Int J Hydrogen Energy 27:859–862 (2002)

    Google Scholar 

  89. Sun B, Reddy EP, Smirniotis PG (2005) Effects of the Cr6 +concentration in Cr-incorporated TiO2-loaded MCM-41 catalysts for visible light photocatalysis. Appl Catal B: Environmental 57:139–149

    Google Scholar 

  90. Liu H, Gao L (2004) (Sulfur, Nitrogen)-codoped rutile-titanium oxide as a visible-light-activated photocatalyst. J Am Ceram Soc 87:1582–1584

    Google Scholar 

  91. Aita Y, Komatsu M, Yin S, Sato T (2004) Phase-compositional control and visible light photocatalytic activity of nitrogen-doped titania via solvothermal process. J Solid state Chem 177:3235–3238

    Google Scholar 

  92. Yuan J, Chen M, Shi J, Shangguan W (2006) Preparation and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride. Int J Hydrogen Energy 31:1326–1331

    Google Scholar 

  93. Senevirathna MKI, Pitigala PKDDP, Tennakone K (2005) Water photoreduction with Cu2O quantum dots on TiO2 nano-particles. J Photochem Photobiol A: Chem 171:257–259

    Google Scholar 

  94. Tabata S, Nishida H, Masaki Y, Tabata T (1995) Stoichiometetric photochemical decomposition of pure water in Pt/TiO2 aqueous suspension system. Cat Lett 34:245–249

    Google Scholar 

  95. Marathamuthu P, Ashokkumar M (1989) Hydrogen production with visible light using metal loaded WO3 and MV2 + in aqueous medium. Int J Hydrogen Energy 14:275–277

    Google Scholar 

  96. Mill A, Porter G (1982) Photosensitized dissociation of water using dispersed suspensions of n-type semiconductors. J Chem Soc Faraday Trans.1 78:3659–3669

    Google Scholar 

  97. Sayama K, Arakawa H (1992) Significant effect of carbonate addition on stoichiometric photodecomposition of liquid water into hydrogen and oxygen from platinum-titanium(IV) oxide suspension. J Chem Soc Chem Commun. 150–152

    Google Scholar 

  98. Sayama K, Arakawa H (1994) Effect of carbonate addition on the photocatalytic decomposition of liquid water over a ZrO2 catalyst. J Photochem Photobiol A: Chem 94:67–76

    Google Scholar 

  99. Sayama K, Arakawa H (1997) Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over Pt-TiO2 catalysts. J Chem Soc Faraday Trans 93:1647–1654

    Google Scholar 

  100. Arakawa H, Sayama K (2000) Solar hydrogen production: significant effect of Na2CO3 addition on water splitting using simple oxide semiconductor photocatalysts. Catal Surv Jpn 4:75–80

    Google Scholar 

  101. Abe R, Sayama K, Arakawa H (2003) Significant effect of iodide addition on water splitting into H2 and O2 over Pt-loaded TiO2 photocatalyst: suppression of backward reaction. Chem Phys Lett 371:360–364

    Google Scholar 

  102. Wu NL, Lee MS (2004) Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. Int J Hydrogen energy 29:1601–1605

    Google Scholar 

  103. Lee SG, Lee SW, Lee HI (2001) Photocatalytic production of hydrogen from aqueous solution containing CN- as a hole scavengers.Appl Catal A:Gen 207:173–181

    Google Scholar 

  104. Nada AA, Barakat MH, Hameed HA, Mohamad NR, Veziroglu TN (2005) Studies on the photocatalytic hydrogen production using suspended modified TiO2 photocatalysts. Int J Hydrogen energy 30:987–991

    Google Scholar 

  105. Abe R, Sayama K, Domen K, Arakawa H (2001) A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3 -/I- shuttle redox mediator. Chem Phys Lett 344:339–344

    Google Scholar 

  106. Bamwenda GR, Arakawa H (2001) The photoinduced evolution of O2 and H2 from a WO3 aqueous suspension in presence of Ce4 +/Ce3 +. Sol Energy Mater Sol Cells 70:1–14

    Google Scholar 

  107. Lee K, Nam WS, Han GY (2004) Photocatalytic water splitting in alkaline aqueous solution using redox mediator 1:parameter study. Int J Hydrogen energy 29:1343–1347

    Google Scholar 

  108. Sakata T, Hashimoto K, Kawai T (1984) Catalytic properties of ruthenium oxide on n-type semiconductors under illumination. J Phys Chem 88:5214–5221

    Google Scholar 

  109. Srivastava AM, Ackerman JF (1997) On the luminescence of Ba5M4O15 (M = Ta5 +and Nb5 +). J Solid State Chem 134, 187–191

    Google Scholar 

  110. Eng HW, Barnes PW, Auer BM, Woodword PM (2003) Investigation of the electronic structure of d0 transition metal oxides belonging to the perovskite family. J Solid State Chem 175:94–109

    Google Scholar 

  111. Kato H, Kudo A (1999) Highly efficient decomposition of pure water over NaTaO3 photocatalysts. Catal Lett 58:153–155

    Google Scholar 

  112. Kato H, Kudo A (2001) Water splitting into H2 and O2 on Alkali tantalate photocatalysts ATaO3. J Phys ChemB 105:4285–4292

    Google Scholar 

  113. Kato H, Kudo A (1999) A new tantalate photocatalyst for water decomposition into H2 and O2. Chem Phys Lett 295 487–492

    Google Scholar 

  114. Kato H, Kudo A (1999) Photocatalytic decomposition of pure water into H2 and O2 over SrTa2O6 prepared by flux method. Chem Lett 1207–1209

    Google Scholar 

  115. Kudo A, Kato H, Nakagawa S (2000) Water splitting into H2and O2 on New Sr2M2O7 (M = Nb and Ta) photocatalysts with layered perovskite structures: Factor affecting the photocatalytic activity. J Phys Chem B 104:571–575

    Google Scholar 

  116. A. Kudo A, Okutomi H, Kato H (2000)Photocatalytic water splitting into H2 and O2 over K2LnTa5O15. Chem. Lett. 1212–1213

    Google Scholar 

  117. Yamashita Y, Tada M, Kahihana M, Osada M, Yoshida K (2002) Synthesis of RuO2-loaded BaTi2O2n + 1 (n = 1, 2 and 5) using a polymerizable complex method and its photocatalytic activity for the decomposition of water. J Mater Chem 12:1782–1786

    Google Scholar 

  118. Miseki Y, Kato H, Kudo A (2005) Warer splitting into H2 and O2 over Cs2Nb4O11. Chem Lett 54–55

    Google Scholar 

  119. Kato H, Kudo A (2003) Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts. Catal Today 78:561–569

    Google Scholar 

  120. Ikeda S, Hara M, Kondo JN, Domen K (1998) Preparation of K2La2Ti3O10 by polymerized complex method and photocatalytic decomposition of water. Chem Mater 10:72–77

    Google Scholar 

  121. Yoshioka K, Petrykin V, Kakihana M, Kato H, Kudo A (2005) The relationship between photocatalytic activity and crystal structure in Strontium tantalates. J Catal 232:102–107

    Google Scholar 

  122. Otsuka H, Kim K, Kouzu A, Takimoto I, Fujimori H, Sakata Y, Imamura H, Matsumoto T, Toda K (2005) Photocatalytic performance of Ba5Ta4O15 to decomposition of H2O into H2 and O2. Chem Lett 822–823

    Google Scholar 

  123. Abe R, Higashi M, Sayama K, Abe Y, Sugihara H (2006) Photocatalytic activity of R3MO7 and R2Ti2O7 (R = Y, Gd, La; M = Nb, Ta) for water splitting into H2 and O2. J Phys Chem B 110:2219–2226

    Google Scholar 

  124. Iwase H, Kato H, Kudo A (2006) Nanosized gold particles as an efficient cocatalyst for photocatalytic overall water splitting. Catal Lett 108:6–9

    Google Scholar 

  125. Kudo A, Omri K, Kato H (1999) A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Am Chem Soc 121:11459–11467

    Google Scholar 

  126. Kato H, Kobayashi H, Kudo A (2002) Role of Ag+ in the band structures and photocatalytic properties of AgMO3 (M = Nb and Ta) with the perovskite structure. J Phys Chem B 106:12441–12447

    Google Scholar 

  127. Konta R, Kato H, Kobayashi H, Kudo A (2003) Photophysical properties and photocatalytic activities under visible light irradiation of silver vanadates. Phys Chem Chem Phys 5:3061–3065

    Google Scholar 

  128. Tang J, Zou J, Ye J (2004) Efficient photocatalytic decomposition of organic contaminants over Ca2Bi2O4 under visible-light irradiation. Angew Chem Int Ed 43:4463–4466

    Google Scholar 

  129. Kim HG, Hwang DW, Lee JS (2004) An undoped, single-phase oxide photocatalyst working under visible light. J Am Chem Soc 126:8912–8913

    Google Scholar 

  130. Zou Z, Ye J, Arakawa H (2003) Photocatalytic water splitting into H2 and or O2 under UV and visible light irradiation with a semiconductor catalyst. Int J Hydrogen Energy 28:663–669

    Google Scholar 

  131. Tai YW, Chen JS, Yang CC, Wan BJ (2004) Preparation of nano-gold on K2La2Ti3O10 for producing hydrogen from photo-catalytic water splitting. Catal. Today 97:95–101

    Google Scholar 

  132. Wu J, Uchida S, Fujishito Y, Yin S, Sato T (1999) Synthesis and photocatalytic properties of HNbWO6/TiO2 and HNbWO6/Fe2O3 nanocomposite. J Photochem Photobiol A: Chem 128:129–133

    Google Scholar 

  133. Jang JS, Kim HG, Reddy VR, Bae SW, Ji SM, Lee JS (2005) Photocatalytic water splitting over iron oxide nanoparticles intercalated in HTiNb(Ta)O5 layered compounds. J Catal 231:213–222

    Google Scholar 

  134. Choi WY, Termin A, Hoffman MR (1994) The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier reaction dynamics. J Phys Chem 98:13669–13679

    Google Scholar 

  135. Xu AW, Gao Y, Liu HQ (2002) The preparation, characterization and their photocatalytic activities of rare-earth doped TiO2 nanoparticles. J Catal 207:151–157

    Google Scholar 

  136. Peng S, Li Y, Xiang F, Lu G, Li S (2004) Effects of Be2 + doping on its photocatalytic activity. Chem Phys Lett 398:235–239

    Google Scholar 

  137. Hameed A, Gondal MA, Yamini ZH (2004) Effects of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination: role of 3d-orbitals. Catal Commun 5:715–719

    Google Scholar 

  138. Zou Z, Ye J, Sayama K, Arakawa H (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414:625–627

    Google Scholar 

  139. Konta R, Ishii T, Kato H, Kudo A (2004) Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. J Phys Chem 108:8992–8995

    Google Scholar 

  140. Kato H, Kudo A (2002) Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. J Phys Chem B 106:5029–5034

    Google Scholar 

  141. Ishii T, Kato H, Kudo A (2004) H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ion under visible light irradiation. J Photochem Photobiol A: Chem 163:181–186

    Google Scholar 

  142. Hwang DW, Kim HG, Lee JS, Kim J, Li W, Oh SH (2005) Photocatalytic hydrogen production from water over M-doped La2Ti2O7 (M = Cr, Fe) under visible light irradiation (λ > 420 nm). J Phys Chem B 109:2093–2102

    Google Scholar 

  143. Zou Z, Ye J, Sayama K, Arakawa H (2002) Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M = Mn, Fe, Co, Ni, Cu) photocatalysts. J. Photochem Photobiol A:Chem 148:65–9 (2002)

    Google Scholar 

  144. Niishiro R, Kato H, Kudo A (2005) Nickel and either tantalum or niobium co-doped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solution. Phys Chem Chem Phys 7:2241–2245

    Google Scholar 

  145. Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125:3082–3089

    Google Scholar 

  146. Iwase A, Kato H, Kudo A (2005) A novel photodeposition method in the presence of nitrate ions for loading of an iridium oxide cocatalyst for water splitting. Chem Lett 34, 946–947

    Google Scholar 

  147. Gurunathan K (2004). Photocatalytic hydrogen production using transition metal ions-doped γ -Bi2O3 semiconductor particles, Int J Hydrogen Energy 29:933–940

    Google Scholar 

  148. Sayama K, Masuka K, Abe R, Abe Y, Arakawa H (2001) Stiochiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3 -/I- shuttle redox mediator under visible light irradiation. Chem Commun 2416–2417

    Google Scholar 

  149. Kato H, Hori M, Konta R, Shimodaira Y, Kudo A (2004) Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation Chem Lett 33:1348–1349

    Google Scholar 

  150. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible light photocatalysis in nitrogen-doped titanium oxide. science 293:269–271

    Google Scholar 

  151. Kobayakawa K, Murakami K, Sato Y (2004) Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea. J Photochem Photobiol A:Chem 170:177–179

    Google Scholar 

  152. Gole JL, Stout JD, Burda C, Lou YB, Chen XB (2004) Highly efficient formation of visible light tunable TiO1 - xNx photocatalysts and their transformation at nanoscale. J Phys Chem B. 108:1230–1240

    Google Scholar 

  153. Mrowetz M, Balcerski W, Colussi AJ, Hoffmann MR (2004). Oxidative power of N-doped TiO2 photocatalysts under visible light illumination J Phys Chem B 108:17269–17273

    Google Scholar 

  154. Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Band gap narrowing of titanium oxide by sulphur doping. Appl Phys Lett 81:454–456

    Google Scholar 

  155. Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M (2002) Preparation of S-doped TiO2 photocatalysts and their photocatalytic activites under visible light. Appl Catal A: Gen 265:115–121

    Google Scholar 

  156. Miyauchi M, Takashio M, Tobimatsu H (2004) Photocatalytic activity of SrTiO3 codoped with nitrogen and lanthanum under visible light illumination. Langmuir 20:232–236

    Google Scholar 

  157. Liu HY, Gao L (2004) Codoped rutile TiO2 as a new photocatalyst for visible light irradiation. Chem Lett 33:730–731

    MathSciNet  Google Scholar 

  158. Ji SM, Borse PH, Kim HG, Hwang DW, Jang JS, Bae SW, Lee JS (2005) Photocatalytic hydrogen production from water-methanol mixtures using N-doped Sr2Nb2O7 under visible light irradiation; effect of catalyst structures. Phys Chem Chem Phys 7:1315–1321

    Google Scholar 

  159. Lee JS (2006) Photocatalytic water splitting under visible light with particulate semiconductor catalysts. Catal. Surv. Asia 9:217–227

    Google Scholar 

  160. Abe R, Hara K, Sayama K, Domen K, Arakawa H (2000) Steady hydrogen evolution from water on Eosin-Y-fixed TiO2 photocatalyst using a silane coupling reagent under visible light irradiation. J Photochem Photobiol A: Chem 137:63–69

    Google Scholar 

  161. Abe R, Sayama K, Arakawa H (2002) Efficient hydrogen evolution from aqueous mixture of I- and acetonitrile using a merocyanine dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation. Chem Phys Lett 362:441–444

    Google Scholar 

  162. Abe R, Sayama K, Arakawa H (2004) Dye-sensitized photocatalysts for efficient hydrogen production from aqueous I- solution under visible light irradiation. J Photochem Photobiol A: Chem 166:115–122

    Google Scholar 

  163. Bae E, Choi W (2006) Effect of the anchoring group (carboxylate vs phosphonate) in Ru-complex-sensitized TiO2 on hydrogen production under visible light. Source. J Phys Chem B 30:14792–14799

    Google Scholar 

  164. Dhanlakshmi KB, Latha S, Anandan S, Maruthamuthu P (2001) Dye-sensitized hydrogen evolution from water Int. J. Hydrogen Energy 26:669–674

    Google Scholar 

  165. Gurunathan K, Maruthamuthu P, Shastri VC (1997) Photocatalytic hydrogen production by dye-sensitized Pt/SnO2 and Pt/SnO2/RuO2 in aqueous methyl viologen solution. Int J Hydrogen Energy 22:57–62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Grimes, C.A., Varghese, O.K., Ranjan, S. (2008). Oxide Semiconductors: Suspended Nanoparticle Systems. In: Grimes, C.A., Varghese, O.K., Ranjan, S. (eds) Light, Water, Hydrogen. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68238-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68238-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-33198-0

  • Online ISBN: 978-0-387-68238-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics