Advertisement

Oxide Semiconductors Nano-Crystalline Tubular and Porous Systems

  • Craig A. Grimes
  • Oomman K. Varghese
  • Sudhir Ranjan

Keywords

Porous System Oxide Semiconductor Photocurrent Density Anodic Oxide Film Titanium Foil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adachi M, Murata Y, Harada M, Yoshikawa S (2000) Formation of titania nanotubes with high photocatalytic activity. Chem Lett 29:942–943Google Scholar
  2. 2.
    Chu SZ, Inoue S, Wada K, Li D, Haneda H, Awatsu S (2003) Highly porous (TiO2-SiO2-TeO2)/Al2O3/TiO2) composite nanostructures on glass with enhanced photocatalysis fabricated by anodization and sol-gel process. J Phys Chem B 107: 6586–6589Google Scholar
  3. 3.
    Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2005) Enhanced photocleavage of water using titania nanotube arrays. Nano Lett 5:191–195Google Scholar
  4. 4.
    de Taconni NR, Chenthamarakshan CR, Yogeeswaran G, Watcharenwong A, de Zoysa RS, Basit NA, Rajeshwar K (2006) Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: Influence of process variables on morphology and photoelectrochemical response. J Phys Chem B 110: 25347–25355Google Scholar
  5. 5.
    Varghese OK, Paulose M, Shankar K, Mor GK, Grimes CA (2005) Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J Nanosci Nanotechnol 5:1158–1165Google Scholar
  6. 6.
    Uchida S, Chiba R, Tomiha M, Masaki N, Shirai M (2002) Application of titania nanotubes to a dye-sensitized solar cell. Electrochem 70:418–420Google Scholar
  7. 7.
    Adachi M, Murata Y, Okada I, Yoshikawa Y (2003) Formation of titania nanotubes and applications for dye-sensitized solar cells. J Electrochem Soc 150:G488 –G493Google Scholar
  8. 8.
    Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218Google Scholar
  9. 9.
    Paulose M, Shankar K, Varghese OK, Mor GK, Hardin B, Grimes CA (2006) Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nanotechnol 17:1446–1448Google Scholar
  10. 10.
    Hoyer P (1996) Formation of a titanium dioxide nanotube array. Langmuir 12:1411–1413Google Scholar
  11. 11.
    Lakshmi BB, Dorhout PK, Martin CR (1997) Sol-gel template synthesis of semiconductor nanostructures. Chem Mater 9:857–862Google Scholar
  12. 12.
    Imai H, Takei Y, Shimizu K, Matsuda M, Hirashima H (1999) Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J Mater Chem 9:2971–2972Google Scholar
  13. 13.
    Michailowski A, Al Mawlawi D, Cheng GS, Moskovits M (2001) Highly regular anatase nanotubule arrays fabricated in porous anodic templates. Chem Phys Lett 349:1–5Google Scholar
  14. 14.
    Jung JH, Kobayashi H, van Bommel KJC, Shinkai S, Shimizu T (2002) Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template. Chem Mater 14:1445–1447Google Scholar
  15. 15.
    Kobayashi S, Hamasaki N, Suzuki M, Kimura M, Shirai H, Hanabusa K (2002) Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents. J Am Chem Soc 124:6550–6551Google Scholar
  16. 16.
    Tian ZR, Voigt JA, Liu J, McKenzie B, Xu H (2003) Large oriented arrays and continuous films of TiO2-based nanotubes. J Am Chem Soc 125:12384–12385Google Scholar
  17. 17.
    Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Formation of titanium oxide nanotube. Langmuir 14:3160–3163Google Scholar
  18. 18.
    Chen Q, Zhou WZ, Du GH, Peng LM (2002) Trititanate nanotubes made via a single alkali treatment. Adv Mater 14:1208–1211Google Scholar
  19. 19.
    Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N (2003) Formation mechanism of TiO2 nanotubes. Appl Phys Lett 82:281–283Google Scholar
  20. 20.
    Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) Titanium oxide nanotubes array prepared by anodic oxidation. J Mater Res 16:3331–3334Google Scholar
  21. 21.
    Mor GK, Varghese OK, Paulose M, Mukherjee N, Grimes CA (2003) Fabrication of tapered, conical-shaped titania nanotubes. J Mater Res 18:2588–2593Google Scholar
  22. 22.
    Cai Q, Paulose M, Varghese OK, Grimes CA (2005) The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J Mater Res 20:230–236Google Scholar
  23. 23.
    Ruan CM, Paulose M, Varghese OK, Mor GK, Grimes CA (2005) Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. J Phys Chem B 109:15754–15759Google Scholar
  24. 24.
    Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK, Latempa TJ, Fitzgerald A, Grimes CA (2006) Anodic growth of highly ordered TiO2 nanotube arrays to 134 μ m in Length. J Phys Chem B 110:16179–16184Google Scholar
  25. 25.
    Yoriya S, Prakasam HE, Varghese OK, Shankar K, Paulose M, Mor GK, Latempa TJ, Grimes CA (2006) Initial studies on the hydrogen gas sensing properties of highly-ordered high aspect ratio TiO2 nanotube-arrays 20 to 222 μ m in length. Sens Lett 4:334–339Google Scholar
  26. 26.
    Shankar K, Mor GK, Fitzgerald A, Grimes CA (2007) Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotube arrays in formamide-water mixtures. J Phys Chem C 111:21–26Google Scholar
  27. 27.
    Prakasam HE, Shankar K, Paulose M, Grimes CA (2007) A new benchmark for TiO2 nanotube array growth by anodization. J Phys Chem B (in press)Google Scholar
  28. 28.
    Serpone N, Pelizzetti E (1989) Photocatalysis: Fundamentals and Applications, Wiley, New YorkGoogle Scholar
  29. 29.
    Schiavello M, Dordrecht H (1985) Photoelectrochemistry, Photocatalysis, and Photoreactors: Fundamentals and Developments Kluwer Academic, Boston, MAGoogle Scholar
  30. 30.
    Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758Google Scholar
  31. 31.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38Google Scholar
  32. 32.
    Yamashita H, Harada M, Misaka J, Takeuchi M, Neppolian B, Anpo M (2003) Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catal Today 84:191–196Google Scholar
  33. 33.
    Wang C, Bahnemann DW, Dohrmann JK (2000) A novel preparation of iron-doped TiO2 nanoparticles with enhanced photocatalytic activity. Chem Commun 16:1539–1540Google Scholar
  34. 34.
    Wang Y, Hao Y, Cheng H, Ma H, Xu B, Li W, Cai S (1999) The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2 +-doped TiO2 electrode. J Mater Sci 34:2773–2779Google Scholar
  35. 35.
    Coloma F, Marquez F, Rochester CH, Anderson JA (2000) Determination of the nature and reactivity of copper sites in Cu–TiO2 catalysts. Phys Chem Chem Phys 2:5320–5327Google Scholar
  36. 36.
    Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J Phys Chem Solids 63:1909–1920Google Scholar
  37. 37.
    Yamashita H, Ichihashi Y, Takeuchi M, Kishiguchi S, Anpo M (1999) Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation. J Synchrotron Radiat 6:451–452Google Scholar
  38. 38.
    Karakitsou KE, Verykios XE (1993) Effects of altervalent cation doping of TiO2 on its performance as a photocatalyst for water. J Phys Chem 97:1184–1189Google Scholar
  39. 39.
    Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679Google Scholar
  40. 40.
    Lee DH, Cho YS, Yi WI, Kim TS, Lee JK, Jung HJ (1995) Metalorganic chemical vapor deposition of TiO2:N anatase thin film on Si substrate. Appl Phys Lett 66:815–816Google Scholar
  41. 41.
    Saha NC, Tompkins HG (1992) Titanium nitride oxidation chemistry: an X-rayphotoelectron spectroscopy study. J Appl Phys 72:3072–3079Google Scholar
  42. 42.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271Google Scholar
  43. 43.
    Morikawa T, Asahi R, Ohwaki T, Aoki K, Taga Y (2001) Band-gap narrowing of titanium dioxide by nitrogen doping. Jpn J Appl Phys 40:L561-L563Google Scholar
  44. 44.
    Irie H, Watanabe Y, Hashimoto K (2003) Nitrogen-concentration dependence on photocatalytic activity of TiO2 - x Nx powders. J Phys Chem B 107:5483–5486Google Scholar
  45. 45.
    Subbarao SN, Yun YH, Kershaw R, Dwight K, Wold A (1979) Electrical and optical-properties of the system TiO2 - x Fx. Inorg Chem 18:488–492Google Scholar
  46. 46.
    Hattori A, Yamamoto M, Tada H, Ito S (1998) A promoting effect of NH4F addition on the photocatalytic activity of sol-gel TiO2 films. Chem Lett 27:707–708Google Scholar
  47. 47.
    Yamaki T, Sumita T, Yamamoto S (2002) Formation of TiO2 - xFx compounds in fluorine-implanted TiO2. J Mater Sci Lett 21:33–35Google Scholar
  48. 48.
    Hoyer P (1996) Formation of a titanium dioxide nanotube array. Langmuir 12:1411–1413Google Scholar
  49. 49.
    Lakshmi BB, Dorhout PK, Martin CR (1997) Sol-gel template synthesis of semiconductor nanostructures. Chem Mater 9:857–862Google Scholar
  50. 50.
    Imai H, Takei Y, Shimizu K, Matsuda M, Hirashima H (1999) Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J Mater Chem 9:2971–2975Google Scholar
  51. 51.
    Michailowski A, Al-Mawlwai D, Cheng GS, Moskovits M (2001). Highly regular anatase nanotubule arrays fabricated in porous anodic templates. Chem Phys Lett 349:1–5Google Scholar
  52. 52.
    Jung JH, Kobayashi H, van Bommel KJC, Shinkai S, Shimizu T (2002) A novel method for preparation of nanocrystalline rutile TiO2 powders by liquid hydrolysis of TiCl4. Chem Mater 14:1445–1447Google Scholar
  53. 53.
    Kobayashi S, Hamasaki N, Suzuki M, Kimura N, Shirai H, Hanabusa K (2002) Preparation of helical transition-metal Oxide tubes using organogelators as structure-directing agents. J Am Chem Soc 124:6550–6551Google Scholar
  54. 54.
    Tian ZR, Voigt JA, Liu J, McKenzie B, Xu HF (2003) Large oriented arrays and continuous films of TiO2-based nanotubes. J Am Chem Soc 125:12384–12385Google Scholar
  55. 55.
    Kasuga T, Hiramatsu M, Hoson A, Sekino T Niihara K (1998) Formation of titanium oxide nanotubes. Langmuir 14:3160–3163Google Scholar
  56. 56.
    Chen Q, Zhou WZ, Du GH, Peng LH (2002) Trititanate nanotubes made via a single alkali treatment Adv Mater 14:1208–1211Google Scholar
  57. 57.
    Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N (2003) Formation mechanism of TiO2 nanotubes. Appl Phys Lett 82:281–283Google Scholar
  58. 58.
    Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) Titanium oxide nanotubes array prepared by anodic oxidation. J Mater Res 16:3331–3334Google Scholar
  59. 59.
    Mor GK, Varghese OK, Paulose M, Mukherjee N, Grimes CA (2003) Fabrication of tapered, conical-shaped titania nanotube. J Mater Res 18:2588–2593Google Scholar
  60. 60.
    Cai QY, Paulose M, Varghese OK, Grimes CA (2005) The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotubes array by anodic oxidation. J Mater Res 20:230–236Google Scholar
  61. 61.
    Ruan CM, Paulose M, Varghese OK, Mor GK, Grimes CA (2005) Fabrication of highly ordered TiO2 nanotube array using an organic electrolyte. J Phys Chem B 109:15754–15759Google Scholar
  62. 62.
    Macak JM, Tsuchiya H, Schmuki P (2005) High-aspect-ratio TiO2 nanotubes. Angew. Chem. Int. Ed. 44:2100–2102Google Scholar
  63. 63.
    Macak JM, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P (2005) Smooth anodic TiO2 nanotubes. Angew Chem Int Ed 44:7463–7466Google Scholar
  64. 64.
    Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK, Latempa TA, Fitzgerald A, Grimes CA (2006) Anodic growth of highly ordered TiO2 nanotube arrays to 134 μ m in length. J Phys Chem 110:16179–16184Google Scholar
  65. 65.
    Yoriya S, Prakasam HE, Varghese OK, Shankar K, Paulose M, Mor GK, Latempa TA, Grimes CA (2006) Initial studies on the hydrogen gas sensing properties of highly ordered high aspect ratio TiO2 nanotube-arrays 20 μ m to 222 μ m in length. Sensor Lett 4:334–339Google Scholar
  66. 66.
    Liu SM, Gan LM, Liu LH, Zhang WD, Zeng HC (2002) Synthesis of single-crystalline TiO2 nanotubes. Chem Mater 14:1391–1397Google Scholar
  67. 67.
    Lee S, Jeon C, Park Y (2004) Fabrication of TiO2 tubules by template synthesis and hydrolysis with water vapor. Chem Mater 16:4292–4295Google Scholar
  68. 68.
    Cheng B, Samulski ET (2001) Fabrication and characterization of nanotubular semiconductor oxides In2O3 and Ga2O3. J Mater Chem 11:2901–2902Google Scholar
  69. 69.
    Wang Y, Lee JY, Zeng HC (2005) Polycrystalline SnO2 Nanotubes Prepared via Infiltration Casting of Nanocrystallites and Their Electrochemical Application. Chem Mater 17:3899–3903Google Scholar
  70. 70.
    Zhu W, Wang W, Xu H, ShiJ (2006) Fabrication of ordered SnO2 nanotube arrays via a template route. Mater Chem Phys 99:127–130Google Scholar
  71. 71.
    Nakamura H, Matsui Y (1995) The preparation of novel silica gel hollow tubes. Adv Mater 7:871–872Google Scholar
  72. 72.
    Ono Y, kanekiyo Y, Inoue K, Hojo J, Shinkai S (1999) Evidence for the Importance of a cationic charge in the formation of hollow fiber silica from an organic gel system. Chem Lett 28:23–24Google Scholar
  73. 73.
    Jung JH, Ono Y, Hanabusa K, Shinkai S (2000) Creation of both right-handed and left-handed silica structures by sol-gel transcription of organogel fibers comprised of chiral diaminocyclohexane derivative. J Am Chem Soc 122:5008–5009Google Scholar
  74. 74.
    Tamaru S, Takeuchi M, Sano M, Shinkai S (2002) Sol-gel transcription of sugar-appended porphyrin assemblies into fibrous silica: unimolecular stacks versus helical bundles as templates. Angew Chem Int Ed 41:853–856Google Scholar
  75. 75.
    Kobayashi S, Hanabusa K, Hamasaki N, Kimura M, Shirai H (2000) Preparation of TiO2 hollow-fibers using supramolecular assemblies. Chem Mater 12:1523–1525Google Scholar
  76. 76.
    Hanabusa K, Numazawa T, Kobayashi S, Suzuki M, Shirai H (2006) Preparation of metal oxide nanotubes using gelators as structure-directing agents. Macromol Symp 235:52–56Google Scholar
  77. 77.
    Gundiah G, Mukhopadhyay S, Tumkurkar UG, Govindaraj A, Maitra U, Rao CNR (2003) Hydrogel route to nanotubes of metal oxides and sufates. J Mater Chem 13:2118–2122Google Scholar
  78. 78.
    Ogihara H, Sadakane M, Nodasaka Y, Ueda W (2006) Shape-controlled synthesis of ZrO2, Al2O3 and SiO2 nanotubes using carbon nanofibers as templates. Chem Mater 21:4981–4983Google Scholar
  79. 79.
    Adachi M, Harada T, Harada M (1999) Formation of huge length silica nanotubes by a templating mechanism in the laurylamine/tetraethoxysilane System. Langamuir 15:7097–7100Google Scholar
  80. 80.
    Wang L, Tomura S, Ohashi F, Maeda M, Suzuki, Inukai K (2001) Synthesis of single silica nanotubes in the presence of citric acid J Mater. Chem. 11:465–468Google Scholar
  81. 81.
    Ajayan PM, Stephane O, Redlich P, Colliex C (1995) Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. Nature 375:564–566Google Scholar
  82. 82.
    Satishkumar BC, Govindaraj AG, Vogl EM, Basumallick L, Rao CNR (1997) Oxide nanotubes prepared using carbon nanotubes as templates. J Mater Res 12:604–606Google Scholar
  83. 83.
    Rao CNR, Nath M (2003) Inorganic nanotubes. Dalton Trans 1–24Google Scholar
  84. 84.
    Archibald DD, Mann S (1993) Template mineralization of self-assembled anisotropic lipid microstructures. Nature 364:430–432Google Scholar
  85. 85.
    Chen J, Xu L, Li W, Gou X (2005) α -Fe2O3 nanotubes in gas sensor and lithium ion battery applications. Adv Mater 17:582–586Google Scholar
  86. 86.
    Sun Z, Yuan H, Liu Z, Han B, Zhang X (2005) A highly efficient chemical sensor material for H2S: α -Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv Mater 17:2993–2997Google Scholar
  87. 87.
    Liu L, Kou HZ, Mo W, Liu H, Wang Y (2006) Surfactant assisted synthesis of α -Fe2O3 nanotubes and nanorods with shape dependent magnetic properties. J Phys Chem B 110:15218–15223Google Scholar
  88. 88.
    Liu Z, Zhang D, Han S, Li C, Lei B, Lu W, Fang J, Zhou C (2005) Single crystalline magnetite nanotube. J Am Chem Soc 127:6–7Google Scholar
  89. 89.
    Seo DS, Lee JK, Kimb H (2001) Preparation of nanotube-shaped TiO2 powder. J Crys Gro 229:428–432Google Scholar
  90. 90.
    Du GH, Chen Q, Che RC, Yuan ZY, Peng LM (2001) Preparation and structural analysis of titanium oxide nanotubes. Apl Phys Lett 79:3702–3704Google Scholar
  91. 91.
    Yuan ZY, Zhou W, Su BL (2002) Hierarchical interlinked structure of titanium oxide nanofibers. Chem Commun 1202–1203Google Scholar
  92. 92.
    Zhang Q, Gao L, Sun J, Zheng S (2002) Preparation of long TiO2 nanotubes from ultrafine rutile crystals. Chem Lett 31:226–227Google Scholar
  93. 93.
    Tsai CC, Teng H (2004) Regulation of the Physical Characteristics of Titania Nanotube Aggregates Synthesized from Hydrothermal Treatment. Chem Mater 16:4352–4358Google Scholar
  94. 94.
    Bavykin DV, Parmon VN, Lapkin AA, Walsh FC (2004) The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J Mater Chem 14:3370–3377Google Scholar
  95. 95.
    Jia CJ, Sun LD, Yan ZG, You LP, Luo F, Han XD, PangYC, Zhang Z, Yan CH (2005) Single-crystalline iron oxide nanotubes. Angew Chem Int ed 44:4328–4333Google Scholar
  96. 96.
    Li Q, Kumar V, Li Y, Zhang H, Marks TJ, Chang RPH (2005) Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chem Mater 17:1001–1006Google Scholar
  97. 97.
    Shankar K, Paulose M, Mor GK, Varghese OK, Grimes CA (2005) A study on the spectral photoresponse and photoelectrochemical properties of flame-annealed titania nanotube-arrays. J Phys D 38:3543–3549Google Scholar
  98. 98.
    Shankar K, Tep KC, Mor GK, Grimes CA (2006) An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: Modification of bandgap and photoelectrochemical properties. J Phys D 39:2361–2366Google Scholar
  99. 99.
    Mor GK, Carvalho MA, Varghese OK, Pishko MV, Grimes CA (2004) A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J Mater Res 19:628–634Google Scholar
  100. 100.
    Mor GK, Varghese OK, Paulose M, Grimes CA (2003) A Self-cleaning room temperature titania-nanotube hydrogen gas sensor. Sens Lett 1:42–46Google Scholar
  101. 101.
    Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Solar Energy Materials & Solar Cells 90:2011–2075Google Scholar
  102. 102.
    Ruan C, Paulose M, Varghese OK, Grimes CA (2006) Enhanced photoelectrochemical response in highly ordered TiO2 nanotube arrays anodized in boric acid containing electrolyte. Solar Energy Materials & Solar Cells 90:1283–1295Google Scholar
  103. 103.
    Mor GK, Varghese OK, Paulose M, Grimes CA (2005) Transparent highly-ordered TiO2 nanotube-arrays via anodization of titanium thin films. Adv Funct Mater 15:1291–1296Google Scholar
  104. 104.
    Paulose M, Mor GK, Varghese OK, Shankar K, Grimes CA (2006) Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. J Photochem Photobiol A 178:8–15Google Scholar
  105. 105.
    Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M (1991) Structure and physicochemistry of anodic oxide filmes on titanium and TA6V alloy. Surf Interface Anal 27:629–637Google Scholar
  106. 106.
    Delplancke JL, Winand R (1998) Galvanostatic anodization of titanium. II. Reactions efficiencies and electrochemical behaviour model. Electrochim Acta 33:1551–1559Google Scholar
  107. 107.
    Sul YT, Johansson CB, Jeong Y, Albrektsson T (2001) The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys 23:329–346Google Scholar
  108. 108.
    Hwang BJ, Hwang JR (1993) Kinetic model of anodic oxidation of titanium in sulphuric acid. J Appl Electrochem 23:1056–1062Google Scholar
  109. 109.
    Parkhutik VP, Shershulsky VI (1992) Theoretical modelling of porous oxide growth on aluminium. J Phys D 25:1258–1263Google Scholar
  110. 110.
    Thompson GE (1997) Porous anodic alumina: fabrication, characterization and applications. Thin Solid Films 297:192–201Google Scholar
  111. 111.
    Chen S, Paulose M, Ruan C, Mor GK, Varghese OK, Kouzoudis D, Grimes CA (2006) Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: Preparation, characterization, and application to photoelectrochemical cells. J Photochem Photobiol 177:177–184Google Scholar
  112. 112.
    Melody B, Kinard T, Lessner P (1998) The non-thickness-limited growth of anodic oxide films on valve metals. Electrochem. Solid-State Lett 1:126–129Google Scholar
  113. 113.
    Li YM, Young L (2001) Non-thickness-limited growth of anodic oxide films on tantalum. J Electrochem Soc 148:B337-B342Google Scholar
  114. 114.
    Izutsu K (2002) Electrochemistry in nonaqueous solutions, Wiley-VCHGoogle Scholar
  115. 115.
    Khan SUM, Al-Shahry M, Ingler WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO2.Science 297:2243–2245Google Scholar
  116. 116.
    Noworyta K, Augustynski J (2004) Spectral photoresponses of carbon-doped TiO2 film electrodes. Electrochem Solid-State Lett 7:E31-E33Google Scholar
  117. 117.
    Lee JY, Park J, Cho JH (2005) Electronic properties of N- and C-doped TiO2. Appl Phys Lett 87:011904–3Google Scholar
  118. 118.
    Chen XB, Lou YB, Samia ACS, Burda C, Gole JL (2005) Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder. Adv Funct Mater 15:41–49Google Scholar
  119. 119.
    Wu PG, Ma CH, Shang JK (2005) Effects of nitrogen doping on optical properties of TiO2 thin films. Appl Phys A 81:1411–1417Google Scholar
  120. 120.
    Suda Y, Kawasaki H, Ueda T, Ohshima T (2005) Preparation of nitrogen-doped titanium oxide thin film using a PLD method as parameters of target material and nitrogen concentration ratio in nitrogen/oxygen gas mixture. Thin Solid Films 475: 337–341Google Scholar
  121. 121.
    Liu Y, Alwitt RS, Shimizu K (2000) Cellular porous anodic alumina grown in neutral organic electrolyte-I. Structure, composition, and properties of the films. J Electrochem Soc 147:1382–1387Google Scholar
  122. 122.
    Gerischer H, Lubke M (1986) A particle-size effect in the sensitization of TiO2 electrodes by a CdS deposit. J Electroanal Chem 204:225–227Google Scholar
  123. 123.
    Vogel R, Hoyer P, Weller H (1994) Quantum-sized PbS, CdS, AgzS, Sb&, and Bi& particles as sensitizers for various nanoporous wide- bandgap semiconductors. J Phys Chem 98:3183–3188Google Scholar
  124. 124.
    Pandey RK, Sahu SN, Chandra S (1996) Handbook of Semiconductor Electrodeposition, Marcel Decker, New YorkGoogle Scholar
  125. 125.
    Varghese OK, Gong DW, Paulose M, Grimes CA, Dickey EC (2003) Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J Mater Res 18: 156–165Google Scholar
  126. 126.
    Marino CEB, Nascente PAP, Biaggio SR, Rocha-Filho RC, Bocchi N (2004) XPS characterization of anodic titanium oxide films grown in phosphate buffer solutions. Thin Solid Films 468:109–112Google Scholar
  127. 127.
    Yakovleva NM, Anicai L, Yakovlev AN, Dima L, Khanina EY, Buda M, Chupakhina EA (2002) Structural study of anodic films formed on aluminum in nitric acid electrolyte. Thin Solid Films 416:16–23Google Scholar
  128. 128.
    Augustynski J, Berthou H, Painot J (1976) XPS study of interactions between aluminum metal and nitrate ions. Chem Phys Lett 44:221–224Google Scholar
  129. 129.
    Parhutik VP, Makushok IE, Kudriavtsev E, Sokol VA, Khodan AN (1987) An X-ray electronic study of the formation of anodic oxide films on aluminium in nitric acid. Electrochemistry (Elektrokhymia) 23:1538–1544Google Scholar
  130. 130.
    Kundu M, Khosravi AA, Kulkarni SK (1997) Synthesis and study of organically capped ultra small clusters of cadmium sulphide. J Mater Sci 32:245–258Google Scholar
  131. 131.
    Ong KG, Varghese OK, Mor GK, Grimes CA (2005) Numerical simulation of light propagation through highly-ordered titania nanotube arrays: Dimension optimization for improved photoabsorption. J Nanosci Nanotechnol 5:1801–1808Google Scholar
  132. 132.
    Mor GK, Shankar K, Varghese OK, Grimes CA (2004) Photoelectrochemical properties of titania nanotubes. J Mater Res 19:2989–2996Google Scholar
  133. 133.
    Asanuma T, Matsutani T, Liu C, Mihara T, Kiuchi M (2004) Structural and optical properties of titanium dioxide films deposited by reactive magnetron sputtering in pure oxygen plasma. J Appl Phys 95:6011–6016Google Scholar
  134. 134.
    Manifacier JC, Gasiot J, Fillard JP (1976) A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. J Phys E 9:1002–1004Google Scholar
  135. 135.
    Vogel R, Meredith P, Kartini I, Harvey M, Riches JD, Bishop A, Heckenberg N, Trau M, Dunlop HR (2003) Mesostructured dye-doped titanium dioxide for micro-optoelectronic applications. Chem Phys Chem 4:595–603Google Scholar
  136. 136.
    Yoldas BE, Partlow PW (1985) Formation of broad band antireflective coatings on fused silica for high power laser applications. Thin Solid Films 129:1–14Google Scholar
  137. 137.
    Tauc J (1970) Absorption edge and internal electric fields in amorphous semiconductors. Mater Res Bull 5:721–729Google Scholar
  138. 138.
    Sant PA, Kamat PV (2002) Interparticle electron transfer between size-quantized CdS and TiO2 semiconductor nanoclusters. Phys Chem Chem Phys 4:198–203Google Scholar
  139. 139.
    Kokai J, Rakhshani AE (2004) Photocurrent spectroscopy of solution-grown CdS films annealed in CdCl2 vapour. J Phys D 37:1970–1975Google Scholar
  140. 140.
    Lubberhuizen WH, Vanmaekelbergh D, Van Faassen E (2000) Recombination of photogenerated charge carriers in nanoporous gallium phosphide. J Porous Mater 7:147–152Google Scholar
  141. 141.
    Marin FI, Hamstra MA, Vanmaekelbergh D (1996) Greatly enhanced sub-bandgap photocurrent in porous GaP photoanodes. J Electrochem Soc 143:1137–1142Google Scholar
  142. 142.
    Vanmaekelbergh D, de Jongh PE (1999) Driving force for electron transport in porous nanostructured photoelectrodes. J Phys Chem B 103:747–750Google Scholar
  143. 143.
    Hamnett A (1980) General discussions. Faraday Discuss Chem Soc 70:124–127Google Scholar
  144. 144.
    Hagfeldt A, Gratzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68Google Scholar
  145. 145.
    Ong KG, Varghese OK, Mor GK, Grimes CA (2007) Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption. Solar Energy Materials & Solar Cells 91:250–257Google Scholar
  146. 146.
    Aroutiounian, V.M.; Arakelyan, V.M.; Shannazaryan, G.E.; Stepanyan, G.M.; Turner, J.A.; Khaselev, O. (2002) Investigation of ceramic Fe2O3photoelectrodes for solar energy photoelectrochemical converters. Int. J. Hydrogen Energy 27:33–38Google Scholar
  147. 147.
    Beermann, N.; Vayssieres, L.; Lindquist, S.-Eric; Hagfieldt, A. (2000) Photoelectrochemical studies of oriented nanorod thin films of hematite. J. Electrochem. Soc. 147:2456–2461Google Scholar
  148. 148.
    Morin, F.J. (1954) Electrical properties of α - Fe2O3. Phys. Rev. 93:1195–1199Google Scholar
  149. 149.
    Gardner, R.F.G.; Sweett, F.; Tanner, D.W. (1963) The electrical properties of alpha ferric oxide—II. Ferric oxide of high purity. J. Phys.Chem. Solids 24:1183–1186Google Scholar
  150. 150.
    Sato, N. (1998) Electrochemistry at Metal and Semi-conductor Electrodes; Elsevier; Amsterdam, pg 34Google Scholar
  151. 151.
    Murphy, A.B.; Barnes, P.R.F.; Randeniya, L.K.; Plumb, I.C.; Grey, I.E.; Horne, M.D.; Glasscock, J.A. (2006) Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy 31:1999–2017Google Scholar
  152. 152.
    Grätzel, M. (2001) Photoelectrochemical cells. Nature 414:338–344Google Scholar
  153. 153.
    Kennedy, J. H.; Frese, J. K. W. (1978) Photooxidation of water at α - Fe2O3electrodes. J. Electrochem. Soc. 125: 709–714Google Scholar
  154. 154.
    Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A.; Ong, K. G.(2006) Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology 17:398–402. Varghese, O. K.; Yang, X.; Kendig, J.; Paulose, M.; Zeng, K.; Palmer, C.; Ong, K. G.; Grimes, C. A. (2006) A transcutaneous hydrogen sensor: From design to application. Sensor Letters 4:120–128Google Scholar
  155. 155.
    Varghese, O. K.; Gong, D.; Paulose, M.; Ong, K. G.; Grimes, C. A. (2003) Hydrogen sensing using titania nanotubes. Sensors Actuators B, 93:338–344Google Scholar
  156. 156.
    Mor, G. K.; Varghese, O. K.; Paulose, M.; Grimes, C. A. (2003) A self-cleaning, room-temperature titania nanotube hydrogen gas sensor. Sensor Letters 1:42–46Google Scholar
  157. 157.
    Mor, G. K.; Carvalho, M. A.; Varghese, O. K.; Paulose, M.; Pishko, M. V.; Grimes, C. A. (2004) A room-temperature TiO2 nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Materials Research 19:628–634Google Scholar
  158. 158.
    Varghese, O. K.; Mor, G. K.; Grimes, C.A.; Paulose, M.; Mukherjee, N. (2004) A titania nanotube array room-temperature sensor for selective detection of hydrogen at low concentrations. J. Nanosci. Nanotechn. 4:733–737Google Scholar
  159. 159.
    Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. (2006) Use of highly ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Letters 6:215–218Google Scholar
  160. 160.
    Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. (2007) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Letters 7:69–74Google Scholar
  161. 161.
    Melody, B.; Kinard, T.; Lessner, P. (1998) The non-thickness-limited growth of anodic oxide films on valve metals. Electrochem. Solid-State Lett. 1:126–129Google Scholar
  162. 162.
    Krembs, G.M. (1963) Residual tritiated water in anodized tantalum films. J. Electrochem. Soc. 110:938–940Google Scholar
  163. 163.
    Varghese, O. K.; Paulose, M.; Gong, D.; Grimes, C. A.; Dickey, E. C. (2003) Crystallization and high temperature structural stability of titanium oxide nanotube arrays. J. Materials Research 18:156–165Google Scholar
  164. 164.
    Gennari, F.C.; Pasquevich, D.M. (1998) Kinetics of the anatase rutile transformation in TiO2 in the presence of Fe2O3. J. Mater. Sci. 33:1571–1578Google Scholar
  165. 165.
    Wang, R.; Sakai, R.; Fujishima, A.; Watanabe, T.; Hashimoto, K. (1999) Studies of surface wettability conversion on TiO2 single-crystal surfaces. J. Phys. Chem. B 103:2188–2194Google Scholar
  166. 166.
    Dghoughi, L.; Elidrissi, B.; Berne‘de, C.; Addou, M.; Lamrani, M.A.; Regragui, M.; Erguig H. (2006) Physicochemical, optical and electrochemical properties of iron oxide thin films prepared by spray pyrolysis. Appl. Surf. Sci. 253:1823–1829Google Scholar
  167. 167.
    Heimer, T.A.; Heilweil, E.J.; Bignozzi, C.A.; Meyer, G.J. (2000) Electron injection, recombination, and halide oxidation dynamics at dye-sensitized metal oxide interfaces. J. Phys. Chem. A 104:4256–4262Google Scholar
  168. 168.
    Grimes, C. A. (2007) Synthesis and application of highly ordered arrays of TiO2 nanotubes. J. Mater. Chemistry 17:1451–1457Google Scholar
  169. 169.
    Mor, G. K.; Prakasam, H. E.; Varghese, O. K.; Shankar, K.; Grimes, C. A. (2007) Vertically Oriented Ti-Fe-O Nanotube Array Films: Towards a Useful Material Architecture for Solar Spectrum Water Photolysis. Nano Letters DOI: 7:2356–2364Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Craig A. Grimes
    • 1
  • Oomman K. Varghese
    • 2
  • Sudhir Ranjan
    • 2
  1. 1.Department of Electrical Engineering Department of Materials Science & EngineeringPennsylvania State UniversityUniversity Park
  2. 2.Pennsylvania State University Materials Research InstituteUniversity Park

Personalised recommendations