Oxide Semiconducting Materials as Photoanodes

  • Craig A. Grimes
  • Oomman K. Varghese
  • Sudhir Ranjan


Quantum Size Effect Space Charge Layer Photoelectrochemical Cell Flat Band Potential Photoelectrochemical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38Google Scholar
  2. 2.
    Sieber KD, Sanchez, C, Turner JE, Somorjai GA (1985) Preparation, electrical and photoelectrochemical properties of magnesium doped iron oxide sintered discs. Mat Res Bull 20:153–162Google Scholar
  3. 3.
    Fujishima A, Honda K (1971) Electrochemical evidence for the mechanism of the primary stage of photosynthesis. Bull Chem Soc Jpn 44:1148–50Google Scholar
  4. 4.
    Mavroides JG, Tchernev DI, Kafalas JA, Kolesar DF (1975) Photoelectrolysis of water in cells with TiO2 anodes. Mater Res Bull 10:1023–1030Google Scholar
  5. 5.
    Nozik AJ (1975) Photoelectrolysis of water using semiconducting TiO2 crystals. Nature 257:383–386Google Scholar
  6. 6.
    Ohnishi T, Nakato Y, Tsubumura H (1975) Quantum yield of photolysis of water on titanium oxide. Ber Bunsenges Phys Chem 79:523–525Google Scholar
  7. 7.
    Getoff N (1990) Photoelectrochemical and photocatalytic hydrogen production. Int J Hydrogen Energy 15:407–417Google Scholar
  8. 8.
    Ghosh AK, Muruska HP (1977) Photoelectrolysis of water in sunlight with sensitized semiconductor electrodes. J Electrochem Soc 128:1516–1522Google Scholar
  9. 9.
    Gautron J, Marucco JF, Lemasson P (1981) Reduction and doping of semiconducting rutile. Mater Res Bull 16:575–580Google Scholar
  10. 10.
    Salvador P (1980) The influence of Niobium doping on the efficiency of n-TiO2 electrode in water photoelectrolysis. Sol Energy Mater 2:413–421Google Scholar
  11. 11.
    Wang MH, Guo RJ, Tso TL, ‘Perng TP (1995) Effects of sintering on the photoelectrochemical properties of Nbdoped TiO2 electrode. Int J Hydrogen Energy 20:555–560Google Scholar
  12. 12.
    Nair MP, Rao KVC, Nair CGR (1991) Investigation of the mixed-oxide materials TiO2-SiO2, TiO2-SiO2-Al2O3, TiO2- SiO2-In2O3 and TiO2-SiO2-RuO2 in regard to the photoelectrolysis of water. Int J Hydrogen Energy 16:449–459Google Scholar
  13. 13.
    Wrighton MS, Ellis AB, Wolczanski PT, Morse DL, Abrahamson HB, Ginley DS (1976) Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential. J Am Chem Soc 98:2774–2779Google Scholar
  14. 14.
    Bolts JM, Wrighton MS (1976) Correlation of photocurrentvoltage curves with flat-band potential for stable photoelectrodes for the electrolysis of water. J Phys Chem 80:2641–2646Google Scholar
  15. 15.
    Mavroides JG, Kafalas JA, Kolesar DF (1976) Photoelectrolysis of water in cells with SrTiO3 anodes. Apl Phys Lett 28:241–243Google Scholar
  16. 16.
    ′t Lam Rue, de Haart LGJ, Wiersma AW, Blasse G, Tinnemans AHA, Mackor A (1981) The sensitization of SrTiO3 photoanodes by doping with various transition metal ions. Mater Res Bull 16:1593–1600Google Scholar
  17. 17.
    Mackor A, Blasse G (1981). Visible light induced photocurrents in SrTiO3-LaCrO3 single-crystalline electrode. Chem Phys Lett 77:6–8Google Scholar
  18. 18.
    Yin J, Ye J, Zou Z (2004) Enhanced photoelectrolysis of water with photoanode Nb:SrTiO3. Appl Phys Lett 85: 689–691Google Scholar
  19. 19.
    Redon AM, Vigneron J, Heindl R, Sella C, Martin C, Dalbera JP (1981). Differences in the optical and photoelectrochemical behaviors of single crystals and amorphous ferric oxide. Solar Cells 3:179–186Google Scholar
  20. 20.
    Kung HH, Jarrett HS, Sleight AW, Ferretti A (1977) Semiconducting oxide anodes in photoassisted electrolysis of water. J Appl Phys 48:2463–2469Google Scholar
  21. 21.
    Quin RK, Nashby RD, Baughman RJ (1976) Photoassisted electrolysis of water using single crystals of α-Fe2O3 anode. Mater Res Bull 11:1011–1017Google Scholar
  22. 22.
    Gartner WW (1959) Depletion layer photoeffects in semiconductors. Phys Rev 116:84–87Google Scholar
  23. 23.
    Sanchez C, Sieber KD, Somorjai GA (1988) The photoelectrochemistry of α-Fe2O3. J Electroanal Chem 252:269–290Google Scholar
  24. 24.
    Wrighton MS, Morse DL, Ellis AB, Ginley DS, Abrahamson HB (1976) Photoassisted electrolysis of water by ultraviolet irradiation of an antimony doped stannic oxide electrode. J Am Chem Soc 98:44–48Google Scholar
  25. 25.
    Butler MA, Nasby RD, Quinn RK (1976) Tungsten trioxide as an electrode for photoelectrolysis of water. Sol State Commun 19:1011–1014Google Scholar
  26. 26.
    Butler MA (1977) Photoelectrolysis and physical properties of semiconducting anode. J Appl Phys 48:1914–1920Google Scholar
  27. 27.
    Antonucci V, Giordano N, Bart JCJ (1982) Structure and photoelectrochemical efficiency of oxidized titanium electrodes. Int J Hydrogen Energy 7:769–774Google Scholar
  28. 28.
    Giordano N, Antonucci V, Cavallaro S, Lembo R, Bart JCJ (1982) Photoassisted decomposition of water over modified rutile electrodes. Int J Hydrogen Energy 7:867–72Google Scholar
  29. 29.
    Matsumoto Y, Shimizu T, Sato E (1982) Photoelectrochemical properties of thermally oxidized TiO2. Electrochem Acta 27:419–424Google Scholar
  30. 30.
    Benko FA, MacLaurin CL, Koffyberg FP (1982). CuWO4 and Cu3WO6 as anodes for the photoelectrolysis of water. Mater Res Bull 17:133–136Google Scholar
  31. 31.
    Campet G, Claverie J, Hagenmuller P, Chang BT (1984) Influence of lanthanum-doping on the photoelectrochemical properties of SrTiO3 polycrystalline anodes. Mater Lett 3:5–10Google Scholar
  32. 32.
    Radecka M, Sobas P, Trenczek A, Rekas M (2004) Photorespose of undoped and W-doped TiO2. Polish J Chem 78:1925–1934Google Scholar
  33. 33.
    Radecka M, Sobas, Wierzbicka PM, Rekas M (2005) Photoelectrochemical properties of undoped and Ti-doped WO3. Physica B 364:85–92Google Scholar
  34. 34.
    Bak T, Nowotny J, Rekas M, Sorrell CC (2002) Photoelectrochemical properties of TiO2-Pt system in aqueous solutions. Int J Hydrogen Energy 27:19–26Google Scholar
  35. 35.
    Sastri MVC, Nagasubramanian G (1982) Studies of ferric oxide electrodes for the photo-assisted electrolysis of water. Int J Hydrogen Energy 11:873–876Google Scholar
  36. 36.
    Turner JE, Hendewerk M, Somorjai GA (1981) The photodissociation of water by doped iron oxides: the unbiased p/n assembly. Chem Phys Lett 105:581–585Google Scholar
  37. 37.
    Hardee KL, Bard AJ (1975) Semiconductor electrodes I. J Electrochem Soc 122:739–742Google Scholar
  38. 38.
    Gerischer H (1977) On the stability of semiconductor electrodes against photodecomposition. J Electroanal Chem 82:133–143Google Scholar
  39. 39.
    Fujishima A, Kohayakawa K, Honda K (1975). Hydrogen production under sunlight with an electrochemical photocell. J electrochem Soc 122:1487–1489Google Scholar
  40. 40.
    Keeny J, Weinstein DH, Haas GM (1975) Electricity from photosensitization of Ti. Nature 253:719–720Google Scholar
  41. 41.
    Yazawa K, Kamugawa H, Morisaki H. (1979) Semiconducting TiO2 films for photoelectrolysis of water. Int J Hydrogen Energy 4:205–209Google Scholar
  42. 42.
    Babu KSC, Srivastava ON (1989) Structural and photoelectrochemical studies of In2O3 modified TiO2 in regard to hydrogen-production through photoelectrolysis. Int J Hydrogen Energy 14:529–535Google Scholar
  43. 43.
    Hartig KJ, Getoff N, Kotschev KD, Kanev ST (1983) Influence of hydrogen reduction on photoelectrochemical behavior of anodic oxidized n-TiO2 layer. Sol Energy Mater 9:167–195Google Scholar
  44. 44.
    Wilson RH (1977) A model for the current-voltage curve of photoexcited semiconductor electrodes. J Appl Phys 48:4292–4297Google Scholar
  45. 45.
    Bicelli LP, Razzini G (1985) Photoelectrochemical performance of anodic n-TiO2 films submitted to hydrogen reduction. Int J Hydrogen Energy 10:645–649Google Scholar
  46. 46.
    Lindquist SE, Lindgren A, Ning ZY (1985) On the origin of the bandshifts in the action spectra of polycrystalline TiO2 electrode prepared by thermal oxidation of titanium. J Electochem Soc 132:623–631Google Scholar
  47. 47.
    Akikusa J, Khan SUM (1997) Photo response and AC impedance characterization of n-TiO2 during hydrogen and oxygen evolution in an electrochemical cell. Int J Hydrogen Energy 22:875–882Google Scholar
  48. 48.
    Dobkin DM, Zurao MK (2003) Priniciples of chemical vapor deposition. Kluwer, DordrechtGoogle Scholar
  49. 49.
    Kern W, Vossen J (1991) Thin film processes II. Academic press, New YorkGoogle Scholar
  50. 50.
    Williams LM, Hess DW (1984) Phtoelectrochemical properties of plasma deposited TiO2 thin film. Thin Solid Films 115:13–18Google Scholar
  51. 51.
    Boschloo GK, Goossens A, Schoonman J (1997) J Photoelectrochemical study of thin film of anatase TiO2 films prepared by metal organic chemical vapor deposition. J Electrochem Soc 144:1311–1317Google Scholar
  52. 52.
    Levi-Clement C, Schleich DM, Gorochov O, Czapla A (1983) Sn1-xPbxO2 sputtered thin film as photoanode for photoelectrochemical cells. Mater Res Bull 18:1471–1476Google Scholar
  53. 53.
    Yoko T, Yuasa A, Kamiya K, Sakka S (1991) Sol-gelderived TiO2 thin film semiconductor electrode for photocleavage of water. J Electrochem Soc 138:2279–2784Google Scholar
  54. 54.
    Yoko T, L. Hu L, Kozuka H, Sakka S (1996) Photoelectrochemical properties of TiO2 coating films prepared using different solvent by the sol-gel method. Thin Solid Films 283:188–195Google Scholar
  55. 55.
    Zhao G, Kozuka H, Lin H, Yoko T (1999) Sol-gel preparation of Ti1-xVxO2 solid solution film electrodes with conspicuous photoresponse in the visible region. Thin Solid Films 339:123–128Google Scholar
  56. 56.
    Hartig KJ, Getoff N, Nauer G (1983) Comparison of photoelectrochemical properties of n-TiO2 films obtained by different production methods. Int J Hydrogen Energy 8:603–607Google Scholar
  57. 57.
    Jung HC, Kim KS, Yoon DH, Nam SS, Sun KH (1991) The stability of PEC electrodes (TiO2 anode and Pt cathode) and Cell for H2 production. Int J Hydrogen Energy 16:379–386Google Scholar
  58. 58.
    Dyer CK, Leech JSL (1978) Reversible optical changes within anodic oxide films on titanium and niobium. J Electrochem Soc 125:23–29Google Scholar
  59. 59.
    Takahashi M, Tsukigi K, Uchino T, Yoko T (2001) Enhanced photocurrent in thin film TiO2 electrodes prepared by sol-gel method. Thin Solid Films 388, 231–236Google Scholar
  60. 60.
    Bockris JOM, Itoh K (1984) Stacked thin film electrode from iron oxide. J Appl Phys 56:874–876Google Scholar
  61. 61.
    Prasad G, Rao NN, Srivastava ON (1988) On the photoelectrodes TiO2 and Wse2 for hydrogen production through photoelectrolysis. Int J Hydrogen Energy 13:399–405Google Scholar
  62. 62.
    Augustynski J (1993) The role of the surface intermediates in the photoelectrochemical behavior of anatase and rutile TiO2. Electochim Acta 38:43–46Google Scholar
  63. 63.
    Yeshodharan E, Grätzel M (1983) Photodecomposition of liquid water with TiO2 supported noble metal cluster. Helv Chim Acta 66:2145–2153Google Scholar
  64. 64.
    Khan SUM, Akikusa J (1998) Stability and photoresponse of nanocrystalline n-TiO2 and n-TiO2/Mn2O3 thin film electrodes during water splitting reactions. J Electrochem Soc 145:89–93Google Scholar
  65. 65.
    Khan SUM, Al-shahry M, Ingler Jr. WB (2002) Efficient photochemical water splitting by a chemically modified n- TiO2. Science 297:2243–2245Google Scholar
  66. 66.
    Shankar K, Paulose M, Mor GK, Varghese OK, Grimes CA (2005) A study on the spectral photoresponse and photoelectrochemical properties of flame annealed titania nanotube arrays. J Phys D: Appl Phys 38:3543–3549Google Scholar
  67. 67.
    Hagglund C, Gratzel M, Kasemo B (2003) Comments on “Efficient photochemical water splitting by a chemically modified n-TiO2” (II). Science 301:1673bGoogle Scholar
  68. 68.
    Aroutiounian VM, Arakelyan VM, Shahnazaryan GE (2005) Metal oxides photoelectrode for hydrogen generation using solar water radiation driven water splitting. Sol Energy 78:581–592Google Scholar
  69. 69.
    Noworyta K, Augustynski J (2004) Spectral photorespnses of carbon-doped TiO2 film electrode. Electrochem Solid-State Lett 7:E31-E33Google Scholar
  70. 70.
    Radecka M, Zakrzewska Wierzbicka KM, Gorzkowska A, Komornicki S (2003) Study of the TiO2-Cr2O3 system for photoelectrolytic decomposition of water. Solid state Ionics 157:379–386Google Scholar
  71. 71.
    Hodes G, Cahen D, Mannasen J. (1976) Tungsten trioxide as a photoanode for photoelectrochemical cell (PEC). Nature 260:312–313Google Scholar
  72. 72.
    Quarto FD, Paola AD, Sunseri C (1981) Semiconducting properties of anodic WO3 amorphous film. Electrochim Acta 26:1177–1184Google Scholar
  73. 73.
    Giordano N, Passalacqua E, Antonucci V, Bart JCJ (1983) Iron oxide electrodes for photoelectrolysis of water. Int J 10:Hydrogen Energy 0:763–766Google Scholar
  74. 74.
    Majumder SA, Khan SUM (1994) Photoelectrolysis of water at bare and electrocatalyst covered thin film Fe2O3 Int J Hydrogen Energy 19:881–887Google Scholar
  75. 75.
    Sartoretti CJ, Alexander BD, Solarska R, Rutkowaska IA, Augustynski J (2005) Photoelectrochemical oxidation of water at transparent ferric oxide film electrode Phys Chem B 109:13685–13692Google Scholar
  76. 76.
    Ingler WB, Baltrus JP, B 109:13685–13692Khan SUM (2004) Photoresponse of p-type zinc-doped iron(III) oxide films. J Am Chem Soc 126:10238–10239Google Scholar
  77. 77.
    Jaramillo TF, Baeck SH, Shwarsctein AK, Choi KS, Stucky, McFarland EW (2005) Automatated electrochemical synthesis and photoelectrochemical characterization of Zn1-xCoxO thin film for solar hydrogen production. J Comb Chem 7:264–271Google Scholar
  78. 78.
    Regan BO, Grätzel M (1991) A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 thin film Nature 353:737–740Google Scholar
  79. 79.
    Katoh R, Furabe A, Barzykin, Arakawa H, and Tachiya H (2004) The kinetics and mechanism in electron injection and charge recombination in dye-sensitized nanocrystalline semiconductor. Coord Chem Rev 248:1195–1213Google Scholar
  80. 80.
    Frank AJ, N Kopidakis, J Lagemaat (2004) Electron in nanostructured TiO2 solar cell:transport, recombination and photovoltaic properties. Coord Chem Rev 248:1195–1213Google Scholar
  81. 81.
    Gregg BA (2004) Interfacial processes in the dye sensitized solar cell. Coord Chem Rev 248:1512–1224Google Scholar
  82. 82.
    Lewis NS (2005) Chemical control of charge transfer and recombination at semiconductor photoelectrode surfaces. Inorg Chem 44:6900–6911Google Scholar
  83. 83.
    Hagfeldt A, Gratzel M (1995) Light-Induced Redox Reactions in Nanocrystalline Systems Chem Rev 95:49–68Google Scholar
  84. 84.
    Lee MS, Cheon IC, Kim YI (2003) Photoelectrochemical studies of nanocrystalline TiO2 film electrodes. Bull Kor Chem Soc 24:1155–1162Google Scholar
  85. 85.
    Mishra PR, Shukla PK, Singh AK, Srivastava ON (2003) Investigation and optimization of nanostructured TiO2 photoelectrode in regard to hydrogen production through photoelectrochemical process. Int J Hydrogen Energy 28:1089–1094Google Scholar
  86. 86.
    Watanabe A, Kozuka H (2003) Photoanodic properties of sol-gel derived Fe2O3 thin films containing dispersed gold and silver particles. J Phys Chem 107:12713–12720Google Scholar
  87. 87.
    Hida Y, Kozuka H (2005) Photo anodic properties of sol-gelderived iron oxide thin films with embedded gold nanoparticles: Effects of polyvinylpyrrolidone in coating solutions. Thin Solid Films 476:264–271Google Scholar
  88. 88.
    Kay A, Cesar I, Grätzel M (2006) New Benchmark for water photooxidation by nanostructured α-Fe2O3 films. J Am Chem Soc 128:15714–15721Google Scholar
  89. 89.
    Fujishima A, Hashimoto K, Watanabe T (1999) TiO2 Photocatalysis: Fandamentals and Applications. BKC Inc, Tokyo, pp. 1–176Google Scholar
  90. 90.
    Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light induced amiphilic surfaces. Nature 388:431Google Scholar
  91. 91.
    Sun RD, Akira N, Fujishima A, Watanabe T, Hashimoto K (2001) Photoinduced surface wettability conversion of ZnO and TiO2 thin film. J Phys Chem B 105: 1984–1989Google Scholar
  92. 92.
    Lewis N (2001) Frontiers of research of in photoelectrochemical solar energy conversion. J Electroanal Chem 508:1–10Google Scholar
  93. 93.
    Tomkievich M (2000) Scaling properties in photocatalysis. Catal Today 58:115–123Google Scholar
  94. 94.
    Tang J, Wu Y, McFarland EW, Stucky GD (2004) Synthesis and photocatalytic properties of highly crystalline and ordered mesoporous thin film. Chem Commun 14:1670–1671Google Scholar
  95. 95.
    Vigil E, Gonzalez B, Zumeta I, Domingo C, Domenech X, Ayllon JA (2005) Preparation of photoelectrode with spectral response in the visible without applied bias based on photochemically deposited copper oxide inside a porous titanium dioxide thin film. Thin Solid Films 14:489:50–55Google Scholar
  96. 96.
    Guo B, Liu Z, Hong L, Jiang H, Lee JY (2005) Photocatalytic effect of sol-gel derived nanoporous TiO2 transparent thin films. Thin Solid Films 479:310–315Google Scholar
  97. 97.
    Bei Z, Ren D, Cui X, Shen J, Yang X, Zhang Z (2004) Photoelectrochemical properties and crystalline structure change of Sb-doped TiO2 thin films prepared by the sol-gel method. J Mater Res 19:3189–3195Google Scholar
  98. 98.
    Takahashi M, Tsukigi K, Dorajpalam E, Tokuda Y, Yoko T (2003) Efficient photogeneration in TiO2/VO2/TiO2 multilayer thin film electrodes prepared by sputtering method. J Phys Chem B 107:13455–13458Google Scholar
  99. 99.
    Mori R, Takahashi M, Yoko T (2005) Photoelectrochemical and photocatalytic properties of multilayered TiO2 thin films with a spinodal phase separation structure prepared by a solgel process. J Mater Res 20:121–127Google Scholar
  100. 100.
    Santato C, Ulman M, Augustynski J (2001) Photoelectrochemical properties of Nanostructured WO3 thin films. J Phys Chem B 105:936–940Google Scholar
  101. 101.
    Beermann N, Vayssieres L, Lindquist SE, Hagfeldt A (2000) Phtotelectrochemical studies of oriented nanorod thin film of hematite. J Electrochem Soc 147:2456–2461Google Scholar
  102. 102.
    Duret A, Gratzel M (2005) Visible light induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis. J Phys Chem B 109:17184–17191Google Scholar
  103. 103.
    Cesar I, Kay A, Martinez, JAG, Gratzel M (2006) Translucent thin film Fe2O3 photoanode for efficient water splitting by sun light: nanostrucutre directed effect of Si doping. J Am Chem Soc 128:4582–4583Google Scholar
  104. 104.
    Ingler WB, Khan SUM (2006) A self-driven p/n-Fe2O3 tandem photoelectrochemical cell for water splitting. Electrochem Solid-State Lett 9:G144-G146Google Scholar
  105. 105.
    Prakasam HE, Varghese OK, Paulose M, Mor GK, Grimes CA (2006) Synthesis and photoelectrochemical properties of nanoporous Iron (III) oxide by potentiostatic anodization. Nanotechnology 17:4285–4291Google Scholar
  106. 106.
    Karn RK, Srivastava ON (1998) On the structural and photochemical studies of In2O3-admixed nanostructured TiO2 with regard to hydrogen production through photoelectrolysis. Int J Hydrogen Energy 23:439–444Google Scholar
  107. 107.
    Wang Y, Cheng H, Hao Y, Ma J, Li W, Cai S (1999) Photoelectrochemical properties of metal-ion-doped TiO2 nanocrystalline electrode. Thin Solid Films 349:120–125Google Scholar
  108. 108.
    Fretwell R, Douglas P (2002) Nanocrystalline TiO2-Pt photoelectrochemical cells-UV induced hydrogen evolution from aqueous solution of ethanol. Photochem Photobiol Sci 1:793–798Google Scholar
  109. 109.
    Khan SUM, Akikusa J (1999) Photoelectrochemical splitting of water at nanocrystalline n-Fe2O3 thin-film electrode. J Phys Chem B 103:7184–7189Google Scholar
  110. 110.
    Sargeev, GB (2006) Nanochemistry. Elsevier, AmsterdamGoogle Scholar
  111. 111.
    Brus LE (1983) A simple model for ionization potential, electron affinity and aqueous redox potential of small semiconductor electrolytes. J Chem Phys 79:5566–5571Google Scholar
  112. 112.
    Brus LE (1984) Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest electronic excited state. J Chem Phys 80:4403–4409Google Scholar
  113. 113.
    Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937Google Scholar
  114. 114.
    Henglin A (1989) Small-particle research:Physicochemical properties of extremely small colloidal metal and semiconductor particle. Chem Rev 89:1861–1873Google Scholar
  115. 115.
    Kamat PV (1993) Photochemistry on non reactive and reactive (semiconductor) surfaces. Chem Rev 93:267–300Google Scholar
  116. 116.
    Kormann C, Bahnemann DW, Hofmann MR (1988) Preparation and characterization of quantum-size titanium oxide J Phys Chem 92:5196–5201Google Scholar
  117. 117.
    Kavan L, Stoto T, Gratzel M, Fitzmaurice D, Shklover V (1993) Quantum size effects in nanocrystalline semiconducting TiO2 layers prepared by anodic hydrolysis of TiCl3. J Phys Chem 97:9493–9498Google Scholar
  118. 118.
    Koch U, Fojtik A, Weller H, Henglein A (1985) Photochemistry of semiconductor colloids: preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects. Chem Phys Lett 122:507–510Google Scholar
  119. 119.
    Bahnemann DW, Kormann C, Hoffmann MR (1987) Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study. J Phys Chem 91:3789–3798Google Scholar
  120. 120.
    Kamat PV, Patrick B (1992) Photophysics and photochemistry of quantized ZnO colloids. J Phys Chem 96:6829–6834Google Scholar
  121. 121.
    Anpo M, Shima T, Kodama S Kubukawa Y (1987) Phtotcatalytic hydrogenation of propyne with water on smallparticle titania: size quantization effects and reaction intermediates. J Phys Chem 91:4305Google Scholar
  122. 122.
    Serpone N, Lawless D and Khairutdinov R (1995) Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization or direct transition in this indirect semiconductor. J Phys Chem 99:16646–16654Google Scholar
  123. 123.
    Monticone S, Tufeu R, Kanaev AV, Scolan E, Sanchez C (2000) Quantum size effect in TiO2 nanoparticles: does it exist? Appl Surf Sci 162–163:565–570Google Scholar
  124. 124.
    Kayanuma Y (1988) Quantum size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys Rev B 38:9797–9805Google Scholar
  125. 125.
    Wang Y, Herron N (1991) Nano-meter sized semiconductor clusters, materials synthesis and quantum size effects, and photophysical properties. J Phys Chem 95:525–532Google Scholar
  126. 126.
    Gaponenko SV (1998) Optical properties of semiconductor nanocrystals. University Press, CambridgeGoogle Scholar
  127. 127.
    Brus LE (1986) Electronic wave functions in semiconductor clusters: experiments and theory J Phys Chem 90:2555–2561Google Scholar
  128. 128.
    Lippens PE, Lanno M (1990) Comparison between calculated and experimental values of the lowest excited electronic state of the small CdSe crystallites. Phys Rev B 41:6079–6081Google Scholar
  129. 129.
    Stroyuk AL, Kryukov AI, Kuchmii SY, Pokhodenko VD (2005) Quantum size effect in semiconductor photocatalysis. Theoretical and Experimental Chemistry 41:207–228Google Scholar
  130. 130.
    Nojik AJ and Memming RJ (1996) Physical chemistry 13061–13078Google Scholar
  131. 131.
    Jortner J, Rao CNR (2002) Nanostructure advanced materials: perspectives and directions. Pure Appl Chem 74:1491–1506Google Scholar
  132. 132.
    Sene JJ, Zeltner WA, Anderson MA (2003) Fundamental photoelectrocatalytic and electrophoretic mobility studies of TiO2 and V-doped TiO2 thin film doped materials. J Phys Chem B107:1597–1603Google Scholar
  133. 133.
    Enright B, Fitzmaurice D (1996) Spectroscopic determination of electron and hole effective masses in a nanocrystalline semiconductor film J Phys Chem 100:1027–1035Google Scholar
  134. 134.
    Sakai N, Ebina Y, Takada K, Sasaki T (2004) Electronic band structure of titania semiconductor nanosheet revealed by electrochemical and thotoelectrochemical studies. J Am Chem Soc 126:5851–5858Google Scholar
  135. 135.
    Bedja I, Kamat PV (1999) Capped semiconductor colloids: synthesis and photoelectrochemical behavior of TiO2 capped SnO2 electrolyte. J Phys Chem 99:9182–9188Google Scholar
  136. 136.
    Davis RJ, Liu Z (1997) Titania silica: a model binary oxide system. Chem Mater 9:2311–2324Google Scholar
  137. 137.
    Shiyanovskaya I, Hepel M (1999) Bicomponent WO3/TiO2 films as photoelectrodes. J Electrochem Soc 146:243–249Google Scholar
  138. 138.
    Poznyak SK, Talpin DV, Kulak AI (2001) Structural, optical and photoelectrochemical properties of nanocrystalline TiO2- In2O3 composite solids and films prepared by sol-gel method. J Phys Chem B 105:4816–4823Google Scholar
  139. 139.
    Boschloo GK, Fitzmaurice D (1999) Spectroelectrochemical investigation of surface states in nanostructured TiO2 electrodes. J Phys Chem B 103:2228–2231Google Scholar
  140. 140.
    Burstein E (1954) Anamolous optical absorption in InSb. Phys Rev 93:632–633Google Scholar
  141. 141.
    Liu CY, Bard AJ (1989) Effect of excess charge on band energetics (optical absorption length and carrier redox potential) in small semiconductor particles. Phys Chem 93: 3232–3237Google Scholar
  142. 142.
    Emelin AV, Furubayashi YV, Zhang X, Jin M, Murakami T, Fujishima A (2005) Photoelectrochemical behavior of Nbdoped TiO2 electrode. J Phys Chem B 109:24441–24444Google Scholar
  143. 143.
    Miyagi T, Kamei M, Sakaguchi I, Mitsuhashi T, Yamazaki A (2004) Photocatalytic properties and deep level of Nb-doped anatase TiO2 film grown by metalorganic chemical vapor deposition. Jpn J Appl Phys 43:775–776Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Craig A. Grimes
    • 1
  • Oomman K. Varghese
    • 2
  • Sudhir Ranjan
    • 2
  1. 1.Department of Electrical Engineering Department of Materials Science & EngineeringPennsylvania State UniversityUniversity Park
  2. 2.Pennsylvania State University Materials Research InstituteUniversity Park

Personalised recommendations