• Craig A. Grimes
  • Oomman K. Varghese
  • Sudhir Ranjan


Space Charge Region Water Splitting Space Charge Layer Normal Hydrogen Electrode Photoelectrochemical Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Veziroğli TN (2000) Quarter century of hydrogen movement. 25:1143–1150Google Scholar
  2. 2.
    Govindjee (Ed.)(1975) Bioenergetics of Photosynthesis. Academic Press, New YorkGoogle Scholar
  3. 3.
    Blankenship RE (2002) Molecular Mechanism of photosynthesis. Blackwell Science, Publishers, USAGoogle Scholar
  4. 4.
    Hall DO (1978) Solar energy conversion through biology—could it be a practical energy source? Fuel 57:322–333Google Scholar
  5. 5.
    Cuendet P, Grätzel M (1982) Artificial photosynthetic systems. Cellular and Molecular Life Sciences. 38:223–228Google Scholar
  6. 6.
    Grätzel M (1982) Artificial photosysnthesis, energy-and light-driven electron transfer in organized molecular assemblies and colloidal semiconductors. Biochim Biophys Acta 683:221–244Google Scholar
  7. 7.
    Collings AF, Critchley C (Ed.) (2004) Artificial Photosynthesis-from basic biology to industrial application. Willey-VCH, WeinheimGoogle Scholar
  8. 8.
    Sun L, Hammarström, L, Akermark B, Styring S (2001) Towards artificial photosynthesis; ruthenium-manganese chemistry for energy production, Chem Soc Rev 30:36–39Google Scholar
  9. 9.
    Sun L, Akermark B, Hammarström, L, Styring S. (2003) Towards solar energy conversion into fuels; design and synthesis of ruthenium-manganese supramolecular complexes to mimic the function of photosystem II. In: utilization of Green house gases Liu CJ, Mallinson RG, Aresta M (Eds.) Amer Chem Soc Book Dept, Symposium Series No. 852, Washington USA, 219–244Google Scholar
  10. 10.
    Lomoth R, Magnuson, A, Sjödin, Huang P, Styring S, Hammarström L (2006) Mimicking the electron donor side of the photosystem II in artificial photosysnthesis. Photosysnthesis Res. 87:25–40Google Scholar
  11. 11.
    Gerischer H (1979) Solar Photoelectrolysis with semiconductor electrodes. In: Solar energy conversion: Solid-state physics aspects, Seraphin BO (Ed). p.115–172 Springer-Verlag New YorkGoogle Scholar
  12. 12.
    Vinodgopal K, Hotchandani S, Kamat PV (1993) Electrochemically assisted photocatalysis - TiO2 particulate film electrodes for photocatalytic degradation of 4-chlorophenol. J Phys Chem 97:9040–9044Google Scholar
  13. 13.
    Hoffmann MR, Martin ST, Choi W, Bahneman DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96Google Scholar
  14. 14.
    Byrne JA, Eggins BR, Byers W, Brown NMD (1999) Photoelectrochemical cell for the combined photocatalytic oxidation of organic pollutants and the recovery of metals from waste waters. Appl Catal B: Environ 20:L85–89Google Scholar
  15. 15.
    Solarska R, Santato C, Jorand-Sartoretti C, M. Ulmann and J. Augustynski (2005) Photoelectrolytic oxidation of organic species at mesoporous tungsten trioxide film electrodes under visible light illumination. J Appl Electrochem 35:715–721Google Scholar
  16. 16.
    Quan X, Yang S, Ruan X, Zhao H (2005) Preparation of titania nanotube and their environmental applications as electrode. Envion.Sci. Technol. 39:3770–3775Google Scholar
  17. 17.
    Nozik AJ (1980) Photoelectrochemical Cells. Phil Trans Royal Soc London Series 295:453–470Google Scholar
  18. 18.
    Heller A (1981) Conversion of sunlight into electric power and photoassisted electrolysis of water in photoelectron-chemical cells. Acc Chem Res 14:154–162Google Scholar
  19. 19.
    Memming R (1988) Photoelectrochemical solar energy conversion. Top Curr Chem 143:79–112Google Scholar
  20. 20.
    Nozik AJ, Memming R (1996) Physical Chemistry of semiconductor-liquid interface. J Phys Chem 100:13061–13078Google Scholar
  21. 21.
    Hill R, Archer MD (1990) Photoelectrochemical cells- a review of progress in the past 10 years. J Photo Chem Photo Biol A: Chem 51:45–54Google Scholar
  22. 22.
    Bolton JR (1996) Solar photoproduction of hydrogen: review. Sol Energy 57:37–50Google Scholar
  23. 23.
    Tryk, DA, Fujishima A, Honda K. Recent topics in photoelectrochemistry: achievement and future prospect (2000) Electrochim Acta 45:2363–2376Google Scholar
  24. 24.
    Bak T, Nowotny, J, Rekas M, Sorrell CC. (2002) Photoelectrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int J Hydrogen Chem 991–1022Google Scholar
  25. 25.
    Aroutiounian VM, Arakelyan VM, Shahnazaryan GE (2005) Metal oxides photoelectrode for hydrogen generation using solar water radiation driven water splitting. Sol Energy 78:581–592Google Scholar
  26. 26.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at semiconductor electrode. Nature 238:37–38Google Scholar
  27. 27.
    Wrighton MS, Ellis AB, Wolczanski PT, Morse DL, Abrahamson HB, Ginley DS (1976) Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential. J Am Chem Soc 98:2774–2779Google Scholar
  28. 28.
    Mavroides JG, Kafalas JA, Kolesar DF (1976) Photoelectrolysis of water in cells with SrTiO3 anodes. Apl Phys Lett 28:241–243Google Scholar
  29. 29.
    Bicelli LP, Razzini G (1985) Photoelectrochemical performance of anodic n-TiO2 films submitted to hydrogen reduction. Int J Hydrogen Energy 10:645–649Google Scholar
  30. 30.
    Jaramillo TF, Baeck SH, Shwarsctein AK, Choi KS, Stucky, McFarland EW (2005) Automatated electrochemical synthesis and photoelectrochemical characterization of Zn1 - xCoxO thin film for solar hydrogen production. J Comb Chem 7:264–271Google Scholar
  31. 31.
    Nozik AJ (1976) p-n photoelectrolysis cell. Appl Phys Lett 29:150–153Google Scholar
  32. 32.
    Ohashi K, McCann J, Bockris JOM (1977) Stable photoelectrochemical cell for splitting of water. Nature 266:610–611Google Scholar
  33. 33.
    Lee J, Fujishima A, Honda K, Kumashiro Y (1985) Photoelectrochemicl behaviour of p-type boron phosphide photoelectrode in acidic solution. Bull Chem Soc Jpn 58:2634–2637Google Scholar
  34. 34.
    Kainthala RC, Zelenay B, Bockris JOM (1987) Significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis. J Electrochem Soc 134:841–845Google Scholar
  35. 35.
    Nozik AJ (1977) Photochemical diodes. Appl Phys Lett 30:567–569Google Scholar
  36. 36.
    Nozik AJ (1975)Photoelectrolysis of water using semiconducting TiO2 crystals. Nature 257:383–386Google Scholar
  37. 37.
    Mavroides JG, Tchernev DI, Kafalas JA, Kolesar DF (1975) Photoelectrolysis of water in cells with TiO2 anodes. Mater Res Bull 10:1023–1030Google Scholar
  38. 38.
    Ohnishi T, Nakato Y, Tsubumura H (1975) Quantum yield of photolysis of water on titanium oxide. Ber Bunsenges Phys Chem 79:523–525Google Scholar
  39. 39.
    Kung HH, Jarrett HS, Sleight AW, Ferretti A (1977) Semiconducting oxide anodes in photoassisted electrolysis of water. J Appl Phys 48:2463–2469Google Scholar
  40. 40.
    Giordano N, Antonucci V, Cavallaro S, Lembo R, Bart JCJ (1982) Photoassisted decomposition of water over modified rutile electrodes. Int J Hydrogen Energy 7:867–872Google Scholar
  41. 41.
    Khan SUM, Al-shahry M, Ingler Jr. WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243–2245Google Scholar
  42. 42.
    Fujishima A, Kohayakawa K, Honda K (1975). Hydrogen production under sunlight with an electrochemical photocell. J electrochem Soc 122:1487–1489Google Scholar
  43. 43.
    Akikusa J, Khan SUM (1997) Photo response and AC impedance characterization of n-TiO2 during hydrogen and oxygen evolution in an electrochemical cell. Int J Hydrogen Energy 22:875–882Google Scholar
  44. 44.
    Bak T, Nowotny J, Rekas M, Sorrell CC (2002) Photoelectrochemical properties of TiO2-Pt system in aqueous solutions. Int J Hydrogen Energy 27:19–26Google Scholar
  45. 45.
    Heller A and Vadimsky RG (1981) Efficient solar to chemical conversion: 12% efficient photoassisted electrolysis in the [p-type InP(Ru)/HCl-KCl/Pt(Rh)] cell. Phys Rev Lett 46:1153–1156Google Scholar
  46. 46.
    El Zayat MY, Saed MO, El Dessouki MS (1998) Photoelectrochemical properties of dye-sensitized Zr-doped SrTiO3 electrodes. Int J Hydrogen Energy 23:259–266Google Scholar
  47. 47.
    Grätzel M (2001) The photoelectrochemical Cells. Nature 414:338–344Google Scholar
  48. 48.
    Carpetis C (1982) A study of water electrolysis with photovoltaic solar energy conversion. Int J Hydrogen Energy 7:287–310Google Scholar
  49. 49.
    Murphy OJ, Bockris JOM (1984) Photovoltaic electrolysis: Hydrogen and electricity from water and light. Int J Hydrogen Energy 9:557–561Google Scholar
  50. 50.
    Fischer M (1986) Review of hydrogen production with photovoltaic electrolysis system. Int J Hydrogen Energy 11:495–501Google Scholar
  51. 51.
    Siegel A, Schott T (1988) Optimization of photovoltaic hydrogen production. Int J Hydrogen Energy 13:659–675Google Scholar
  52. 52.
    Khaselev O, Turner JA (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting, Science 280:425–427Google Scholar
  53. 53.
    Rocheleau RE, Miller EL, Misra A (1998) High efficiency photoelectrochemical hydrogen production using multijunction amorphous photoelectrode. Energy & Fuels 12:3–10Google Scholar
  54. 54.
    Licht S, Ghosh S, Tributsch, H, Fiecher (2002) High efficiency solar energy water splitting to generate hydrogen fuel: probing RuS2 enhancement of multiple band electrolysis. Sol Energy Mater Sol cells. 70:471–480Google Scholar
  55. 55.
    Harry LS, Wilson RH (1978) Semiconductor for photoelectrolysis Annu Rev Mat Sci 8:99–134Google Scholar
  56. 56.
    Bard AJ (1979) Photoelectrochemistry and heterogeneous photocatalysis at semiconductor. J Photochem 10:59–75Google Scholar
  57. 57.
    Wrighton MS (1979) Photoelectrochemical conversion of optical energy to electricity and fuels. Acc Chem Res 12:303–310Google Scholar
  58. 58.
    Nozik AJ (1978) Photoelectrochemistry: Applications to solar energy conversion. Annu Rev Phys Chem 29:189–122Google Scholar
  59. 59.
    Gerischer H (1981) The principles of photoelectrochemical energy conversion. In: Cardon F, Gomes WP, Dekeyser W (Eds) Photovoltaic and photoelectrochemical solar energy conversion, Plenum, New York, pp 199–245Google Scholar
  60. 60.
    Nozik AJ (1981) Photoelectrochemical devices for solar energy conversion. In: Cardon F, Gomes WP, Dekeyser W (Eds) Photovoltaic and photoelectrochemical solar energy conversion, Plenum, New York, pp 263–312Google Scholar
  61. 61.
    Heller A (1984) Hydrogen-evolving solar cells. Science 233:1141–1148Google Scholar
  62. 62.
    Lewis NS (1990) Mechanistic studies of light-induced charge separation at semiconductor/ liquid interfaces. Acc Chem Res 23:176–183Google Scholar
  63. 63.
    Pleskov YV (1990) Solar energy conversion: a photoelectrochemical approach, Springer-Verlag, BerlinGoogle Scholar
  64. 64.
    Koval CA, Howard JN (1992) Electron transfer at semiconductor electrode-liquid electrolyte interfaces. Chem Rev 92:411–433Google Scholar
  65. 65.
    Memming R (1994) Photoinduced charge transfer processes at semiconductor electrodes and particles. Top Curr Chem 169:105–181Google Scholar
  66. 66.
    Sze SM (1981) Physics of semiconductor devices. John Wiley and Sons, New YorkGoogle Scholar
  67. 67.
    Neamen DA (2002) Semiconductor Physics and devices: basic principles 3rd Ed, Mc-Graw Hill professional, New YorkGoogle Scholar
  68. 68.
    Memming R (1983) Comprehensive treaties electrochemistry V. 7, Plenum press, New YorkGoogle Scholar
  69. 69.
    Gerischer H (1975) Electrochemical photo and solar cell principles and some experiments. J Electroanal Chem:Interfacial Electrochem. 58:263–274Google Scholar
  70. 70.
    Gomer R, Tryson G (1977) An experimental determination of absolute half-cell emf’s and single ion free energies of solvation. J Chem Phys 66:4413–4424Google Scholar
  71. 71.
    von Helmholtz HLF (1879) Studies of electric boundary layers Ann Phys Chem 7:337–382Google Scholar
  72. 72.
    Parsons R (1990) The electrical double layer: recent experimental and theoretical developments. Chem Rev 90:813–826Google Scholar
  73. 73.
    Bockris JOM, Khan SUM (1993) Surface Electrochemistry. A molecular level approach. Plenum Press, New YorkGoogle Scholar
  74. 74.
    Green M (1959) Electrochemistry of the semiconductor-electrolyte electrode. I The electrical double layer. J Chem Phys 31:200–203Google Scholar
  75. 75.
    Memming R (2002) Semiconductor electrochemistry. Wiley-VCH, WeinheimGoogle Scholar
  76. 76.
    Gerischer H (1970) Physical Chemistry: an advanced treatise. V.9A and V 4 Academic Press, New YorkGoogle Scholar
  77. 77.
    Gerischer H (1990) The impact of semiconductors on the concept of electrochemistry. Electrochim. Acta 35:1677–1690Google Scholar
  78. 78.
    Memming R, Schwandt (1967) Potential and charge distribution at semiconductor electrolyte interface. Angew chem. Int Ed 6:851–861Google Scholar
  79. 79.
    Thapar R, Rajeshwar K (1983) Mott-Schottky analyses on - and p-GaAs/room temperature chloroaluminate molten-salt interfaces. Electrochim Acta 28:195–198Google Scholar
  80. 80.
    Morrison SR (1980) Electrochemistry at semiconductor and oxidized metal electrodes. Plenum Press, New YorkGoogle Scholar
  81. 81.
    Bard AJ, Faulkner LR (1980) Electrochemical methods: Fundamental and applications, John Wiley and Sons, New YorkGoogle Scholar
  82. 82.
    Finklea HO (Ed.) (1988) Semiconductor electrodes; Studies in physical and theroretical chemistry. V. 55, Elsevier, NewYorkGoogle Scholar
  83. 83.
    Chazalviel J (1988) Experimental techniques for the study of the semiconductor-electrolyte interface. Electrochim Acta 33:461–476Google Scholar
  84. 84.
    Chazalviel J (1990) Impedance studies at semiconductor electrodes: classical and more exotic techniques. Electrochim Acta 35:1545–1552Google Scholar
  85. 85.
    Marcus RA (1956) On the theory of oxidation reduction reaction involving electron transfer. J Chem Phys 24:966–978Google Scholar
  86. 86.
    Sutin N (1983) Theory of electron transfer reactions: Insights and hindsights. In: Prog Inorg Chem, Lippard SJ (Ed) 30:441–448, John Wiley & Sons, New YorkGoogle Scholar
  87. 87.
    Peter LM (1991) Dynamic aspects of semiconductor photoelectrochemistry. Chem Rev 90:753–769Google Scholar
  88. 88.
    Miller RDJ, Mclendon G, Nojik AJ, Schmickler W, Willing F (1995) Surface electron transfer Processes, VCH Publishers, New YorkGoogle Scholar
  89. 89.
    Lewis NS (1991) An analysis of charge transfer rate constant for semiconductor-liquid interfaces. Annu Rev Phys Chem 42:541Google Scholar
  90. 90.
    Lewis NS (1997) Progress in understanding electron transfer reaction at semiconductor/liquid interfaces. J Phys Chem B 102:4843–4855Google Scholar
  91. 91.
    Gerischer H (1991) Electron transfer kinetics of redox reactions at semiconductor/electrolyte contact: a new approach. J Phys ChemGoogle Scholar
  92. 92.
    Gao YQ, Gerogievskii Y, Marcus RA (2000) On the theory of electron transfer reactions at semiconductor/liquid interfaces. J Chem Phys 112:3358–3369Google Scholar
  93. 93.
    Smith BB, Nozik AJ (1996) Study of electron transfer at semiconductor-liquid interfaces addressing the full system electronic structure. Chem Phys 205:47–72Google Scholar
  94. 94.
    Smith BB, Halley JW, Nozik AJ (1996) On the Marcus model of electron transfer at immiscible liquid interface and its application to the semiconductor liquid interface. Chem Phys 205:245–267Google Scholar
  95. 95.
    Boroda YG, Voth GA (1996) A theory of adiabatic electron transfer processes across the semiconductor-electrolyte interface. J Chem Phys 106:6168–6183Google Scholar
  96. 96.
    Nishida M (1980) A Theoretical treatment of charge transfer via surface states at the semiconductor electrolyte interface. Analysis of water electrolysis processGoogle Scholar
  97. 97.
    Tauc J (1970) Absorption edge and internal electric field in amorphous semiconductors. Mater Res Bull 5:721–729Google Scholar
  98. 98.
    Pankove JL (1971) Optical process of semiconductors. Prentice Hall, Englewood Cliffs, NJ, USAGoogle Scholar
  99. 99.
    Rajeshwar K (1993) Spectroscopy 8:16Google Scholar
  100. 100.
    Salvador P (2001) Semiconductor photoelectrochemistry: A kinetic and thermodynamic analysis in the light of equilibrium and non-equilibrium models. J Phys Chem 105:6128–6141Google Scholar
  101. 101.
    Bird RE, Hulstrom RL, Lewis LJ (1983) Terrestrial solar spectral data sets. Solar energy 30:563–573Google Scholar
  102. 102.
    Bolton JR (1996) Solar photoproduction of hydrogen: A review. Solar Energy 57:37–50Google Scholar
  103. 103.
    Bolton JR, Strickler SJ, Connolly JS (1985) Limiting and realizable efficiencies of solar photolysis of water. Nature 316:495–500Google Scholar
  104. 104.
    Bolton JR (1978) Solar Fuels. Science 202:705–711Google Scholar
  105. 105.
    Archer MD, Bolton JR (1990) Requirements for ideal performance of photochemical and photovoltaic solar energy converters. J Phys Chem 94:8028–8036Google Scholar
  106. 106.
    Grimes DM; Grimes, CA (2006) A unique electromagnetic photon field using Feynman’s electron characteristics and Maxwell’s equations. J. Computational and Theoretical Nanoscience 3:649–663Google Scholar
  107. 107.
    Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519Google Scholar
  108. 108.
    Hanna MC, Nozik AJ (2006) Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J Appl Phys 100: 074510 (8 pages)Google Scholar
  109. 109.
    Murphy AB, Barnes PRF, Randeniya LK, Plumb IC, Grey IE, Horne MD, Glasscock JA (2006) Efficiency of solar water splitting using semiconductor electrodes. Int J Hydrogen Energy 31:1999–2017Google Scholar
  110. 110.
    Gerischer H (1981) The principles of photoelectrochemical energy conversion. In: Cardon F, Gomes WP, Dekeyser W (Eds) Photovoltaic and photoelectrochemical solar energy conversion, Plenum, New York, pp 199–245Google Scholar
  111. 111.
    Weber MF, Dignam MJ (1984) Efficiency of splitting water with semiconducting photoelectrodes. J Electrochem Soc 131:1258–1265Google Scholar
  112. 112.
    Heller A (1981) Conversion of sunlight into electrical power and photoassisted electrolysis of water in photoelectro-chemical cells. Acc Chem Res 14:154–162Google Scholar
  113. 113.
    Fujishima A, Kohayakawa K, Honda K (1975) Hydrogen production under sunlight with an electrochemical photocell. J Electrochem Soc 122:1487–1489Google Scholar
  114. 114.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: Fundamentals and applications. John Wiley & sons, New JerseyGoogle Scholar
  115. 115.
    Parkinson B (1984) On the efficiency and stability of photoelectrochemical devices. Acc Chem Res 17:431–437Google Scholar
  116. 116.
    Ang PGP, Sammells AF (1984) Hydrogen evolution at p-InP photocathodes in alkaline electrolyte. J Electrochem Soc 131:1462–1464Google Scholar
  117. 117.
    Dohrmann JK, Schaaf NS (1992) Energy conversion by photoelectrolysis of water: determination of efficiency by in situ photocalorimetry. J Phys Chem 96:4558–4563Google Scholar
  118. 118.
    Heller A (1982) Electrochemical solar cells. Solar energy 29:153–162Google Scholar
  119. Aharon-Shalom E, Heller A (1982) Efficient p-InP (Rh-H alloy) and p-InP (Re-H lloy) hydrogen evolving photocathodes. J Electrochem Soc 129:2865–2866Google Scholar
  120. 120.
    Heller A, Vadimsky RG (1981) Efficient solar to chemical conversion: 12% efficient photoassisted electrolysis in the [p-type InP(Ru)]/HCl-KCl/Pt(Rh) cell. Phys Rev Lett 46:1153–1156Google Scholar
  121. 121.
    Khan SUM, Al-shahry M, Ingler Jr. WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243–2245Google Scholar
  122. 122.
    Lackner KS (2003) Comment on “Efficient photochemical water splitting by a chemically modified n-TiO2” - (III). Science 301:1673cGoogle Scholar
  123. 123.
    Hagglund C, Gratzel M, Kasemo B (2003) Comment on “Efficient photochemical water splitting by a chemically modified n-TiO2” - (II). Science 301:1673bGoogle Scholar
  124. 124.
    Fujishima A (2003) Comment on “Efficient photochemical water splitting by a chemically modified n-TiO2” - (II). Science 301:1673aGoogle Scholar
  125. 125.
    Raja KS, Mahajan VK, Misra M (2006) Determination of photoconversion efficiency of nanotubular titanium oxide photo-electrochemical cell for solar hydrogen generation. J Power Sources 159:1258–1265Google Scholar
  126. 126.
    Khan SUM, Akikusa J (1999) Photoelectrochemical splitting of water at nanocrystalline n-Fe2O3 thin-film electrodes. J Phys Chem B 103:7184–7189Google Scholar
  127. 127.
    Tomkiewicz M, Woodall JM (1977) Photoelectrolysis of water with semiconductor materials. J Electrochem Soc 124:1436–1440Google Scholar
  128. 128.
    Butler MA, Ginley DS (1980) Principles of photoelectrochemical, solar energy conversion. J Mater Sci 15:1–19Google Scholar
  129. 129.
    Nozik AJ (1975) Photoelectrolysis of water using semiconducting TiO2 crystals. Nature 257:383–386Google Scholar
  130. 130.
    Wrighton MS, Ginley DS, Wolczanski PT, Ellis AB, Morse DL, Linz A (1975) Photoassisted electrolysis of water by irradiation of a titanium dioxide electrode. Proc Nat Acad Sci 72:1518–1522Google Scholar
  131. 131.
    Bockris JOM, Murphy OJ (1982–1983) The two efficiency expressions used in evaluating photo-assisted electrolysis. Appl Phys Commun 2:203–207Google Scholar
  132. 132.
    Varghese, OK; Grimes, CA (2007) Appropriate Strategies For Determining The Photoconversion Efficiency Of Water Photoelectrolysis Cells: A Review With Examples Using Titania Nanotube Array Photoanodes. Solar Energy Materials and Solar Cells, in pressGoogle Scholar
  133. 133.
    Ghosh AK, Maruska HP (1977) Photoelectrolysis of water in sunlight with sensitized semiconductor electrodes. J Electrochem Soc 124:1516–1522Google Scholar
  134. 134.
    Bezman R (1976) Hydrogen production under sunlight with an electrochemical photocell. J Electrochem Soc 123:842–843Google Scholar
  135. 135.
    Kainthla RC, Zelenay B, Bockris JOM (1987) Significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis. J Electrochem Soc 134:841–845Google Scholar
  136. 136.
    Kay A, Cesar I, Gratzel M (2006) New Benchmark for water photooxidation by nanostructured α -Fe2O3 films. J Am Chem Soc 128:15714–15721Google Scholar
  137. 137.
    Bard AJ, Memming R, Miller B (1991) Terminology in semiconductor electrochemistry and photoelectrochemical energy conversion. Pure Appl Chem 63:569–596Google Scholar
  138. 138.
    Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Muller E, Liska P, Vlachopoulos N, Gratzel M (1993) Conversion of light to electricity by cis-X2Bis(2,2′ -bipyridyl-4,4′ -dicarboxylate)ruthenium(II) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes. J Am Chem Soc 115:6382–6390Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Craig A. Grimes
    • 1
  • Oomman K. Varghese
    • 2
  • Sudhir Ranjan
    • 2
  1. 1.Department of Electrical Engineering Department of Materials Science & EngineeringPennsylvania State UniversityUniversity Park
  2. 2.Pennsylvania State University Materials Research InstituteUniversity Park

Personalised recommendations