Skip to main content

Structure and Mechanics of the Artery

  • Chapter
Book cover Vascular Mechanics and Pathology
  • 1246 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wernig F and Xu Q. Mechanical stress-induced apoptosis in the cardiovascular system. Progress in Biophysics & Molecular Biology 2002;78:105–137.

    Article  Google Scholar 

  2. Humphrey JD. Cardiovascular Solid Mechanics: Cells, Tissues and Organs. Springer Verlag, New York, 2002.

    Google Scholar 

  3. Fung YC. Biodynamics: Circulation. Springer Verlag, New York, 1984.

    Google Scholar 

  4. Dobrin PB. Vascular mechanics. In: Handbook of Physiology. Section 2, Vol. 3: The Cardiovascular System. Shepherd JT, Abboud FM, eds. American Physiological Society, Washington, DC: 1983:65–102.

    Google Scholar 

  5. Silver FH, Christiansen DL and Buntin CM. Mechanical properties of the aorta: a review. Critical reviews in Biomedical Engineering 1989;17(4):323–358.

    Google Scholar 

  6. McDonald DA. Blood Flow in Arteries, 2nd ed. Williams & Wilkins, Baltimore, 1974.

    Google Scholar 

  7. Moore KL and Dalley AF. Clinically Oriented Anatomy, 4th ed. Lippincott Williams & Wilkins, Philadelphia, 1999.

    Google Scholar 

  8. Frohlich ED. Rypin’s Basic Sciences Review, 16th ed. J.B. Lippincott Company, Philadelphia, 1993.

    Google Scholar 

  9. Cheitlin MD, Sokolov M and McIlroy MB. Clinical Cardiology, 6th ed. Appleton & Lange, Norwalk, CT, 1993.

    Google Scholar 

  10. Burton AC. Physiology and Biophysics of the Circulation, 2nd ed. Yearbook Medical Publishers, Chicago, 1965.

    Google Scholar 

  11. Beller CJ, Labrosse MR, Thubrikar MJ and Robicsek F. The role of aortic root motion in the pathogenesis of aortic dissection. Circulation 2004;109(6):763–769.

    Article  Google Scholar 

  12. Valenta J.Clinical Aspects of Biomedicine, 2: Biomechanics. Elsevier, Amsterdam, 1993:143–175.

    Google Scholar 

  13. Vossoughi J, Hedjazi Z and Borris FS. Intimal residual stress and strain in large arteries. In: 1993 ASME Advances in Bioengineering. American Society of Mechanical Engineers, New York, 1993:434–437.

    Google Scholar 

  14. Patel DJ, Defreitas F, Greenfield JC and Fry DL. Relationship of radius to pressure along the aorta in living dogs. Journal of Applied Physiology 1963;18:1111–1117.

    Google Scholar 

  15. Learoyd BM and Taylor MG. Alteration with age in the viscoelastic properties of human arterial walls. Circulation Research 1966;18:278–292.

    Google Scholar 

  16. Lanne T, Sonesson B, Bergqvist D, etal. Diameter and compliance in the male human abdominal aorta: influence of age and aortic aneurysm. European Journal of Surgery 1992;6:178–184.

    Google Scholar 

  17. Schlatmann TJM and Becker AE. Histologic changes in the normal aging aorta: implications for dissecting aortic aneurysm, The American Journal of Cardiology 1977; 39(1):13–20.

    Article  Google Scholar 

  18. Okamoto RJ, Wagenseil JE, DeLong WR, etal. Mechanical properties of dilated human ascending aorta. Annals of Biomedical Engineering 2002;30:624–635.

    Article  Google Scholar 

  19. Draney MT, Herfkens RJ, Hughes TJR, etal. Quantification of vessel wall cyclic strain using cine phase contrast magnetic resonance imaging. Annals of Biomedical Engineering 2002;30:1033–1045.

    Article  Google Scholar 

  20. Raghavan ML, Webster MW and Vorp DA. Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Annals of Biomedical Engineering 1996;24:573–582.

    Article  Google Scholar 

  21. Holzapfel GA, Gasser TC and Ogden RW. A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity 2000;61:1–48.

    Article  MATH  MathSciNet  Google Scholar 

  22. Matsumoto T and Sato M. Analysis of stress and strain distribution in the artery wall consisted of layers with different elastic modulus and opening angle. JSME International Journal, Series C 2002;45(4):906–912.

    Article  Google Scholar 

  23. Von Maltzahn WW, Warriyar RG and Keitzer WF. Experimental measurements of elastic properties of media and adventitia of bovine carotid arteries. Journal of Biomechanics 1984;17:839–847.

    Article  Google Scholar 

  24. Patel DJ and Fry DL. The elastic symmetry of arterial segments in dogs. Circulation Research 1969;24:1–8.

    Google Scholar 

  25. Humphrey JD, Kang T, Sakarda P and Anjanappa M. Computer-aided vascular experimentation: a new electromechanical test system. Annals of Biomedical Engineering 1993;21:33–43.

    Article  Google Scholar 

  26. Deng SX, Tomioka J, Debes JC and Fung YC. New experiments on shear modulus of elasticity of arteries. American Journal of Physiology 1994;266:H1–H10.

    Google Scholar 

  27. Schulze-Bauer CAJ, Moerth C and Holzapfel GA. Passive biaxial mechanical response of aged human iliac arteries. Journal of Biomechanical Engineering 2003; 125:395–406.

    Article  Google Scholar 

  28. Takamizawa K and Hayashi K. Strain energy density function and uniform strain hypothesis for arterial mechanics. Journal of Biomechanics. 1987;20(1):7–17.

    Article  Google Scholar 

  29. Tickner EG and Sacks AH. A theory for the static elastic behavior of blood vessels. Biorheology 1967;4:151–168.

    Google Scholar 

  30. Vaishnav RN, Young JT, Janicki JS and Patel DJ. Nonlinear anisotropic elastic properties of the canine aorta. Biophysics Journal 1972;12:1008–1027.

    Article  Google Scholar 

  31. Fung YC, Fronek K and Patitucci P. Pseudoelasticity of arteries and the choice of its mathematical expression. American Journal of Physiology 1979;237:H620–H631.

    Google Scholar 

  32. Guccione JM, McCulloch AD and Waldman LK. Passive material properties of intact ventricular myocardium determined form a cylindrical model. Journal of Biomechanical Engineering 1991;113:42–55.

    Article  Google Scholar 

  33. Delfino A, Stergiopulos N, Moore JE and Meister J-J. Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. Journal of Biomechanics 1997;30(8):777–786.

    Article  Google Scholar 

  34. Prendergast PJ, Lally C, Daly S, etal. Analysis of prolapse in cardiovascular stents: a constitutive equation for vascular tissue and finite element modeling. Journal of Biomechanical Engineering 2003;125:692–699.

    Article  Google Scholar 

  35. K.J. Bathe. Finite Element Procedures. Prentice Hall, Englewood Cliffs, NJ, 1996.

    Google Scholar 

  36. Bonet J and Wood RD. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, New York, 1997.

    MATH  Google Scholar 

  37. Roveri N, Ripamonti A, Pulga C, etal. Mechanical behavior of aortic tissue as a function of collagen orientation. Makromol Chem 1980;181:1999–2007.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Structure and Mechanics of the Artery. In: Vascular Mechanics and Pathology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68234-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68234-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-33816-3

  • Online ISBN: 978-0-387-68234-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics