Structure and Mechanics of the Artery


Residual Stress Smooth Muscle Cell Arterial Wall Abdominal Aorta Strain Energy Function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wernig F and Xu Q. Mechanical stress-induced apoptosis in the cardiovascular system. Progress in Biophysics & Molecular Biology 2002;78:105–137.CrossRefGoogle Scholar
  2. 2.
    Humphrey JD. Cardiovascular Solid Mechanics: Cells, Tissues and Organs. Springer Verlag, New York, 2002.Google Scholar
  3. 3.
    Fung YC. Biodynamics: Circulation. Springer Verlag, New York, 1984.Google Scholar
  4. 4.
    Dobrin PB. Vascular mechanics. In: Handbook of Physiology. Section 2, Vol. 3: The Cardiovascular System. Shepherd JT, Abboud FM, eds. American Physiological Society, Washington, DC: 1983:65–102.Google Scholar
  5. 5.
    Silver FH, Christiansen DL and Buntin CM. Mechanical properties of the aorta: a review. Critical reviews in Biomedical Engineering 1989;17(4):323–358.Google Scholar
  6. 6.
    McDonald DA. Blood Flow in Arteries, 2nd ed. Williams & Wilkins, Baltimore, 1974.Google Scholar
  7. 7.
    Moore KL and Dalley AF. Clinically Oriented Anatomy, 4th ed. Lippincott Williams & Wilkins, Philadelphia, 1999.Google Scholar
  8. 8.
    Frohlich ED. Rypin’s Basic Sciences Review, 16th ed. J.B. Lippincott Company, Philadelphia, 1993.Google Scholar
  9. 9.
    Cheitlin MD, Sokolov M and McIlroy MB. Clinical Cardiology, 6th ed. Appleton & Lange, Norwalk, CT, 1993.Google Scholar
  10. 10.
    Burton AC. Physiology and Biophysics of the Circulation, 2nd ed. Yearbook Medical Publishers, Chicago, 1965.Google Scholar
  11. 11.
    Beller CJ, Labrosse MR, Thubrikar MJ and Robicsek F. The role of aortic root motion in the pathogenesis of aortic dissection. Circulation 2004;109(6):763–769.CrossRefGoogle Scholar
  12. Valenta J.Clinical Aspects of Biomedicine, 2: Biomechanics. Elsevier, Amsterdam, 1993:143–175.Google Scholar
  13. 13.
    Vossoughi J, Hedjazi Z and Borris FS. Intimal residual stress and strain in large arteries. In: 1993 ASME Advances in Bioengineering. American Society of Mechanical Engineers, New York, 1993:434–437.Google Scholar
  14. 14.
    Patel DJ, Defreitas F, Greenfield JC and Fry DL. Relationship of radius to pressure along the aorta in living dogs. Journal of Applied Physiology 1963;18:1111–1117.Google Scholar
  15. 15.
    Learoyd BM and Taylor MG. Alteration with age in the viscoelastic properties of human arterial walls. Circulation Research 1966;18:278–292.Google Scholar
  16. 16.
    Lanne T, Sonesson B, Bergqvist D, etal. Diameter and compliance in the male human abdominal aorta: influence of age and aortic aneurysm. European Journal of Surgery 1992;6:178–184.Google Scholar
  17. 17.
    Schlatmann TJM and Becker AE. Histologic changes in the normal aging aorta: implications for dissecting aortic aneurysm, The American Journal of Cardiology 1977; 39(1):13–20.CrossRefGoogle Scholar
  18. 18.
    Okamoto RJ, Wagenseil JE, DeLong WR, etal. Mechanical properties of dilated human ascending aorta. Annals of Biomedical Engineering 2002;30:624–635.CrossRefGoogle Scholar
  19. 19.
    Draney MT, Herfkens RJ, Hughes TJR, etal. Quantification of vessel wall cyclic strain using cine phase contrast magnetic resonance imaging. Annals of Biomedical Engineering 2002;30:1033–1045.CrossRefGoogle Scholar
  20. 20.
    Raghavan ML, Webster MW and Vorp DA. Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Annals of Biomedical Engineering 1996;24:573–582.CrossRefGoogle Scholar
  21. 21.
    Holzapfel GA, Gasser TC and Ogden RW. A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity 2000;61:1–48.MATHCrossRefMathSciNetGoogle Scholar
  22. Matsumoto T and Sato M. Analysis of stress and strain distribution in the artery wall consisted of layers with different elastic modulus and opening angle. JSME International Journal, Series C 2002;45(4):906–912.CrossRefGoogle Scholar
  23. 23.
    Von Maltzahn WW, Warriyar RG and Keitzer WF. Experimental measurements of elastic properties of media and adventitia of bovine carotid arteries. Journal of Biomechanics 1984;17:839–847.CrossRefGoogle Scholar
  24. 24.
    Patel DJ and Fry DL. The elastic symmetry of arterial segments in dogs. Circulation Research 1969;24:1–8.Google Scholar
  25. 25.
    Humphrey JD, Kang T, Sakarda P and Anjanappa M. Computer-aided vascular experimentation: a new electromechanical test system. Annals of Biomedical Engineering 1993;21:33–43.CrossRefGoogle Scholar
  26. 26.
    Deng SX, Tomioka J, Debes JC and Fung YC. New experiments on shear modulus of elasticity of arteries. American Journal of Physiology 1994;266:H1–H10.Google Scholar
  27. 27.
    Schulze-Bauer CAJ, Moerth C and Holzapfel GA. Passive biaxial mechanical response of aged human iliac arteries. Journal of Biomechanical Engineering 2003; 125:395–406.CrossRefGoogle Scholar
  28. 28.
    Takamizawa K and Hayashi K. Strain energy density function and uniform strain hypothesis for arterial mechanics. Journal of Biomechanics. 1987;20(1):7–17.CrossRefGoogle Scholar
  29. 29.
    Tickner EG and Sacks AH. A theory for the static elastic behavior of blood vessels. Biorheology 1967;4:151–168.Google Scholar
  30. 30.
    Vaishnav RN, Young JT, Janicki JS and Patel DJ. Nonlinear anisotropic elastic properties of the canine aorta. Biophysics Journal 1972;12:1008–1027.CrossRefGoogle Scholar
  31. 31.
    Fung YC, Fronek K and Patitucci P. Pseudoelasticity of arteries and the choice of its mathematical expression. American Journal of Physiology 1979;237:H620–H631.Google Scholar
  32. 32.
    Guccione JM, McCulloch AD and Waldman LK. Passive material properties of intact ventricular myocardium determined form a cylindrical model. Journal of Biomechanical Engineering 1991;113:42–55.CrossRefGoogle Scholar
  33. 33.
    Delfino A, Stergiopulos N, Moore JE and Meister J-J. Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. Journal of Biomechanics 1997;30(8):777–786.CrossRefGoogle Scholar
  34. 34.
    Prendergast PJ, Lally C, Daly S, etal. Analysis of prolapse in cardiovascular stents: a constitutive equation for vascular tissue and finite element modeling. Journal of Biomechanical Engineering 2003;125:692–699.CrossRefGoogle Scholar
  35. 35.
    K.J. Bathe. Finite Element Procedures. Prentice Hall, Englewood Cliffs, NJ, 1996.Google Scholar
  36. 36.
    Bonet J and Wood RD. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, New York, 1997.MATHGoogle Scholar
  37. 37.
    Roveri N, Ripamonti A, Pulga C, etal. Mechanical behavior of aortic tissue as a function of collagen orientation. Makromol Chem 1980;181:1999–2007.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations