Aortic Valve Atherosclerotic Lesion Wall Stress Cyclic Stretch Aortic Valve Leaflet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DeBakey ME, Lawrie GM, Glaeser DH: Patterns of atherosclerosis and their surgical significance. Ann Surg 1985;201:115–131.CrossRefGoogle Scholar
  2. 2.
    Cornhill JF, Herderick EE, Stary HC: Topography of human aortic sudanophilic lesions. In: Liepsch DW (ed). Blood Flow in Large Arteries: Applications to Atherogenesis and Clinical Medicine. Basel, Karger, 1990;15:13–19.Google Scholar
  3. 3.
    Fry DL: Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res 1968;22:165.Google Scholar
  4. 4.
    Texon M: The hemodynamic basis of atherosclerosis. Further observations: The ostial lesion. Bull N Y Acad Med 1972;48:733–740.Google Scholar
  5. 5.
    Caro CG, Fitz-Gerald JM, Schroter JM: Arterial wall shear and distribution of early atheroma in man. Nature 1969;223:1159.CrossRefGoogle Scholar
  6. 6.
    Ku KN, Giddens DP, Zarins CK, Glagov S: Pulsatile flow and atherosclerosis in the human carotid bifurcation. Arteriosclerosis 1985;5:293–302.Google Scholar
  7. 7.
    LoGerfo FG, Nowak MD, Quist WC, Crawshaw HM, Bharadvaj BK: Flow studies in a model carotid bifurcation. Arteriosclerosis 1981;1:235–241.Google Scholar
  8. 8.
    Rodkiewicz CM: Localization of early atherosclerotic lesions in the aortic arch in the light of fluid flow. J Biomech 1975;8:149–156.CrossRefGoogle Scholar
  9. 9.
    Asakura T, Karino T: Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res 1990;66:1045–1066.Google Scholar
  10. 10.
    Harvey JF: Theory and design of modern pressure vessels. Van Nostrand Reinhold Company, New York, 1974:251, 316, 338.Google Scholar
  11. 11.
    Thubrikar MJ, Roskelly SK, Eppink RT: Study of stress concentration in the walls of the bovine coronary arterial branch. J Biomech 1990;23:15–26.CrossRefGoogle Scholar
  12. 12.
    Thubrikar MJ, Manuel L, Eppink RT: Intramural stress at arterial bifurcation invivo [Abstract]. Proceedings of the 40th Annual Conference on Engineering in Medicine and Biology, Niagara Falls, 1987;29:208.Google Scholar
  13. 13.
    Chuong CI, Fung YC: Three dimensional stress distribution in arteries. J Biomech Eng 1983;105:268–274.CrossRefGoogle Scholar
  14. 14.
    Velican C, Velican D: Natural History of Coronary Atherosclerosis. CRC Press, Boca Raton, 1989:191.Google Scholar
  15. 15.
    Willis GC: Localizing factors in atherosclerosis. Can Med Assoc J 1954;70:1–9.Google Scholar
  16. 16.
    Hemodynamic contribution to atherosclerosis. In: Wolf S, Werthessen NT (eds). Dynamics of Arterial Flow. Advances in Experimental Medicine and Biology, Vol. 115. Plenum Press, New York, 1976:357.Google Scholar
  17. 17.
    Burton AC: Physical principles of circulatory phenomena: The physical equilibria of heart and blood vessels. In: Handbook of Physiology, Vol. 1, Circulation. 1961:85–106.Google Scholar
  18. 18.
    Harvey JF: Theory and Design of Modern Pressure Vessels. Van Nostrand Reinhold Company, New York, 1974:39.Google Scholar
  19. 19.
    Thubrikar M, Salzar R, Eppink R, Nolan S: Pressure induced mechanical stress in carotid artery atherosclerosis [Abstract]. 9th International Symposium on Atherosclerosis, Rosemont, IL, 1991:73.Google Scholar
  20. 20.
    Zarins CK, Glagov S, Giddens DP: What do we find in human atherosclerosis that provides insight into the hemodynamic factors in atherogenesis? In: Glagov S, Newman WP, Schaffer SA (eds). Pathobiology of the Human Atherosclerotic Plaque. Springer Verlag, New York, 1990:317–332.Google Scholar
  21. 21.
    Robicsek F: Atherosclerotic occlusive disease of the innominate and subclavian arteries. In: Robicsek F (ed). Extracranial Cerebrovascular Disease. Macmillan Publishing Company, New York, 1986:360Google Scholar
  22. 22.
    Born GVB: Determinants of mechanical properties of atherosclerotic arteries [Abstract]. Ann Biomed Eng Abstr Suppl 1993;21:29.Google Scholar
  23. 23.
    Burton AC: Physiology and Biophysics of the Circulation. Year Book Medical Publishers, Chicago 1972:99.Google Scholar
  24. 24.
    Velican C, Velican D: Natural history of coronary atherosclerosis. CRC Press, Boca Raton, pg. 185–186.Google Scholar
  25. 25.
    Lyon RT, Runyon-Hass A, Davis HR, Glagov S, Zarins CK: Protection from atherosclerotic lesion formation by reduction of artery wall motion. J Vasc Surg 1987; 5:59–67.CrossRefGoogle Scholar
  26. 26.
    Bomberger RA, Zarins CK, Glagov S: Subcritical arterial stenosis enhances distal atherosclerosis. J Surg Res 1981;30:205–212.CrossRefGoogle Scholar
  27. 27.
    Mohler ER III: Are atherosclerotic processes involved in aortic-valve calcification? Commentary. Lancet 2000;356:524–525.CrossRefGoogle Scholar
  28. 28.
    Thubrikar MJ, Deck JD, Aouad J, Chen JM: Intramural stress as a causative factor in atherosclerotic lesions of the aortic valve. Atherosclerosis 1985;55:299–311.CrossRefGoogle Scholar
  29. 29.
    Thubrikar MJ, Harry RR, Nolan SP: Normal aortic valve function in dogs. Am J Cardiol 1977;40:563–568.CrossRefGoogle Scholar
  30. 30.
    Thubrikar MJ, Bosher LP, Nolan SP: The mechanism of opening of the aortic valve. JThorac Cardiovasc Surg 1979;77:863.Google Scholar
  31. 31.
    Harvey JF: Theory and Design of Modern Pressure Vessels. Van Nostrand Reinhold, New York, 1974:32.Google Scholar
  32. 32.
    Thubrikar MJ, Piepgrass WC, Deck JD, Nolan SP: Stresses of natural vs prosthetic aortic valve leaflets invivo. Ann Thorac Surg 1980;30:230.CrossRefGoogle Scholar
  33. 33.
    Deck JD, Thubrikar MJ, Schneider PJ, Nolan SP: Structure, stress, and tissue repair in aortic valve leaflets, Proc Annu Conf Eng Med Biol 1979;21:169.Google Scholar
  34. 34.
    Nerem RM: Hemodynamic contribution to atherosclerosis. In: Wolf S, Werthessen NT (eds). Dynamics of Arterial Flow. Plenum Press, New York, 1979:384.Google Scholar
  35. 35.
    Mohnssen HM, Kratzer M, Baldauf W: Microthrombus formation in models of coronary arteries caused by stagnation point flow arising at the predilection sites of atherosclerosis and thrombosis. In: Nerem RM, Cornhill JF (eds). The Role of Fluid Mechanics in Atherogenesis. Ohio State Univ. Exp. Sta., Columbus, 1978:12.Google Scholar
  36. 36.
    Bellhouse BJ: The fluid mechanics of the aortic valve. In: Ionescu MI, Ross DN, Wooler GH (eds). Biological Tissue in Heart Valve Replacement. Butterworths, London, 1972:23.Google Scholar
  37. 37.
    Baker JW, Thubrikar JM, Parekh JS, Forbes MS, Nolan SP: Change in endothelial cell morphology at arterial branch sites caused by a reduction of intramural stress. Atherosclerosis 1991;89:209–221.CrossRefGoogle Scholar
  38. 38.
    Reidy MA, Langille BL: The effect of local blood flow patterns on endothelial cell morphology. Exp Mol Pathol 1980;32:276.CrossRefGoogle Scholar
  39. 39.
    Zarins CK, Taylor KE, Bomberger RA, Glagov S: Endothelial integrity at aortic ostial flow dividers. Scanning Electron Microsc 1980;3:249.Google Scholar
  40. 40.
    Ives CL, Eskin SG, McIntire LV: Mechanical effects on endothelial cell morphology: In vitro assessment. In Vitro Cell Develop Biol 1986;22:500–507.CrossRefGoogle Scholar
  41. 41.
    Sumpio BE, Banes AJ, Buckley M, Johnson G: Alteration in aortic endothelial cell morphology and cytoskeletal protein synthesis during cyclic tensional deformation. JVasc Surg 1988;7:130–138.CrossRefGoogle Scholar
  42. 42.
    Sumpio BE, Banes AJ, Levin LG, Johnson G Jr: Mechanical stress stimulates aortic endothelial cells to proliferate. J Vasc Surg 1987;6:252–256.CrossRefGoogle Scholar
  43. 43.
    Thubrikar MJ, Keller AC, Holloway PW, Nolan SP: Distribution of low density lipoprotein in the branch and non-branch regions of the aorta. Atherosclerosis 1992;97:1–9.CrossRefGoogle Scholar
  44. 44.
    Schwenke DC, Carew TE: Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II. Selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries. Arteriosclerosis 1989;9:908.Google Scholar
  45. 45.
    Thubrikar MJ, Moorthy RR, Deck JD, Nolan SP: Smooth muscle cell proliferation: Is it due to endothelial injury or aortic stretch? [Abstract]. 10th International Symposium on Atherosclerosis, Montreal, 1994;100, 109.Google Scholar
  46. 46.
    Clowes AW, Clowes MM, Reidy MA: Role of acute distension in the induction of smooth muscle proliferation after endothelial denudation [Abstract]. Fed Proc 1987;46:720.Google Scholar
  47. 47.
    Sumpio BE, Banes AJ: Response of porcine aortic smooth muscle cells to cyclic tensional deformation in culture. J Surg Res 1988;44:696–701.CrossRefGoogle Scholar
  48. 48.
    Sottiurai VS, Kollros P, Glagov S, Zarins CK, Mathews MB: Morphologic alteration of cultured arterial smooth muscle cells by cyclic stretch. J Surg Res 1983;35:490–497.CrossRefGoogle Scholar
  49. 49.
    Damjanov I, Linder J (eds). Anderson’s Pathology, Tenth Ed. Mosby, Chicago, 1996:1406.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations