Multiple Antenna Systems

  • Mustafa Ergen


So far we have seen that demand for higher data rates at better quality of service is challenged by scarce usable radio resource and time-varying radio environment affected by fading and multipath.

Utilizing multiple antennas at the receiver and transmitter is widely touted as the key technique that markedly improves the data rate on longer range without consuming extra bandwidth or transmit power. This technology is also referred as multiple-input multiple-output (MIMO) communication. MIMO is now a wellmature technology; Fig. 6.1 depicts the increasing number of MIMO-related patents issued annually


Channel Estimation MIMO System Diversity Gain Maximal Ratio Combine MIMO Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tse, D., Viswanath, P., Fundamentals of Wireless Communication, Cambridge University Press, Cambridge, 2005.Google Scholar
  2. 2.
    Goldsmith, A., Wireless Communications, Cambridge University Press, Cambridge, 2005.Google Scholar
  3. 3.
    Paulraj, A., Nabar, R., Gore, D., Introduction to Space-Time Wireless Communications, Cambridge University Press, Cambridge, 2003.Google Scholar
  4. 4.
    Biglieri, E., MIMO Wireless Communications, Cambridge University Press, Cambridge, 2007.Google Scholar
  5. 5.
    Agrawal, D., Naguib, A., Seshadri, N., Tarokh, V., “Space-time coded OFDM for high data-rate wireless communication wideband channels,” IEEE Conference Proceedings VTC, pp. 2232–2236, 1998.Google Scholar
  6. 6.
    Foschin, G. J., Gans, M. J., “On limits of wireless communication in a fading environment when using multiple antennas,” Wireless Personal Communications, vol. 6, pp. 311–335, 1998.CrossRefGoogle Scholar
  7. 7.
    Gesbert, D., Naguib, A., Shafi, M., Shiu, D. S., Smith, P., “Theory to practice: an overview of MIMO space-time coded wireless systems,” IEEE Journal on Selected Areas in Communication, vol. 21, pp. 281–302, 2003.CrossRefGoogle Scholar
  8. 8.
    Foschini, G., Golden, G., Valenzuela, R., Wolniasky, P., “Detection algorithm and initial laboratory results using the V-BLAST space-time communication architecture,” Electronics Letters, vol. 35, pp. 14–15, 1999.CrossRefGoogle Scholar
  9. 9.
    Farrokhi, F. R., Lozano, A., Valenzuela, R., “Lifting the limits on high-speed wireless data access using antenna arrays,” IEEE Communications Magazine, pp. 156–162, 2001.Google Scholar
  10. 10.
    Proakis, J. G., Digital Communications, 4th edition, McGraw Hill, New York, 2000.Google Scholar
  11. 11.
    Stuber, G. L., Principles of Mobile Communication, 2nd edition, Kluwer, Boston, 2001.Google Scholar
  12. 12.
    Foschini, G., Golden, G., Wolniansky, P., Valenzuela, R., “V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel,” International Symposium on Signals, Systems, and Electronics, pp. 295–300, 1998.Google Scholar
  13. 13.
    Bisla, B., Eline, R., Franca-Neto, L. M., “RF system and circuit challenges for WiMAX,” Intel Technology Journal, vol. 8, no. 3, pp. 189–200, 2004.Google Scholar
  14. 14.
    Viswanathan, S., “Tutorial on 802.11n PHY layer:Part 3,” Wireless Net Design Line.
  15. 15.
    Ergen, M., Varaiya, P., “Formulation of distributed coordination function of IEEE 802.11 for asynchronous networks: mixed data rate and packet size,” IEEE Transactions on Vehicular Technology, vol. 57, no. 1, pp. 436–447, 2008.CrossRefGoogle Scholar
  16. 16.
    Pan, J.-L., Olesen, R., Grieco, D., Yen, S., “Efficient feedback design for MIMO SC-FDMA systems,” IEEE VTC, Spring 2007.Google Scholar
  17. 17.
    Teletar, E., “Capacity of multi-antenna Gaussian channels,” European Transactions on Telecommunications, vol. 10, no. 6, pp. 585–595, 1999.CrossRefGoogle Scholar
  18. 18.
    Lebrun, G., Gao, J., Faulkner, M., “MIMO transmission over a time-varying channel using SVD,” IEEE Transactions on Wireless Communication, vol. 4, no. 2, pp. 757–764, 2005.CrossRefGoogle Scholar
  19. 19.
    Hen. I., “MIMO architecture for wireless communication,” Intel Technology Journal, vol. 10, no. 2, pp. 157–165, 2006.CrossRefGoogle Scholar
  20. 20.
    Jang, E. W., Lee, J., Lou, H.-L., Cioffi, J. M., “Optimal combining schemes for MIMO systems with hybrid ARQ,” IEEE International Symposium on Information Theory, pp. 2286–2290, June 2007.Google Scholar
  21. 21.
    Jang, E. W., Lee, J., Song, L., Cioffi, J. M., “Concatenation-assisted symbol-level combining scheme for MIMO systems with HARQ,” IEEE Global Telecommunications Conference, pp. 3275–3279, Nov. 2007.Google Scholar
  22. 22.
    Kim, J., Heath, R. W., Powers, E., “Receiver designs for alamouti coded OFDM systems in fast fading channels,” IEEE Transactions Wireless Communications, vol. 4, no. 2, pp. 550–559, 2005.CrossRefGoogle Scholar
  23. 23.
    Barry, J., Lee, E., Messerschmitt, D. G., Digital Communication, Third Edition, Kluwer, Dordrecht, 2003.Google Scholar
  24. 24.
    Wolniansky, P., Foschini, G., Golden, G., Valenzuela, R., “V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel,” Signals, Systems, and Electronics, 1998.Google Scholar
  25. 25.
    Sendonaris, A., Erkip, E., Aazhang, B., “User cooperation diversity – Part I: System description,” IEEE Transactions on Communications, vol. 51, no. 11, pp. 1927–1938, 2003.CrossRefGoogle Scholar
  26. 26.
    Seshadri, N., Winters, J. H., “Two signalling schemes for improving the error performance of frequency-division-duplex (FDD) transmission systems using transmitter antenna diversity,” International Journal of Wireless Information Networks, vol. 1, pp. 49–60, 1994.CrossRefGoogle Scholar
  27. 27.
    Stefanov, A., Erkip, E., “Cooperative coding for wireless networks,” Proceedings of International Workshop on Mobile and Wireless Communication Networks, pp. 273–277, September 2002.Google Scholar
  28. 28.
    Stridh, R., Ottersten, B., Karlsson, P., “MIMO channel capacity of a measured indoor radio channel at 5.8 GHz,” Proceedings of Asilomar Conference on Signals, Systems, and Computers, vol. 1, pp. 733–737, November 2000.Google Scholar
  29. 29.
    Tarokh, V., Jafarkhani, H., Calderbank, A. R., “Space-time block codes from orthogonal designs,” IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1456–1467, 1999.CrossRefMathSciNetGoogle Scholar
  30. 30.
    Vishwanath, S., Jindal, N., Goldsmith, A., “Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels,” IEEE Transactions on Information Theory, vol. 49, no. 10, pp. 2658–2668, 2003.CrossRefMathSciNetGoogle Scholar
  31. 31.
    Zheng, L., Tse, D. N. C., “Diversity and multiplexing: a fundamental trade-off in multiple-antenna channels,” IEEE Transactions on Information Theory, vol. 49, no. 5, pp. 1073–1096, 2003.CrossRefGoogle Scholar
  32. 32.
    Touzni, A., Fijalkow, I., Larimore, M. G., Treichler, J. R., “A globally convergent approach for blind MIMO adaptive deconvolution,” Signal Process., vol. 49, no. 6, pp. 1166–1178.Google Scholar
  33. 33.
    Foschini, G. J., Gans, M. J., “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Communication Magazine, vol. 6, no. 3, pp. 311–335, 1998.CrossRefGoogle Scholar
  34. 34.
    DeFlaviis, F., Jofre, L., Jordi, R., Romeu, J., Grau, A., Balanis, C., Multiantenna Systems for MIMO Communications, Morgan & Claypool Publishers, 2008.Google Scholar
  35. 35.
    Kuhn, V., Wireless Communications Over MIMO Channels: Applications to CDMA and Multiple Antenna Systems, Wiley, New York, 2006.Google Scholar
  36. 36.
    Giannakis, G. B., Liu, Z., Ma, X., Zhou, S., Space-Time Coding for Broadband Wireless Communications, Wiley, New York, 2006.Google Scholar
  37. 37.
    Chuah, C. N., Kahn, J. M., Tse, D., “Capacity of multi-antenna array systems in indoor wireless environment,” IEEE Globecom, 1998.Google Scholar
  38. 38.
    Silverstein, J., “Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices,” Journal of Multivariate Analysis, vol. 55, no. 2, pp. 331–339, 1995.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mustafa Ergen
    • 1
  1. 1.BerkeleyUSA

Personalised recommendations