Skip to main content

Part of the book series: Mechanical Engineering Series ((MES))

  • 5243 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Hertz, “On the contact of elastic solids,” J. Reine Angew. Math. 92, 1881, pp. 156-171. Translated and reprinted in English in Hertz’s Miscellaneous Papers, Mac-millan & Co., London, 1896, Ch. 5.

    Google Scholar 

  2. H. Hertz, “On hardness,” Verh. Ver. Beförderung Gewerbe Fleisses 61, 1882, p. 410. Translated and reprinted in English in Hertz’s Miscellaneous Papers, Macmillan & Co, London, 1896, Ch. 6.

    Google Scholar 

  3. A. Wahlberg, “Brinell‘s method of determining hardness,” J. Iron Steel Inst. London, 59, 1901, pp. 243-298.

    Google Scholar 

  4. R.L. Smith and G.E. Sandland, “An accurate method of determining the hardness of metals with particular reference to those of high degree of hardness,” Proc. Inst. Mech. Eng. 1, 1922, pp. 623-641.

    Google Scholar 

  5. F. Knoop, C.G. Peters, and W.B. Emerson, “A sensitive pyramidal-diamond tool for indentation measurements,” Research Paper RP1220, National Bureau of Standards, U.S. Dept. Commerce, 1939, pp. 211-240.

    Google Scholar 

  6. D.B. Marshall, T. Noma, and A.G. Evans, “A Simple method for determining elastic-modulus-to-hardness ratios using Knoop indentation measurements”, J. Amer. Ceram. Soc. 65 1980 pp. C175-C176

    Article  Google Scholar 

  7. . F. Auerbach, “Absolute hardness,” Ann. Phys. Chem. (Leipzig) 43, 1891, pp. 61-100. Translated by C. Barus, Annual Report of the Board of Regents of the Smithsonian Institution, July 1, 1890 - June 30 1891, reproduced in “Miscellaneous documents of the House of Representatives for the First Session of the Fifty-Second Congress,” Government Printing Office, Washington, D.C., 43, 1891-1892, pp. 207-236.

    Google Scholar 

  8. E. Meyer, “Untersuchungen uber Harteprufung und Harte,” Phys. Z. 9, 1908, pp. 66-74.

    Google Scholar 

  9. S.L. Hoyt, “The ball indentation hardness test,” Trans. Am. Soc. Steel Treat. 6, 1924, pp. 396-420.

    Google Scholar 

  10. A. Foppl, “Mitteilungen aus dem Mechan,” Technische Lab. der Technische Hochschule, Munchen, 1900.

    Google Scholar 

  11. C.A. Coulomb, Mem. Acad. Sci. Savants Etrangers, Paris 7, 1776, pp. 343-382.

    Google Scholar 

  12. M.S. Paterson, Experimental Rock Deformation - the Brittle Field, Springer Verlag, Heidelberg, 1978.

    MATH  Google Scholar 

  13. H. Horii and S. Nemat-Nasser, “Brittle failure in compression: splitting, faulting and brittle-ductile transition,” Philos. Trans. R. Soc. London 319 1549, 1986, pp. 337-374.

    Article  MATH  Google Scholar 

  14. C.G. Sammis and M.F. Ashby, “The failure of brittle porous solids under compres-sive stress states,” Acta Metall. 34 3, 1986, pp. 511-526.

    Article  Google Scholar 

  15. D. Tabor, The Hardness of Metals, Clarendon Press, Oxford, 1951.

    Google Scholar 

  16. M.C. Shaw, “The fundamental basis of the hardness test,” in The Science of Hardness Testing and its Research Applications, J.H. Westbrook and H. Conrad, Eds. American Society for Metals, Cleveland, OH, 1973, pp. 1-15.

    Google Scholar 

  17. M.V. Swain and J.T. Hagan, “Indentation plasticity and the ensuing fracture of glass,” J. Phys. D: Appl. Phys. 9, 1976, pp. 2201-2214.

    Article  Google Scholar 

  18. K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, U.K., 1985.

    MATH  Google Scholar 

  19. M.T. Huber, Ann. Phys. Chem. 43 61, 1904.

    Google Scholar 

  20. R. Hill, E.H. Lee and S.J. Tupper, “Theory of wedge-indentation of ductile metals,” Proc. R. Soc. London, Ser. A188, 1947, pp. 273-289.

    Article  MathSciNet  Google Scholar 

  21. R. Hill, The Mathematical Theory of Plasticity, Clarendon Press, Oxford, 1950.

    MATH  Google Scholar 

  22. D.M. Marsh, “Plastic flow in glass,” Proc. R. Soc. London, Ser. A279, 1964, pp. 420-435.

    Article  Google Scholar 

  23. L.E. Samuels and T.O. Mulhearn, “An experimental investigation of the deformed zone associated with indentation hardness impressions,” J. Mech. Phys. Solids, 5, 1957, pp. 125-134.

    Article  Google Scholar 

  24. T.O. Mulhearn, “The deformation of metals by Vickers-type pyramidal indenters,” J. Mech. Phys. Solids, 7, 1959, pp. 85-96.

    Article  Google Scholar 

  25. K.L. Johnson, “The correlation of indentation experiments,” J. Mech. Phys. Sol. 18, 1970, pp. 115-126.

    Article  Google Scholar 

  26. M.C. Shaw and D.J. DeSalvo, “A new approach to plasticity and its application to blunt two dimension indenters,” J. Eng. Ind. Trans. ASME, 92, 1970, pp. 469-479.

    Article  Google Scholar 

  27. M.C. Shaw and D.J. DeSalvo, “On the plastic flow beneath a blunt axisymmetric indenter,” J. Eng. Ind., Trans. ASME 92, 1970, pp. 480-494.

    Google Scholar 

  28. C. Hardy, C.N. Baronet, and G.V. Tordion, “The Elastic-plastic indentation of a half-space by a rigid sphere,” Int. J. Numer. Methods Eng. 3, 1971, pp. 451-462.

    Article  Google Scholar 

  29. C.M. Perrott, “Elastic-plastic indentation: Hardness and fracture,” Wear 45, 1977, pp. 293-309.

    Article  Google Scholar 

  30. S.S. Chiang, D.B. Marshall, and A.G. Evans, “The response of solids to elastic/plastic indentation. 1. Stresses and residual stresses,” J. Appl. Phys. 53 1, 1982, pp. 298-311.

    Article  Google Scholar 

  31. S.S. Chiang, D.B. Marshall, and A.G. Evans, “The response of solids to elastic/plastic indentation. 2. Fracture initiation,” J. Appl. Phys. 53 1, 1982, pp. 312-317.

    Article  Google Scholar 

  32. K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, U.K., 1985.

    MATH  Google Scholar 

  33. A.C. Fischer-Cripps, “Elastic-plastic response of materials loaded with a spherical indenter,” J. Mater. Sci., 32 3, 1997, pp. 727-736.

    Article  Google Scholar 

  34. W. Hirst and M.G.J.W. Howse, “The indentation of materials by wedges,” Proc. R. Soc. London, Ser. A311, 1969, pp. 429-444.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Hardness. In: Introduction to Contact Mechanics. Mechanical Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68188-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68188-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-68187-0

  • Online ISBN: 978-0-387-68188-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics