Advertisement

Keywords

Flaw Size Crack Path Strain Energy Release Fracture Load Strain Energy Release Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Hertz, “On the contact of elastic solids,” J. Reine Angew. Math. 92, 1881, pp. 156-171. Translated and reprinted in English in Hertz’s Miscellaneous Papers, Mac-millan & Co., London, 1896, Ch. 5.Google Scholar
  2. 2.
    H. Hertz, “On hardness,” Verh. Ver. Beförderung Gewerbe Fleisses 61, 1882, p. 410. Translated and reprinted in English in Hertz’s Miscellaneous Papers, Macmillan & Co, London, 1896, Ch. 6.Google Scholar
  3. 3.
    K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, U.K., 1985.MATHGoogle Scholar
  4. 4.
    A.C. Fischer-Cripps, “Predicting Hertzian fracture,” J. Mater. Sci., 32 5, 1997, pp. 1277-1285.CrossRefGoogle Scholar
  5. 5.
    F. Auerbach, “Measurement of hardness,” Ann. Phys. Leipzig, 43, 1891, pp. 61-100.CrossRefGoogle Scholar
  6. 6.
    A.A. Griffith, “Phenomena of rupture and flow in solids,” Philos. Trans. R. Soc. London, Ser. A221, 1920, pp. 163-198.Google Scholar
  7. 7.
    G.R. Irwin, “Fracture” in Handbuch der Physik, 6, Springer-Verlag, Berlin, 1958, p. 551.Google Scholar
  8. 8.
    S.W. Freiman, T.L. Baker and J.B. Wachtman Jr., “Fracture mechanics parameters for glasses: a compilation and correlation.” In: Strength of Inorganic Glass. edited by C.R. Kurkjian, Plenum Press, New York, 1985, pp. 597-607.Google Scholar
  9. 9.
    B. Hamilton and R. Rawson, “The determination of the flaw distributions on various glass surfaces from Hertz fracture experiments,” J. Mech. Phys. Solids 18, 1970, pp. 127-147.CrossRefGoogle Scholar
  10. 10.
    H.L. Oh and I. Finnie, “The ring cracking of glass by spherical indenters,” J. Mech. Phys. Solids 15, 1967, pp. 401-411.CrossRefGoogle Scholar
  11. 11.
    F.B. Langitan and B.R. Lawn, “Hertzian fracture experiments on abraded glass sur-faces as definitive evidence for an energy balance explanation of Auerbach‘s law,” J. Appl. Phys. 40 10, 1969, pp. 4009-4017.CrossRefGoogle Scholar
  12. 12.
    F.C. Frank and B.R. Lawn, “On the theory of Hertzian fracture,” Proc. R. Soc. London, Ser. A229, 1967, pp. 291-306.CrossRefGoogle Scholar
  13. 13.
    R. Mouginot and D. Maugis, “Fracture indentation beneath flat and spherical punches,” J. Mater. Sci. 20, 1985, pp. 4354-4376.CrossRefGoogle Scholar
  14. 14.
    A.C. Fischer-Cripps and R.E. Collins, “The probability of Hertzian fracture,” J. Mater. Sci. 29, 1994, pp. 2216-2230.CrossRefGoogle Scholar
  15. 15.
    W. Weibull, “A statistical theory of the strength of materials,” Ingeniorsvetenskapsa-kademinshandlingar 151, 1939.Google Scholar
  16. 16.
    W.G. Brown, “A Load Duration Theory for Glass Design,” National Research Council of Canada, Division of Building Research, NRCC 12354, Ottawa, Ontario, Canada, 1972.Google Scholar
  17. 17.
    R. Wang, N. Katsube, R.R. Seghi and S.I. Rokhllin, “Failure probability of borosilicate glass under Hertz indentation load”, J. Mater. Sci. 38, 8, 2003 pp. 1589-1596.CrossRefGoogle Scholar
  18. 18.
    A.S. Argon, “Distribution of cracks on glass surfaces,” Proc. R. Soc. London, Ser. A250, 1959, pp. 482-492.CrossRefGoogle Scholar
  19. 19.
    R. Warren, “Measurement of the fracture properties of brittle solids by Hertzian indentation,” Acta Metall. 26, 1978, pp. 1759-1769.CrossRefGoogle Scholar
  20. 20.
    B.R. Lawn, T.R. Wilshaw, and N.E.W. Hartley, “A computer simulation study of hertzian cone crack growth,” Int. J. Fract. 10 1, 1974, pp. 1-16.CrossRefGoogle Scholar
  21. 21.
    E.H. Yoffe, “Elastic stress fields caused by indenting brittle materials,” Philos. Mag. A, 46 4, 1982, p. 617.CrossRefGoogle Scholar
  22. 22.
    . B.R. Lawn, private communication, 1994.Google Scholar
  23. 23.
    C. Kocer and R.E. Collins, “The angle of Hertzian cone cracks,” J. Am. Ceram. Soc., 81 7, 1998, pp. 1736-1742.CrossRefGoogle Scholar
  24. 24.
    J.P.A. Tillet, “Fracture of glass by spherical indenters,” Proc. Phys. Soc. London, Sect. B69, 1956, pp. 47-54.CrossRefGoogle Scholar
  25. 25.
    F.C. Roesler, “Brittle fractures near equilibrium,” Proc. Phys. Soc. London, Sect. B69, 1956, pp. 981-982.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations