Advertisement

Keywords

Frictional Force Radial Stress Interfacial Friction Elastic Contact Spherical Indenter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Hertz, “On the contact of elastic solids,” J. Reine Angew. Math. 92, 1881, pp. 156-171. Translated and reprinted in English in Hertz’s Miscellaneous Papers, Macmillan & Co., London, 1896, Ch. 5.Google Scholar
  2. 2.
    H. Hertz, “On hardness,” Verh. Ver. Beförderung Gewerbe Fleisses 61, 1882, p. 410. Translated and reprinted in English in Hertz’s Miscellaneous Papers, Macmillan & Co, London, 1896, Ch. 6.Google Scholar
  3. 3.
    K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, U.K., 1985.MATHGoogle Scholar
  4. 4.
    A.C. Fischer-Cripps, “The Hertzian contact surface,” J. Mater. Sci. 34, 1999, pp. 129-137.CrossRefGoogle Scholar
  5. 5.
    I.N. Sneddon, “Boussinesq‘s problem for a rigid cone,” Proc. Cambridge Philos. Soc. 44, 1948, pp. 492-507.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    S. Timoshenko and J.N. Goodier, Theory of Elasticity, 2nd Ed., McGraw-Hill, New York, 1970.MATHGoogle Scholar
  7. 7.
    A. Ball, “On the bifurcation of cone cracks in glass plates,” Philos. Mag. A, 73 4, 1996, pp. 1093-1103.CrossRefGoogle Scholar
  8. 8.
    K.L. Johnson, J.J. O’Connor and A.C. Woodward, “The effect of indenter elasticity on the Hertzian fracture of brittle materials,” Proc. R. Soc. London, Ser. A334, 1973, pp. 95-117.CrossRefGoogle Scholar
  9. 9.
    D.A. Spence, “The Hertz contact problem with finite friction,” J. Elastoplast. 5 3-4, 1975, pp. 297-319.MATHCrossRefGoogle Scholar
  10. 10.
    J. Tseng and M.D. Olson, “The mixed finite element method applied to two- dimensional elastic contact problems,” Int. J. Numer. Methods Eng. 17, 1981, pp. 991-1014.MATHCrossRefGoogle Scholar
  11. 11.
    N. Okamoto and M. Nakazawa, “Finite element incremental contact analysis with various frictional conditions,” Int. J. Numer. Methods Eng. 14, 1979, pp. 337-357.MATHCrossRefGoogle Scholar
  12. 12.
    T.D. Sachdeva and C.V. Ramakrishnan, “A finite element solution for the two-dimensional elastic contact problems with friction,” Int. J. Numer. Methods Eng. 17, 1981, pp. 1257-1271.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations