Delayed Fracture in Brittle Solids

Part of the Mechanical Engineering Series book series (MES)


Stress Intensity Factor Crack Length Fatigue Limit Stress Concentration Factor Crack Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.M. Wiederhorn, “Influence of water vapour on crack propagation in soda-lime glass,” J. Am. Ceram. Soc. 50 8, 1967, pp. 407-414.CrossRefGoogle Scholar
  2. 2.
    L. Grenet, “Mechanical strength of glass,” Bull. Soc. Enc. Ind. Nat. Paris, (Ser. 5) 4, 1899, pp. 838-848.Google Scholar
  3. 3.
    L.V. Black, “Effect of the rate of loading on the breaking strength of glass,” Bull. Am. Ceram. Soc. 15 8, 1935, pp. 274-275.Google Scholar
  4. 4.
    R.J. Charles, “Static fatigue of glass I,” J. Appl. Phys. 29 11, 1958, pp. 1549-1553.CrossRefGoogle Scholar
  5. 5.
    R.J. Charles, “Static fatigue of glass II,” J. Appl. Phys. 29 11, 1958, pp. 1554-1560.CrossRefGoogle Scholar
  6. 6.
    R.E. Mould and R.D. Southwick, “Strength and static fatigue of abraded glass under controlled ambient conditions: I General concepts and apparatus,” J. Am. Ceram. Soc. 42, 1959, pp. 542-547.CrossRefGoogle Scholar
  7. 7.
    E.B. Shand, “Fracture velocity and fracture energy of glass in the fatigue range,” J. Am. Ceram. Soc. 44 1, 1961, pp. 21-26.CrossRefGoogle Scholar
  8. 8.
    C.E. Inglis, “Stresses in a plate due to the presence of cracks and sharp corners,” Trans. Inst. Nav. Archit. (London) 55, 1913, pp. 219-230.Google Scholar
  9. 9.
    A.A. Griffith, “Phenomena of rupture and flow in solids,” Philos. Trans. R. Soc. London, Ser. A221, 1920, pp. 163-198.Google Scholar
  10. 10.
    E. Orowan, Nature 154, 1944, p. 341.CrossRefGoogle Scholar
  11. 11.
    T.C. Baker and F.W. Preston, “Fatigue of glass under static loads,” J. Appl. Phys. 17, 1945, pp. 170-178.CrossRefGoogle Scholar
  12. 12.
    G.F. Stockdale, F.V. Tooley, and C.W. Ying, “Changes in the tensile strength of glass caused by water immersion treatment,” J. Am. Ceram. Soc. 34, 1951, pp. 116-121.CrossRefGoogle Scholar
  13. 13.
    F.R.L. Schoening, “On the strength of glass in water vapour,” J. Appl. Phys. 31 10, 1960, pp. 1779-1784.CrossRefGoogle Scholar
  14. 14.
    R.H. Kropschot and R.P. Mikesell, “Strength and fatigue of glass at very low tem-peratures,” J. Appl. Phys. 28 5, 1957, pp. 610-614.CrossRefGoogle Scholar
  15. 15.
    B. Vonnegut and J.G. Glathart, “Effect of water on strength of glass,” J. Appl. Phys. 17 12, 1946, pp. 1082-1085.CrossRefGoogle Scholar
  16. 16.
    . G.O. Jones and W.E.S. Turner, “Influence of temperature on the mechanical strength of glass,” J. Soc. Glass Tech. 26, 113, pp. 35-61.Google Scholar
  17. 17.
    R.E. Mould and R.D. Southwick, “Strength and static fatigue of abraded glass under controlled ambient conditions: II Effect of various abrasions and the universal fatigue curve” J. Am. Ceram. Soc. 42, 1959, pp. 582-592.CrossRefGoogle Scholar
  18. 18.
    G. Irwin, “Fracture,” in Handbuch der Physik, Vol. 6, Springer-Verlag, Berlin, 1957, p. 551.Google Scholar
  19. 19.
    S.M. Wiederhorn and L.H. Bolz, “Stress corrosion and static fatigue of glass,” J. Am. Ceram. Soc. 53, 10 1970, pp. 543-548.CrossRefGoogle Scholar
  20. 20.
    T.A. Michalske in Fracture Mechanics of Ceramics, Vol. 5, edited by R.C. Bradt, A.G. Evans, D.P.H. Hasselman and F.F. Lange, Plenum Press, New York, 1983.Google Scholar
  21. 21.
    S.M. Wiederhorn, “Dependence of lifetime predictions on the form of the crack propagation equation,” Fracture, 3, Canada, 1977, pp. 893-901.Google Scholar
  22. 22.
    K.T. Wan, S. Lathabai, and B.R. Lawn, “Crack velocity functions and thresholds in brittle solids,” J. Eur. Ceram. Soc. 6, 1990, pp. 259-268.CrossRefGoogle Scholar
  23. 23.
    R.J. Charles, and W.B. Hillig, “The kinetics of glass failure,” Symposium on Mechani-cal Strength of Glass and Ways of Improving It. Florence, Italy, Sept. 25-29, 1961. Union Scientifique Continentale due Verre, Charleroi, Belgium, 1962, pp. 511-527.Google Scholar
  24. 24.
    W.G. Brown, “A Practicable Formulation for the Strength of Glass and its Special Application to Large Plates,” Publication No. NRC 14372, National Research Coun-cil of Canada, Ottawa, November, 1974.Google Scholar
  25. 25.
    W.L. Beason, “A Failure Prediction Model for Window Glass,” NTIS Accession No. PB81-148421, Institute for Disaster Research, Texas Tech University, Lubbock, Texas, 1980.Google Scholar
  26. 26.
    W.L. Beason and J.R. Morgan, “Glass failure prediction model,” Struct. Div. Am. Soc. Ceram. Eng. 110, 1984, pp. 197-212.Google Scholar
  27. 27.
    . Note: Davidge quotes Charles and Hillig as calculating this factor to be 0.17.Google Scholar
  28. 28.
    D.M. Marsh, “Plastic flow and fracture of glass,” Proc. R. Soc. London, Ser. A282, 1964, pp. 33-43.CrossRefGoogle Scholar
  29. 29.
    E.B. Shand, Glass Engineering Handbook, 2nd Ed Maple Press, New York, PA, 1958.Google Scholar
  30. 30.
    M.J. Matthewson, “An investigation of the statistics of fracture,” in Strength of Inor-ganic Glass edited by C.R. Kurkjian, Plenum Press, New York, 1985.Google Scholar
  31. 31.
    J.E. Ritter Jr. “Dynamic fatigue of soda-lime-silica glass” J. Appl. Phys. 40, 1969, pp. 340-344.CrossRefGoogle Scholar
  32. 32.
    J.E. Ritter Jr. and R.P. LaPorte, “Effect of test environment on stress-corrosion sus-ceptibility of glass,” J. Am. Ceram. Soc. 58, 1975, pp. 265-267.CrossRefGoogle Scholar
  33. 33.
    C.J. Simmons and S.W. Freiman, J. Am. Ceram. Soc. 64, 1981, p. 686.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations