Skip to main content

Telemedicine

  • Chapter

The ISS and future planetary exploration-class missions (e.g., to Mars) will require the incorporation of contemporary telemedicine concepts and technology, tempered by the resource restraints and operational realities of space medicine. This chapter provides an understanding of current telemedicine theory and applications, a historical perspective of space telemedicine, and a prospective view of telemedicine for the ISS and beyond.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grigsby J, Schlenker RE, Kaehny MM, et al. Analytic framework for evaluation of telemedicine. Telemed J 1995; 1:31-39.

    CAS  PubMed  Google Scholar 

  2. Sargsyan AE, Doarn CR, Simmons SC. Internet and World Wide Web technologies for medical management and remote access to clinical expertise. Texas Med 1998; 94:75-80.

    CAS  Google Scholar 

  3. Wittson CL, Dutton R. A new tool in psychiatric education. Mental Hospitals 1956; 7:11-14.

    Google Scholar 

  4. Elsayed AM. Telepathology service at the Armed Forces Institute of Pathology. Presented at the American Institute of Aeronauts and Astronauts Life Sciences and Space Medicine Conference, Houston, TX, April 1995.

    Google Scholar 

  5. Nitzkin JL, Zhu N, Marier RL. Reliability of telemedicine exam-ination. Telemed J 1977; 3:141-158.

    Google Scholar 

  6. Welch ML, Pak HS, Poropatich RK. The impact of the Web-based store and forward teledermatology consult system in the national capital area. (Abstract) Telemed J 1999; 5:41.

    Google Scholar 

  7. Pak HS, Welch ML, Poropatich RK, et al. Preliminary data from diagnostic agreement study: Teledermatology vs. in-person evaluation. (Abstract) Telemed J 1999; 5:41.

    Google Scholar 

  8. Phillips CM, Burke WA, Allen MH, et al. Reliability of tele-medicine in evaluating skin tumors. Telemed J 1998; 4:5-9.

    CAS  PubMed  Google Scholar 

  9. Roth AC, Reid JC, Puckett CL, et al. Digital images in the diagnosis of wound healing problems. Plast Reconstr Surg 1999; 103:483-486.

    Article  CAS  PubMed  Google Scholar 

  10. Link M. Space Medicine in Project Mercury. Washing-ton, DC: U.S. Government Printing Office; 1965. NASA SP-4003.

    Google Scholar 

  11. Berry CA, Catterson AD. Pre-Gemini medical predictions versus Gemini flight results. In: Gemini Summary Conference. Washington, DC: U.S. Government Printing Office; 1967: 197-218. NASA SP-138.

    Google Scholar 

  12. Kelly GF, Coons DO. Medical aspects of Gemini extravehicular activities. In: Gemini Summary Conference. Washington, DC: U.S. Government Printing Office; 1967:107-125. NASA SP-138.

    Google Scholar 

  13. Luchzowski SM. Bioinstrumentation. In: Johnston RS, Dietlein LF, Berry CA (eds.), Biomedical Results of Apollo. Washington, DC: U.S. Government Printing Office; 1975: 485-493. NASA SP-368.

    Google Scholar 

  14. Bailey JV. Radiation protection and instrumentation. In: Johnston RS, Dietlein LF, Berry CA (eds.), Biomedical Results of Apollo. Washington, DC: U.S. Government Printing Office; 1975:105-113. NASA SP-368.

    Google Scholar 

  15. Waligora JM, Horrigan DJ. Metabolism and heat dissipation during Apollo EVA periods. In: Biomedical Results of Apollo. Washington, DC: U.S. Government Printing Office; 1975:115-128. NASA SP-368.

    Google Scholar 

  16. Luczkowski SM. Skylab hardware report: Operational bioin-strumentation system. In: Johnston RS, Dietlein LF (eds.), Bio-medical Results of Skylab. Washington, DC: U.S. Government Printing Office; 1977:481-484. NASA SP-377.

    Google Scholar 

  17. Nolte RW. Automated blood pressure measuring system (M092). In: Johnston RS, Dietlein LF (eds.), Biomedical Results of Skylab. Washington, DC: U.S. Government Printing Office; 1977:431-423. NASA SP-377.

    Google Scholar 

  18. Linott J, Costello MJ. Vectorcardiograph. In: Johnston RS, Dietlein LF (eds.), Biomedical Results of Skylab. Washington, DC: U.S. Government Printing Office; 1977:433-435. NASA SP-377.

    Google Scholar 

  19. Lemke HU. Future directions in electronic image handling. Investig Radiol 1993; 28:S79-S81.

    Article  Google Scholar 

  20. Bailey JV. In-flight radiation. In: Nicogossian AE (ed.), The Apollo-Soyuz Test Project Medical Report. Springfield, VA: National Technical Information Service; 1977:29-31. NASA SP-411.

    Google Scholar 

  21. Nicogossian AE, Garshnek V. Historical perspectives. In: Nico-gossian AE, Huntoon CL, Pool SL (eds.), Space Physiology and Medicine, 2nd ed. Philadelphia, PA: Lea & Febiger; 1989.

    Google Scholar 

  22. Lebedev V. Diary of a Cosmonaut: 211 Days in Space. Houston, TX: Phytoresource Research Incorporated Information Service; 1988.

    Google Scholar 

  23. Bogomolov W, Popova IA, Egorov AD, et al. The results of medical research during the 326-day flight of the second prin-cipal expedition on the orbital complex Mir. Presented at the Second U.S./U.S.S.R Joint Working Group Conference on Space Biology in Medicine, Washington, DC, Sept. 16-24, 1988.

    Google Scholar 

  24. Advanced Projects Section, KRUG Life Sciences. Report of the initial in-flight evaluation of the telemedicine instrumentation pack (DSO 334). Houston, TX: NSAA-Johnson Space Center; 1998. JSC 28288.

    Google Scholar 

  25. Simmons SC, Melton SL, Johannesen JC, et al. Initial evaluation of the telemedicine instrumentation pack aboard Space Shuttle Endeavour. Poster presented at the American Telemedicine Association Annual Meeting, Orlando, FL, Apr. 1998.

    Google Scholar 

  26. Fuchs M. Provider attitudes toward STARPAC: A telemedicine project on the Papago Reservation. Medical Care 1979; 17:59-68.

    Article  CAS  PubMed  Google Scholar 

  27. Foote DR. The far north: Satellite communication for rural health care in Alaska. J Commun 1977; 173-182.

    Google Scholar 

  28. Rayman RB. Telemedicine: Military applications. Aviat Space Environ Med 1992; 63:135-137.

    CAS  PubMed  Google Scholar 

  29. Doarn CR, Nicogossian AE, Merrell RC. Applications of telemedicine in the United States space program. Telemed J 1988; 4:19-30.

    Google Scholar 

  30. Beck G, Djordjevic B, Halacka K, et al. Evaluation of critical care monitors using satellite network for space and terrestrial applications. Presented at the 2001 Meeting of the Society of Critical Care Medicine, Orlando, FL, Jan. 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Simmons, S.C., Hamilton, D.R., McDonald, P.V. (2008). Telemedicine. In: Barratt, M.R., Pool, S.L. (eds) Principles of Clinical Medicine for Space Flight. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68164-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68164-1_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98842-9

  • Online ISBN: 978-0-387-68164-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics