Advertisement

Spaceflight Metabolism and Nutritional Support

  • Scott M. Smith
  • Helen W. Lane

Adequate nutritional status is critical to maintaining crew health during extended-duration space flight and postflight rehabilitation. Nutrition issues relate to intake of required nutrients, physiological adaptation to microgravity, psychological adaptation to extreme environments, and countermeasures to ameliorate the negative effects of space flight. Our ability to define the nutrient requirements for space flight and to ensure the provision and intake of those nutrients by spaceflight crews is thus critical for crew health and mission success.

Specialized nutritional requirements have only been considered for extended-duration flights—those lasting longer than 30 days. Although adequate nutrition is important on the 1- to 3-week Space Shuttle flights, intake of specific nutrients above or below space-specific requirements for such periods is not thought to be cause for concern. Thus, planning menus for Space Shuttle flights has always used recognized nutritional requirements for adult males and females [1,2]. In this chapter, we will further classify nutritional requirements for long-duration space flight into those for orbital missions, such as on the International Space Station, and those for exploration- class missions.

Keywords

Food System Space Flight Aviat Space Environ NASA Johnson Space Biomedical Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    National Research Council Recommended Dietary Allowances. 10th edn. Subcommittee on the Tenth Edition of the RDAs, Food and Nutrition Board, Committee on Life Sciences. Washington, DC: National Academy Press; 1989.Google Scholar
  2. 2.
    World Health Organization. Energy and Protein Requirements. Report of a Joint FAO/WHO/UNU expert consultation. Geneva, Switzerland: World Health Organization; 1985. Technical Report Series 724.Google Scholar
  3. 3.
    Smith SM, Lane HW. Gravity and space flight: Effects on nutritional status. Curr Opin Clin Nutr Metab Care 1999; 2:335-338.PubMedCrossRefGoogle Scholar
  4. 4.
    Smith SM, Lane HW. Nutritional biochemistry of space flight. Life Support Biosph Sci 1999; 6:5-8.PubMedGoogle Scholar
  5. 5.
    Lane HW, Smith SM. Nutrition in space. In: Shils ME, Olson JA, Shike M, Ross AC (eds.), Modern Nutrition in Health and Disease. 9th edn. Baltimore, MD: Williams & Wilkins; 1998:783-788.Google Scholar
  6. 6.
    Lane HW, Smith SM. Nutrition. In: Nicogossian AE, Pool SL, Huntoon CL (eds.), Space Physiology and Medicine. 4th edn. Baltimore, MD: Lippincott, Williams & Wilkins, 2003.Google Scholar
  7. 7.
    Smith SM, Davis-Street JE, Rice BL, Lane HW. Nutrition in space. Nutrition Today 1997; 32:6-12.PubMedCrossRefGoogle Scholar
  8. 8.
    Lane HW, Smith SM, Rice BL, Bourland CT. Nutrition in space: Lessons from the past applied to the future. Am J Clin Nutr 1994; 60:801S-805S.PubMedGoogle Scholar
  9. 9.
    Lane HW, LeBlanc AD, Putcha L, Whitson PA. Nutrition and human physiological adaptations to space flight. Am J Clin Nutr 1993; 58:583-588.PubMedGoogle Scholar
  10. 10.
    Lane HW, Schulz LO. Nutritional questions relevant to space flight. Annu Rev Nutr 1992; 12:257-278.PubMedCrossRefGoogle Scholar
  11. 11.
    Heer M, Zitterman A, Hoetzel D. Role of nutrition during long-term spaceflight. Acta Astronautica 1995; 35:297-311.PubMedCrossRefGoogle Scholar
  12. 12.
    Hinghofer-Szalkay HG, König EM. Human nutrition under extraterrestrial conditions. In: Bonting SL (edn.), Advances In Space Research. Greenwich, CT: JAI Press; 1992; 2:131-179.Google Scholar
  13. 13.
    Leach CS, Alfrey C, Suki WN, et al. Regulation of body fluid compartments during short-term space flight. J Appl Physiol 1996; 81:105-116.PubMedGoogle Scholar
  14. 14.
    Lane HW, Gretebeck RJ, Schoeller DA, et al. Comparison of ground-based and space flight energy expenditure and water turnover in middle-aged healthy male U.S. astronauts. Am J Clin Nutr 1997; 65:4-12.PubMedGoogle Scholar
  15. 15.
    Altman PL, Talbot JM. Nutrition and metabolism in spaceflight. J Nutr 1987; 117:421-427.PubMedGoogle Scholar
  16. 16.
    Stein TP, Schluter MD. Excretion of amino acids by humans dur-ing space flight. Acta Astronautica 1998; 42:205-214.PubMedCrossRefGoogle Scholar
  17. 17.
    Johnson PC, Leach CS, Rambaut PC. Estimates of fluid and energy balances of Apollo 17. Aerospace Med 1973; 44:1227-1230.PubMedGoogle Scholar
  18. 18.
    Rambaut PC, Smith MC, Wheeler HO. Nutritional studies. In: Johnston RS, Dietlein LF, Berry CA (eds.), Biomedical Results of Apollo. Washington, DC: NASA; 1975:277-302. NASA SP-368.Google Scholar
  19. 19.
    Rambaut PC, Leach CS, Johnson PC. Calcium and phospho-rus change of the Apollo 17 crewmembers. Nutr Metab 1975; 18:62-69.PubMedCrossRefGoogle Scholar
  20. 20.
    Rambaut PC, Leach CS, Leonard JI. Observations in energy bal-ance in man during space flight. Am J Physiol 1977; 233:R208-R212.PubMedGoogle Scholar
  21. 21.
    Michel EL, Rummel JA, Sawin CF, et al. Results of Skylab medical experiment M171—metabolic activity. In: Johnston RS, Dietlein LF (eds.), Biomedical Results of Skylab. Washington, DC: NASA; 1977:372-387. NASA SP-377.Google Scholar
  22. 22.
    Rambaut PC, Leach CS, Whedon GD. A study of metabolic balance in crewmembers of Skylab IV. Acta Astronautica 1979; 6:1313-1322.PubMedCrossRefGoogle Scholar
  23. 23.
    Stein TP, Leskiw MJ, Schluter MD, et al. Protein kinetics during and after long duration space flight on Mir 1999; Am J Physiol 276:E1014-E102124.PubMedGoogle Scholar
  24. 24.
    Smith MC, Berry CA. Dinner on the moon. Nutrition Today 1969; 4:37-42.CrossRefGoogle Scholar
  25. 25.
    Heidelbaugh ND, Wescott E, Kare MR, et al. Taste and aroma testing. In: Skylab 4 Preliminary Biomedical Report. Houston, TX: National Aeronautics and Space Administration Johnson Space Center; 1975. JSC-08818.Google Scholar
  26. 26.
    Watt DG, Money KE, Bondar RL, et al. Canadian medical exper-iments on Shuttle flight 41-G. Canadian Aeronautics and Space Journal 1985; 31:215-226.PubMedGoogle Scholar
  27. 27.
    Budylina SM, Khvatova VA, Volozhin AI. Effect of orthostatic and antiorthostatic hypokinesia on taste sensitivity in men. Kosm Biol Aviakosm Med 1976; 10:27-30.Google Scholar
  28. 28.
    Kurliandskii V, Khvatova VA, Budylina SM. Funktsional’naia mobil’nost’ viusovykh retseptorov iazyka v usloviiakh dlitel’noi gipodianamii. [Functional mobility of taste receptors of the tongue under conditions of prolonged hypodynamia. Stomatolo-giia (Mosk) 1974; 53(6):13-15.Google Scholar
  29. 29.
    Rice BL, Vickers ZM, Rose MS, Lane HW. Fluid shifts during head-down bed rest do not influence flavor sensitivity [abstract]. Presented at the 67th Annual Scientific Meeting of the Aerospace Medical Association, Atlanta, GA, 5-9 May 1996. Abstract 242.Google Scholar
  30. 30.
    Reschke MF, Harm DL, Parker DE, et al. Neurophysiological aspects: Space motion sickness. In: Nicogossian AE, Huntoon CL, Pool SL (eds.), Space Physiology and Medicine. 3rd edn. Philadelphia, PA: Lea and Febiger; 1994:228-260.Google Scholar
  31. 31.
    Agureev AN, Kalandarov S, Segal DE. Optimization of cosmo-naut nutrition during acute adaptation and at the final stage of flight. Aviakosm Ekolog Med 1997; 31:47-51.PubMedGoogle Scholar
  32. 32.
    Smirnov KV, Ugolev AM. Digestion and absorption. In: Leach Huntoon CL, Antipov VV, Grigoriev AI (eds.), Space Biology and Medicine, Vol 3. Humans in Spaceflight. Reston, VA: Amer-ican Institute for Aeronautics and Astronautics, 1996:211-230.Google Scholar
  33. 33.
    Klicka MV. Development of space foods. J Am Diet Assoc 1964; 44:358.PubMedGoogle Scholar
  34. 34.
    Klicka MV, Hollender HA, LaChance PA. Foods for astronauts. J Am Diet Assoc 1967; 51:238-245.PubMedGoogle Scholar
  35. 35.
    LaChance PA, Berry CA. Luncheon in space. Nutrition Today 1967; June:2-11.Google Scholar
  36. 36.
    Heidelbaugh ND, Smith MC, Rambaut PC, et al. Clinical nutri-tion applications of space food technology. J Am Diet Assoc 1973; 62:383-389.PubMedGoogle Scholar
  37. 37.
    Bourland CT. Advances in food systems for space flight. Life Support Biosph Sci 1998; 5:71-77.PubMedGoogle Scholar
  38. 38.
    Gretebeck RJ, Siconolfi SF, Rice BL, et al. Physical performance is maintained in women consuming only foods used on the U.S. Space Shuttle. Aviat Space Environ Med 1994; 65:1036-1040.PubMedGoogle Scholar
  39. 39.
    Leach CS, Rambaut PC. Biochemical responses of the Skylab crewmen: An overview. In: Johnson RS, Dietlein LF (eds.), Bio-medical Results of Skylab. Washington, DC: NASA; 1977:204-216. NASA SP-377.Google Scholar
  40. 40.
    Leonard JI, Leach CS, Rambaut PC. Quantitation of tissue loss dur-ing prolonged space flight. Am J Clin Nutr 1983; 38:667-679.PubMedGoogle Scholar
  41. 41.
    Lane HW. Energy requirements for space flight. J Nutr 1992; 122:13-18.PubMedGoogle Scholar
  42. 42.
    Leach CS, Altchuler SI, Cintrón-Trevino NM. The endocrine and metabolic responses to space flight. Med Sci Sports Exerc 1983; 15:432-440.PubMedGoogle Scholar
  43. 43.
    Leach CS, Alexander WC, Johnson PC. Endocrine, electrolyte, and fluid volume changes associated with Apollo missions. In: Johnston RS, Dietlein LF, Berry CA (eds.), Biomedical Results of Apollo. Washington, DC: NASA; 1975:163-184. NASA SP-368.Google Scholar
  44. 44.
    Leach CS. Biochemistry and endocrinology results. In: Nicogos-sian AE (edn.), The Apollo-Soyuz Test Project Medical Report. Washington, DC: U.S. Government Printing Office; 1977:87-100. NASA SP-411.Google Scholar
  45. 45.
    Smith SM, Wastney ME, Morukov BV, et al. Calcium metabo-lism before, during, and after a 3-month space flight: Kinetic and biochemical changes. Am J Physiol 1999; 277:R1-R10.PubMedGoogle Scholar
  46. 46.
    Waligora JM, Horrigan DJ. Metabolism and heat production during Apollo EVA periods. In: Johnston RS, Dietlein LF, Berry CA (eds.), Biomedical Results of Apollo. Washington, DC: NASA, 1975; 115-128. NASA SP-368.Google Scholar
  47. 47.
    Stein TP, Leskiw MJ, Schluter MD, et al. Energy expenditure and balance during space flight on the space shuttle. Am J Physiol 1999; 276:R1739-R1748.PubMedGoogle Scholar
  48. 48.
    Schoeller DA, Ravussin E, Shutz Y, et al. Energy expenditure by doubly labeled water: validation in humans and proposed calcu-lation. Am J Physiol 1986; 250:R823-R830.PubMedGoogle Scholar
  49. 49.
    Gretebeck RJ, Schoeller DA, Gibson EK, Lane HW. Energy expenditure during antiorthostatic bed rest (simulated micro-gravity). J Appl Physiol 1995; 78:2207-2211.PubMedGoogle Scholar
  50. 50.
    Lovejoy JC, Smith SR, Zachwieja JJ, et al. Low-dose T3 improves the bed rest model of simulated weightlessness in men and women. Am J Physiol 1999; 277:E370-E379.PubMedGoogle Scholar
  51. 51.
    Leach Huntoon CS, Grigoriev AI, Natochin YuV. (eds.), Fluid and Electrolyte Regulation in Spaceflight. Volume 94: Science and Technology Series, A Supplement to Advances in the Astro-nautical Sciences. San Diego, CA: Univelt, Inc; 1998.Google Scholar
  52. 52.
    Smith SM, Krauhs JM, Leach CS. Regulation of body fluid vol-ume and electrolyte concentrations in spaceflight. In: Bonting SL (edn.), Advances in Space Biology and Medicine, Vol 6. Greenwich, CT: JAI Press Inc; 1997:123-165.CrossRefGoogle Scholar
  53. 53.
    Huntoon CL, Cintrón NM, Whitson, PA, Smith SM. Endocrine and metabolic functions. In: Nicogossian AE, Pool SL, Huntoon CL (eds.), Space Physiology and Medicine. 4th edn. Baltimore, MD: Lippincott, Williams & Wilkins, 2003.Google Scholar
  54. 54.
    Leach CS. A review of the consequences of fluid and electrolyte shifts in weightlessness. Acta Astronautica 1979; 6:1123-1135.PubMedCrossRefGoogle Scholar
  55. 55.
    Leach CS. An overview of the endocrine and metabolic changes in manned space flight. Acta Astronautica 1981; 8:977-986.PubMedCrossRefGoogle Scholar
  56. 56.
    Leach CS, Johnson PC Jr. Fluid and electrolyte control in simu-lated and actual spaceflight. Physiologist 1985; 28:S34-S37.PubMedGoogle Scholar
  57. 57.
    Leach CS. Fluid control mechanisms in weightlessness. Aviat Space Environ Med 1987; 58:A74-A79.PubMedGoogle Scholar
  58. 58.
    Nicogossian AE, Sawin CF, Leach-Huntoon CS. Overall physi-ologic response to space flight. In: Nicogossian AE, Huntoon CL, Pool SL (eds.), Space Physiology and Medicine. 3rd edn. Philadelphia, PA: Lea & Febiger, 1994; 213-227.Google Scholar
  59. 59.
    Johnson PC, Driscoll TB, LeBlanc AD. Blood volume changes. In: Johnson RS, Dietlein LF (eds.), Biomedical Results of Sky-lab. Washington, DC: NASA; 1977; 235-241. NASA SP-377.Google Scholar
  60. 60.
    Bungo MW, Johnson PC Jr. Cardiovascular examinations and observations of deconditioning during the Space Shuttle orbital flight test program. Aviat Space Environ Med 1983; 54:1001-1004.PubMedGoogle Scholar
  61. 61.
    Hyatt KH, West DA. Reversal of bed rest-induced orthostatic intolerance by lower body negative pressure and saline. Aviat Space Environ Med 1977; 48:120-124.PubMedGoogle Scholar
  62. 62.
    Vernikos J, Convertino VA. Advantages and disadvantages of fludrocortisone or saline loading in preventing post-spaceflight orthostatic hypotension. Acta Astronautica 1994; 33:259-266.PubMedCrossRefGoogle Scholar
  63. 63.
    Leach CS, Inners LD, Charles JB. Changes in total body water during space flight. J Clin Pharmacol 1991; 31:1001-1006.PubMedGoogle Scholar
  64. 27.
    Spaceflight Metabolism and Nutritional SupportGoogle Scholar
  65. 64.
    Thornton WE, Ord J. Physiological mass measurements in Sky-lab. In: Johnston RS, Dietlein LF (eds.), Biomedical Results from Skylab. Washington, DC: NASA; 1977:175-182. NASA SP-377.Google Scholar
  66. 65.
    Drummer C, Heer M, Dressendörfer RA, Strasburger CJ, Ger-zer R. Reduced natriuresis during weightlessness. Clin Investig 1993; 71:678-686.PubMedCrossRefGoogle Scholar
  67. 66.
    Balakhovskiy IS, Natochin YuV. Metabolism under the extreme conditions of space flight and during its simulation. In: Problems of Space Biology, Vol. 22. Moscow: Nauka; 1973.Google Scholar
  68. 67.
    Gerzer R, Drummer C, Heer M. Antinatriuretic kidney response to weightlessness. Acta Astronautica 1994; 33:97-100.PubMedCrossRefGoogle Scholar
  69. 68.
    Gerzer R, Heer M, Drummer C. Body fluid metabolism at actual and simulated microgravity. Med Sci Sports Exerc 1996; 28: S32-S35.PubMedGoogle Scholar
  70. 69.
    Vernikos J. Metabolic and endocrine changes. In: Sandler H, Vernikos J (eds.), Inactivity: Physiological Effects. Orlando, FL: Academic Press, Inc; 1986; 99-121.Google Scholar
  71. 70.
    Greenleaf JE. Mechanisms for negative water balance during weightlessness: Immersion or bed rest? Physiologist 1985; 28: S38-S39.PubMedGoogle Scholar
  72. 71.
    Leach CS, Johnson PC. Influenceof space flight on erythrokinet-ics in man. Science 1984; 225:216-218.PubMedCrossRefGoogle Scholar
  73. 72.
    Alfrey CP, Udden MM, Leach-Huntoon C, et al. Control of red blood cell mass in spaceflight. Am J Physiol 1996; 81:98-104.Google Scholar
  74. 73.
    Udden MM, Driscoll TB, Pickett MH, et al. Decreased produc-tion of red blood cells in human subjects exposed to micrograv-ity. J Lab Clin Med 1995; 125:442-449.PubMedGoogle Scholar
  75. 74.
    Johnson PC. The erythropoietic effects of weightlessness. In: Dunn CDR (edn.), Current Concepts in Erythropoiesis. New York, NY: John Wiley & Sons Ltd; 1983:279-300.Google Scholar
  76. 75.
    Fischer CL, Johnson PC, Berry CA. Red blood cell mass and plasma volume changes in manned space flight. JAMA 1967; 200:579-583.PubMedCrossRefGoogle Scholar
  77. 76.
    Mengel CE. Red cell metabolism studies on Skylab. In: Johnston RS, Dietlein LF (eds.), Biomedical Results of Skylab. Washing-ton, DC: NASA; 1977:242-248. NASA SP-377.Google Scholar
  78. 77.
    Smith SM, Davis-Street JE, Fontenot TB, et al. Assessment of a portable clinical blood analyzer during space flight. Clin Chem 1997; 43:1056-1065.PubMedGoogle Scholar
  79. 78.
    Alfrey CP, Udden MM, Leach-Huntoon C, et al. Destruction of newly released red blood cells in space flight. Med Sci Sports Exerc 1996; 28:S42-S44.PubMedGoogle Scholar
  80. 79.
    Kimzey SL. Hematology and immunology studies. In: Johnson RS, Dietlein LF, Berry CA (eds.), Biomedical Results of Apollo. Washington, DC: NASA, 1975; 197-226. NASA SP-368.Google Scholar
  81. 80.
    Kimzey SL. Hematology and immunology studies. In: Johnson RS, Dietlein LF (eds.), Biomedical Results of Skylab. Washington, DC: NASA; 1977: 249-282. NASA SP-377.Google Scholar
  82. 81.
    Leach CS, Rambaut PC. Biochemical observations of long dura-tion manned orbital spaceflight. Journal of the American Wom-en’s Association 1975; 30:153-172.Google Scholar
  83. 82.
    Lane HW, Morukov BV, Larina IM, et al. Plasma volume, extra-cellular fluid and regulatory hormones during long term space flight [abstract]. FASEB J 1997; 11:A593. Abstract 3427.Google Scholar
  84. 83.
    NASA Johnson Space Center. Nutritional Requirements for Space Station Freedom Crews. Houston, TX; 1991. NASA CP-3146.Google Scholar
  85. 84.
    Dunn CDR, Lange RD, Kimzey SL, et al. Serum erythropoietin titers during prolonged bedrest; relevance to the “anemia” of space flight. Eur J Appl Physiol 1984; 52:178-182.CrossRefGoogle Scholar
  86. 85.
    LeBlanc AD, Rowe R, Schneider VS, et al. Regional muscle loss after short duration space flight. Aviat Space Environ Med 1995; 66:1151-1154.PubMedGoogle Scholar
  87. 86.
    Day MK, Allen DL, Mohajerani L, et al. Adaptations of human skeletal muscle fibers to spaceflight. Journal of Gravitational Physiology 1995; 2:47-50.Google Scholar
  88. 87.
    Whedon GD, Lutwak L, Rambaut PC, et al. Mineral and nitrogen metabolic studies—experiment M071. In: Johnson RS, Dietlein LF (eds.), Biomedical Results from Skylab. Washington, DC: NASA; 1977; 164-174. NASA SP-377.Google Scholar
  89. 88.
    Thornton WE, Rummel JA. Muscular deconditioning and its prevention in space flight. In: Johnston RS, Dietlein LF (eds.), Biomedical Results from Skylab. Washington, DC: NASA; 1977:191-197. NASA SP-377.Google Scholar
  90. 89.
    Ferrando AA, Lane HW, Stuart CA, et al. Prolonged bed rest decreases skeletal muscle and whole-body protein synthesis. Am J Physiol 1996; 270:E627-E633.PubMedGoogle Scholar
  91. 90.
    Coburn SP, Thampy KG, Lane HW, et al. Pyridoxic acid excretion during low vitamin B6 intake, total fasting, and bed rest. Am J Clin Nutr 1995; 62:979-983.PubMedGoogle Scholar
  92. 91.
    Stein TP, Leskiw MJ, Schluter MD. Effect of space flight on human protein metabolism. Am J Physiol 1993; 264:E824-E828.PubMedGoogle Scholar
  93. 92.
    Stein TP, Leskiw MJ, Schluter MD. Diet and nitrogen metabolism during space flight on the shuttle. J Appl Physiol 1996; 81:82-97.PubMedGoogle Scholar
  94. 93.
    Stein TP, Schluter MD, Moldawer LL. Endocrine relationships during human spaceflight. Am J Physiol 1999; 276:E155-E162.PubMedGoogle Scholar
  95. 94.
    Ushakov AS, Vlasova TF. Free amino acids in human blood plasma during space flights. Aviat Space Environ Med 1976; 47:1061-1064.PubMedGoogle Scholar
  96. 95.
    Stein TP, Schluter MD. Plasma amino acids during human space flight. Aviat Space Environ Med 1999; 70:250-255.PubMedGoogle Scholar
  97. 96.
    Leach CS, Rambaut PC. Amino aciduria in weightlessness. Acta Astronautica 1979; 6:1323-1333.PubMedCrossRefGoogle Scholar
  98. 97.
    LeBlanc A, Lin C, Rowe R, et al. Muscle loss after longduration space flight on Mir 18/STS-71 [abstract]. AIAA Life Sciences and Space Medicine Conference; 1996. Abstract 96-LS-71.Google Scholar
  99. 98.
    Zachwieja JJ, Smith SR, Lovejoy JC, et al. Testosterone administration preserves protein balance but not muscle strength during 28 days of bed rest. J Clin Endocrinol Metab 1999; 84:207-212.PubMedCrossRefGoogle Scholar
  100. 99.
    Ferrando AA, Tipton KD, Bamman MM, et al. Resistance exercise maintains skeletal muscle protein synthesis during bed rest. J Appl Physiol 1997; 82:807-810.PubMedGoogle Scholar
  101. 100.
    Heer M, Kamps N, Biener C, et al. Calcium metabolism in microgravity. Eur J Med Res 1999; 4:357-360.PubMedGoogle Scholar
  102. 101.
    Morey-Holton ER, Whalen RT, Arnaud SB, et al. The skeleton and its adaptation to gravity. In: Fregly MJ, Blatteis CM (eds.), American Physiological Society Handbook on Physiology—Environmental Physiology, Vol. I. New York, NY: Oxford University Press; 1996:691-719.Google Scholar
  103. 102.
    Arnaud SB, Schneider VS, Morey-Holton E. Effects of inactivity on bone and calcium metabolism. In: Vernikos J, Sandler H (eds.), Inactivity: Physiological Effects. San Diego, CA: Academic Press, Inc; 1986; 49-75.Google Scholar
  104. 103.
    Schneider VS, McDonald J. Skeletal calcium homeostasis and countermeasures to prevent disuse osteoporosis. Calcif Tissue Int 1984; 36:S151-S154.PubMedCrossRefGoogle Scholar
  105. 104.
    Rambaut PC, Johnson PC. Prolonged weightlessness and calcium loss in man. Acta Astronautica 1979; 6:1113-1122.PubMedCrossRefGoogle Scholar
  106. 105.
    LeBlanc A, Schneider V, Shackelford L, et al. Bone mineral and lean tissue loss after long duration space flight. J Bone Miner Res 1996; S11:S323.Google Scholar
  107. 106.
    Oganov VS, Rakhmanov AS, Novikov VE, et al. The state of human bone tissue during space flight. Acta Astronautica 1991; 23:129-133.PubMedCrossRefGoogle Scholar
  108. 107.
    Oganov VS, Grigoriev A, Voronin L, et al. Bone mineral density in cosmonauts after flights lasting 4.5-6 months on the Mir orbital station. Aviakosm Ekolog Med 1992; 26:20-24.PubMedGoogle Scholar
  109. 108.
    Smith MC, Rambaut PC, Vogel JM, et al. Bone mineral measurement (Experiment M078). In: Johnston RS, Dietlein LF (eds.), Biomedical Results of Skylab. Washington, DC: NASA; 1977:183-190. NASA SP-377.Google Scholar
  110. 109.
    Stupakov GP, Kaseykin VS, Kolovskiy AP, et al. Evaluation of changes in human axial skeletal bone structure during long-term space flights. Kosm Biol Aviakosm Med 1984; 18:33-37.PubMedGoogle Scholar
  111. 110.
    Whedon GD. Disuse osteoporosis: Physiological aspects. Calcif Tissue Int 1984; 36:S146-S150.CrossRefGoogle Scholar
  112. 111.
    Rambaut PC, Goode AW. Skeletal changes during space flight. Lancet 1985; 2(8463):1050-1052.PubMedCrossRefGoogle Scholar
  113. 112.
    Whedon GD, Lutwak L, Rambaut P, et al. Effect of weight-lessness on mineral metabolism; metabolic studies on Skylab orbital flights. Calcif Tissue Int 1976; 21:423-430.Google Scholar
  114. 113.
    Whitson PA, Pietrzyk RA, Pak CYC, et al. Alterations in renal stone risk factors after space flight. J Urol 1993; 150:803-807.PubMedGoogle Scholar
  115. 114.
    Whitson PA, Pietrzyk RA, Pak CYC. Renal stone risk assessment during space shuttle flights. J Urol 1997; 158:2305-2310.PubMedCrossRefGoogle Scholar
  116. 115.
    LeBlanc A, Schneider V, Evans H, et al. Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 1990; 5:843-850.PubMedCrossRefGoogle Scholar
  117. 116.
    Tilton FE, DeGioanni JJC, Schneider VS. Long-term follow-up of Skylab bone demineralization. Aviat Space Environ Med 1980; 51:1209-1213.PubMedGoogle Scholar
  118. 117.
    Whedon GD, Lutwak L, Reid J, et al. Mineral and nitrogen metabolic studies on Skylab orbital space flights. Trans Assoc Am Physicians 1974; 87:95-110.PubMedGoogle Scholar
  119. 118.
    Whedon GD, Lutwak L, Rambaut PC, et al. Mineral and nitrogen balance study observations: The second manned Skylab mission. Aviat Space Environ Med 1976; 47:391-396.PubMedGoogle Scholar
  120. 119.
    Whedon GD, Heaney RP. Effects of physical inactivity, paralysis and weightlessness on bone growth. In: Hall BK (ed.), Bone, Vol 7. Boca Raton, FL: CRC Press; 1993:57-77.Google Scholar
  121. 120.
    Smith SM, Nillen JL, LeBlanc A, et al. Collagen crosslink excretion during space flight and bed rest. J Clin Endocrinol Metab 1998; 83:3584-3591.PubMedCrossRefGoogle Scholar
  122. 121.
    Grigoriev AI, Oganov VS, Bakulin AV, et al. Clinical and physiological evaluation of bone changes among astronauts after longterm space flights. Aviakosm Ekolog Med 1998; 32:21-25.PubMedGoogle Scholar
  123. 122.
    Caillot-Augusseau A, Lafage-Proust M-H, Soler C, et al. Bone formation and resorption biological markers in cosmonauts during and after 180-day space flight (Euromir 95). Clin Chem 1998; 44:578-585.PubMedGoogle Scholar
  124. 123.
    Collet P, Uebelhart D, Vico L, et al. Effects of 1- and 6-month spaceflight on bone mass and biochemistry in two humans. Bone 1997; 20:547-551.PubMedCrossRefGoogle Scholar
  125. 124.
    Zerwekh JE, Ruml LA, Gottschalk F, et al. The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. J Bone Miner Res 1998; 13:1594-1601.PubMedCrossRefGoogle Scholar
  126. 125.
    LeBlanc A, Schneider V, Spector E, et al. Calcium absorption, endogenous excretion, and endocrine changes during and after long-term bed rest. Bone 1995; 16:301S-304S.PubMedGoogle Scholar
  127. 126.
    Arnaud SB, Sherrard DJ, Maloney N, et al. Effects of 1-week head-down tilt bed rest on bone formation and the calcium endocrine system. Aviat Space Env Med 1992; 63:14-20.Google Scholar
  128. 127.
    LeBlanc A, Schneider VS, Krebs JM, et al. Spinal bone mineral after 5 weeks of bed rest. Calcif Tissue Int 1987; 41:259-261.PubMedCrossRefGoogle Scholar
  129. 128.
    Deitrick JE, Whedon GD, Shorr E. Effects of immobilization upon various metabolic and physiologic functions of normal men. Am J Med 1948; 4:3-36.PubMedCrossRefGoogle Scholar
  130. 129.
    Hwang TIS, Hill K, Schneider VS, Pak CYC. Effect of prolonged bedrest on the propensity for renal stone formation. J Clin Endocrinol Metab 1988; 66:109-112.PubMedCrossRefGoogle Scholar
  131. 130.
    Donaldson CL, Hulley SB, Vogel JM, et al. Effect of prolonged bed rest on bone mineral. Metabolism 1970; 19:1071-1084.PubMedCrossRefGoogle Scholar
  132. 131.
    Arnaud SB, Fung P, Harris B, et al. Effects of a human bed rest model for space flight on serum 1,25-vitamin D. In: Norman AW, Boullion R, Thomasset M (eds.), Vitamin D Gene Regulation: Structure Function Analysis and Clinical Application. Berlin: Walter de Gruyter; 1991:915-916.Google Scholar
  133. 132.
    Vico L, Chappard D, Alexandre C. Effects of a 120 day period of bed-rest on bone mass and bone cell activities in man: Attempts at countermeasure. Bone Miner 1987; 2:38-294.Google Scholar
  134. 133.
    Jowsey J. Bone at the cellular level: The effects of inactivity. In: Murray RH, McCally M (eds.), Hypogravic and Hypodynamic Environments. Washington, DC: NASA; 1971:111-119. NASA SP-269.Google Scholar
  135. 134.
    Lueken SA, Arnaud SB, Taylor AK, et al. Changes in markers of bone formation and resorption in a bed rest model of weight-lessness. J Bone Miner Res 1993; 8:1433-1438.PubMedCrossRefGoogle Scholar
  136. 135.
    Elias AN, Gwinup G. Immobilization osteoporosis in paraplegia. J Am Paraplegia Soc 1992; 15:163-170.PubMedGoogle Scholar
  137. 136.
    Stewart AF, Adler M, Byers CM, et al. Calcium homeostasis in immobilization: An example of resorptive hypercalciuria. N Engl J Med 1982; 306:1136-1140.PubMedCrossRefGoogle Scholar
  138. 137.
    Meythaler JM, Tuel SM, Cross LL. Successful treatment of immobilization hypercalcemia using calcitonin and etidronate. Arch Phys Med Rehab 1993; 74:316-319.Google Scholar
  139. 138.
    Klein L, van der Noort S, DeJak JJ. Sequential studies of urinary hydroxyproline and serum alkaline phosphatase in acute para-plegia. Med Services J Canada 1966; July-August:524-533.Google Scholar
  140. 139.
    Naftchi NE, Viau AT, Sell GH, et al. Mineral metabolism in spinal cord injury. Arch Phys Med Rehab 1980; 61:139-142.Google Scholar
  141. 140.
    Minaire P, Meunier P, Edouard C, et al. Quantitative histological data on disuse osteoporosis: Comparison with biological data. Calcif Tissue Int 1974; 17:57-73.CrossRefGoogle Scholar
  142. 141.
    Morey-Holton ER, Schnoes HK, DeLuca HF, et al. Vitamin D metabolites and bioactive parathyroid hormone levels during Spacelab 2. Aviat Space Environ Med 1988; 59:1038-1041.PubMedGoogle Scholar
  143. 142.
    Vermeer C, Wolf J, Knapen MH. Microgravity-induced changes of bone markers: Effects of vitamin K-supplementation [abstract]. Bone 1997; 20:16S.Google Scholar
  144. 143.
    Nordin BEC, Need AG, Morris HA, et al. The nature and significance of the relationship between urinary sodium and urinary calcium in women. J Nutr 1993; 123:1615-1622.PubMedGoogle Scholar
  145. 144.
    Massey LK, Whiting SJ. Dietary salt, urinary calcium, and bone loss. J Bone Miner Res 1996; 11:731-736.PubMedCrossRefGoogle Scholar
  146. 145.
    Arnaud SB, Wolinsky I, Fung P, et al. Dietary salt and urinary calcium excretion in a human bed rest space flight model. Aviat Space Environ Med 2000; 71:1115-1159.PubMedGoogle Scholar
  147. 146.
    NASA Johnson Space Center. Nutritional Requirements for Extended Duration Orbiter Missions (30 to 90d) and Space Station Freedom (30- to 120-d). Houston, TX; 1993. JSC-32283.Google Scholar
  148. 147.
    NASA Johnson Space Center. Nutritional Requirements for International Space Station Missions up to 360 Days. Houston, TX; 1996. JSC-28038.Google Scholar
  149. 148.
    Sherman AR, Vodovotz Y. Nutrition and food concerns of longterm space travel: Recommendations for research. Life Support Biosph Sci 1999; 6:1-3.Google Scholar
  150. 149.
    NASA Johnson Space Center. Nutritional Status Assessment for Extended Duration Space Flight. Houston, TX; 1999. JSC-28566.Google Scholar
  151. 150.
    Smith SM, Feeback DL. Point-of-care testing in space and at high altitude. In: Kost GJ (ed.), Principles and Practice of Point-of-Care Testing. Baltimore: Williams & Wilkins; 2002. pp. 413-4.Google Scholar
  152. 151.
    Smith SM, Block G, Rice BL, et al. A food frequency questionnaire for use during space flight: A ground-based evaluation [abstract. FASEB J 1998; 12:A526. Abstract 3057.Google Scholar
  153. 152.
    Curtas S, Chapman G, Meguid MM. Evaluation of nutritional status. Nurs Clin North Am 1989; 24:301-313.PubMedGoogle Scholar
  154. 153.
    Core indicators of nutritional state for difficult-to-sample populations (Life Sciences Research Office report). J Nutr 1990; 12:1559-1600.Google Scholar
  155. 154.
    King N, Frindlund KE, Askew EW. Nutritional issues of military women. J Am Coll Nutr 1993; 12:344-348.PubMedGoogle Scholar
  156. 155.
    King N, Mutter SH, Roberts DE, et al. Cold weather field evaluation of the 18-man arctic tray pack ration module, the meal, ready-to-eat, and the long life ration packet. Mil Med 1993; 158:458-465.PubMedGoogle Scholar
  157. 156.
    Nightingale JM, Walsh N, Bullock ME, et al. Three simple methods of detecting malnutrition on medical wards. J R Soc Med 1996; 89:144-148.PubMedGoogle Scholar
  158. 157.
    Lichton IJ, Miyamura JB, McNutt SW. Nutritional evaluation of soldiers subsisting on meal, ready-to-eat operational rations for an extended period: Body measurements, hydration, and blood nutrients. Am J Clin Nutr 1989; 48:30-37.Google Scholar
  159. 158.
    Huntoon CL, Whitson PA, Sams CF. Hematologic and immune functions. In: Nicogossian AE, Pool SL, Huntoon CL (eds.), Space Physiology and Medicine. 4th edn. Baltimore, MD: Lippincott, Williams & Wilkins, 2003.Google Scholar
  160. 159.
    Schmitt DA, Schaffar L. Confinement and immune function. In: Bonting SL (ed.), Advances in Space Biology and Medicine, Vol 3. Greenwich, CT: JAI Press Inc.; 1993:229-235.Google Scholar
  161. 160.
    Pietrzyk RA, Feiveson AH, Whitson PA. Mathematical model to estimate risk of calcium-containing renal stones. Miner Electrolyte Metab 1999; 25:199-203.PubMedCrossRefGoogle Scholar
  162. 161.
    Colwell A, Eastell R, Assiri AMA, et al. Effect of diet on deoxypyridinoline excretion. In: Christianson C, Overgaard K (eds.), Proceedings of the 3rd International Symposium on Osteoporosis, Vol 1. Copenhagen, Denmark: Osteopress; 1990:590-591.Google Scholar
  163. 162.
    Garnero P, Shih WJ, Gineyts E, et al. Comparison of new biochemical markers of bone turnover in late postmenopausal osteoporotic women in response to alendronate treatment. J Clin Endocrinol Metab 1994; 79:1693-1700.PubMedCrossRefGoogle Scholar
  164. 163.
    Pedrazzoni M, Alfano FS, Gatti C, et al. Acute effects of bisphosphonates on new and traditional markers of bone resorption. Calcif Tissue Int 1995; 57:25-29.PubMedCrossRefGoogle Scholar
  165. 164.
    Robbins DE, Yang TC. Radiation and radiobiology. In: Nicogossian AE, Huntoon CL, Pool SL (eds.), Space Physiology and Medicine. 3rd edn. Philadelphia, PA: Lea and Febiger; 1994:167-193.Google Scholar
  166. 165.
    Hall EJ. Radiobiology for the Radiologist. Hagerstown, MD: Harper & Row Publishers; 1973:8-12.Google Scholar
  167. 166.
    Rock CL, Jacob RA, Bowen PE. Update on the biological characteristics of the antioxidant micronutrients: Vitamin C, vitamin E, and the carotenoids. J Am Diet Assoc 1996; 96:693-702.PubMedCrossRefGoogle Scholar
  168. 167.
    Brewster MA. Vitamins. In: Kaplan LA, Pesce AJ (eds.), Clinical Chemistry: Theory, Analysis, Correlation. St. Louis, MO: Mosby-Year Books, Inc; 1996:760-792.Google Scholar
  169. 168.
    Thomas JA. Oxidative stress and oxidant defense. In: Shils ME, Olson JA, Shike M, Ross AC (eds.), Modern Nutrition in Health and Disease. 9th edn. Baltimore, MD: Williams & Wilkins; 1998:751-760.Google Scholar
  170. 169.
    Singh RB, Ghosh S, Niaz MA, et al. Dietary intake, plasma levels of antioxidant vitamins, and oxidative stress in relation to coronary artery disease in elderly subjects. Am J Cardiol 1995; 76:1233-1238.PubMedCrossRefGoogle Scholar
  171. 170.
    Halliwell B. Antioxidants. In: Ziegler EE, Filer LJ Jr (eds.), Present Knowledge in Nutrition. 7th edn. Washington, DC: ILSI; 1996:596-603.Google Scholar
  172. 171.
    Lane HW, Nillen JL, Kloeris VL. Folic acid content in ther-mostabilized and freeze-dried Space Shuttle foods. J Food Sci 1995; 62:538-540.CrossRefGoogle Scholar
  173. 172.
    Dallman PR. Manifestations of iron deficiency. Semin Hematol 1982; 19:19-30.PubMedGoogle Scholar
  174. 173.
    Beard JL, Borel MJ, Derr J. Impaired thermoregulation and thyroid function in iron-deficiency anemia. Am J Clin Nutr 1990; 52:813-819.PubMedGoogle Scholar
  175. 174.
    Beard JL. Neuroendocrine alterations in iron deficiency. Prog Food Nutr Sci 1990; 14:45-82.PubMedGoogle Scholar
  176. 175.
    Schreiber WE. Iron, porphyrin, and bilirubin metabolism. In: Kaplan LA, Pesce AJ (eds.), Clinical Chemistry: Theory, Analysis, Correlation. St. Louis, MO: Mosby-Year Books, Inc; 1996:696-715.Google Scholar
  177. 176.
    Fairbanks VF, Beutler E. Iron. In: Shils ME, Young VR (eds.), Modern Nutrition in Health and Disease. Philadelphia, PA: Lea and Febiger; 1988:193-226.Google Scholar
  178. 177.
    Fontecave M, Pierre JL. Iron: Metabolism, toxicity and therapy. Biochimie 1993; 75:767-773.PubMedCrossRefGoogle Scholar
  179. 178.
    Fontecave M, Jaouen M, Mansuy D, et al. Microsomal lipid per-oxidation and oxy-radicals formation are induced by insoluble iron-containing minerals. Biochem Biophys Res Commun 1990; 173:912-918.PubMedCrossRefGoogle Scholar
  180. 179.
    Gutteridge JMC, Halliwell B. Radical-promoting loosely bound iron in biological fluids and the bleomycin assay. Life Chem Rep 1987; 4:113-142.Google Scholar
  181. 180.
    Miller DM, Buettner GR, Aust SD. Transition metals as catalysts of “autooxidation” reactions. Free Radic Biol Med 1990; 8:95-108.PubMedCrossRefGoogle Scholar
  182. 181.
    Bottiger LE, Carlson LA. Risk factors for ischaemic vascular death in men in the Stockholm Prospective Study. Atherosclerosis 1980; 36:389-408.CrossRefGoogle Scholar
  183. 182.
    Lauffer RB. Iron stores and the international variation in mortality from coronary artery disease. Med Hypotheses 1991; 35:2:96-102.PubMedCrossRefGoogle Scholar
  184. 183.
    Sullivan JL. The iron paradigm of ischemic heart disease. Am Heart J 1989; 117:1177-1188.PubMedCrossRefGoogle Scholar
  185. 184.
    Sullivan JL. Stored iron and ischemic heart disease: Empirical support for a new paradigm [editorial]. Circulation 1992; 86:1036-1037.PubMedGoogle Scholar
  186. 185.
    Salonen JT, Nyyssonen K, Korpela H, et al. High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation 1992; 86:803-811.PubMedGoogle Scholar
  187. 186.
    Sempos CT, Looker AC, Gillum RF, et al. Body iron stores and the risk of coronary heart disease. N Engl J Med 194; 330:1119-1124.Google Scholar
  188. 187.
    Ascherio A, Willett WC. Are body iron stores related to the risk of coronary heart disease? (editorial). N Engl J Med 1994; 330:1152-1154.PubMedCrossRefGoogle Scholar
  189. 188.
    Knekt P, Reunanen A, Takkunen H, et al. Body iron stores and risk of cancer. Int J Cancer 1994; 56:379-382.PubMedCrossRefGoogle Scholar
  190. 189.
    Salonen JT, Korpela H, Nyyssonen K, et al. Lowering of body iron stores by blood letting and oxidation resistance of serum lipoproteins: A randomized cross-over trial in male smokers. J Intern Med 1995; 237:161-168.PubMedCrossRefGoogle Scholar
  191. 190.
    Weaver CM, Rajaram S. Exercise and iron status. J Nutr 1992; 122:782-787.PubMedGoogle Scholar
  192. 191.
    Rajaram S, Weaver CM, Lyle RM, et al. Effects of long-term moderate exercise on iron status in young women. Med Sci Sports Exerc 1995; 27:1105-1110.PubMedGoogle Scholar
  193. 192.
    Moore RJ, Friedl KE, Tulley RT, et al. Maintenance of iron status in healthy men during an extended period of stress and physical activity. Am J Clin Nutr 1993; 58:923-927.PubMedGoogle Scholar
  194. 193.
    Weight L, Alexander D, Jacobs P. Strenuous exercise: Analogous to the acute-phase response? Clin Sci 1991; 81:677-683.PubMedGoogle Scholar
  195. 194.
    Vidnes A, Opstad PK. Serum ferritin in young men during prolonged heavy physical exercise. Scand J Haematol 1981; 27:195-170.Google Scholar
  196. 195.
    Singh A, Smoak BL, Patterson KY, et al. Biochemical indices of selected trace minerals in men: Effect of stress. Am J Clin Nutr 1991; 53:126-131.PubMedGoogle Scholar
  197. 196.
    Lindemann R, Ekanger R, Opstad PK, et al. Hematological changes in normal men during prolonged severe exercise. Am Correct Ther J 1978; 32:107-111.PubMedGoogle Scholar
  198. 197.
    Vodovotz Y, Bourland C, Kloeris V, et al. Critical path plan for food and nutrition research required for planetary exploration missions. Presented at: International Congress on Environmental Systems; July 1999; Denver, CO.Google Scholar
  199. 198.
    Baldwin KM, White TP, Arnaud SB, et al. Musculoskeletal adaptations to weightlessness and development of effective countermeasures. Med Sci Sports Exerc 1996; 28:1247-1253.PubMedGoogle Scholar
  200. 199.
    LeBlanc AD, Schneider VS. Countermeasures against space flight related bone loss. Acta Astronautica 1992; 27:89-92.PubMedCrossRefGoogle Scholar
  201. 200.
    LeBlanc A, Shackelford L, Schneider V. Future human bone research in space. Bone 1998; 22:113S-116S.PubMedCrossRefGoogle Scholar
  202. 201.
    Lockwood DR, Vogel JM, Schneider VS, et al. Effect of the diphosphonate EHDP on bone mineral metabolism during prolonged bed rest. J Clin Endocrinol Metab 1975; 41:533-541.PubMedCrossRefGoogle Scholar
  203. 202.
    Hulley SB, Vogel JM, Donaldson CL, et al. The effect of supplemental oral phosphate on the bone mineral changes during prolonged bed rest. J Clin Invest 1971; 50:2506-2518.PubMedCrossRefGoogle Scholar
  204. 203.
    LeBlanc AD, Driscoll TB, Shackelford LC, et al. Alendronate as an effective countermeasure to disuse-induced bone loss. J Musculoskel Neuronal Interact 2002; 335-343.Google Scholar
  205. 204.
    Shackelford LC, LeBlanc AD, Feiveson Aet el., . Exercise countermeasure to disuse osteoporosis [abstract. J Bone Miner Res 2001; 16(suppl 1):S485. Abstract M209.Google Scholar
  206. 205.
    Smith SM, Nillen JL, Davis-Street JE, et al. Alendronate and resistive exercise countermeasures against bed rest-induced bone loss: Biochemical markers of bone and calcium metabolism [abstract]. FASEB J 2001; 15:A1096. Abstract 841.8.CrossRefGoogle Scholar
  207. 206.
    Ferrando AA, Williams BD, Stuart CA, et al. Oral branched-chain amino acids decrease whole-body proteolysis. JPEN J Parenter Enteral Nutr 1995; 19:47-54.PubMedCrossRefGoogle Scholar
  208. 207.
    Stuart CA, Shangraw RE, Peters EJ, et al. Effect of dietary protein on bed-rest-related changes in whole-body-protein synthesis. Am J Clin Nutr 1990; 52:509-514.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Scott M. Smith
    • 1
  • Helen W. Lane
    • 1
  1. 1.NASA Johnson Space CenterHoustonUSA

Personalised recommendations