Hypoxia, Hypercarbia, and Atmospheric Control

  • Kira Bacal
  • George Beck
  • Michael R. Barratt

This chapter reviews atmospheric standards with particular attention to pathophysiology and operational issues associated with pressure, temperature, humidity, and trace contaminants. Next follows a discussion of the physiologically relevant atmospheric gases oxygen and carbon dioxide along with their associated clinical conditions (e.g., hypoxia and hypercarbia). The chapter concludes with a review of the environmental control systems found on board past and present spacecraft.


International Space Station Decompression Sickness Barometric Pressure Space Shuttle Acute Hypoxia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jones W, Ingelfinger A. Atmospheric control. In: Parker J, West V (eds.), Bioastronautics Data Book. 2nd edn. Washington, DC: National Aeronautics and Space Administration; 1973:807-846. NASA SP-3006.Google Scholar
  2. 2.
    Malkin V. Barometric pressure and gas composition of spacecraft cabin air. In: Sulzman FM, Genin AM (eds.), Life Support and Habit-ability, Vol. II. Washington, DC: American Institute of Aeronautics and Astronautics; 1993:1-36. Nicogossian A, Mohler S, Gazenko O, Grigoriev AI, series (eds.), Space Biology and Medicine: Joint U.S./ Russian Publication in Five Volumes.Google Scholar
  3. 3.
    Graf J, Finger B, Daues K. Life Support Systems for the Space Environment: Basic Tenets for Designers, Rev. A, June 27, 2002. Web page available at: Accessed October 11, 2002.
  4. 4.
    International Civil Aviation Organization. Manual of the ICAO Standard Atmosphere. 2nd edn. Montreal: ICAO; 1964.Google Scholar
  5. 5.
    Billings C. Barometric pressure. In: Parker J, West V (eds.), Bioastronautics Data Book. 2nd edn. Washington, DC: National Aeronautics and Space Administration; 1973:1-34. NASA SP-3006.Google Scholar
  6. 6.
    Busby D. Space Clinical Medicine, A Prospective Look at Medi-cal Problems From Hazards of Space Operations. Dordrecht, Holland: D. Reidel Publishing Company; 1968.Google Scholar
  7. 7.
    Harland D. The Mir Space Station: A Precursor to Space Col-onization. Chichester, UK: John Wiley and Sons; 1997.Google Scholar
  8. 8.
    Waligora J, Powell M, Sauer R. Spacecraft life-support sys-tems. In: Nicogossian AE, Huntoon CL, Pool SL (eds.), Space Physiology and Medicine, 3rd edn. Philadelphia: Lea & Febiger; 1994:109-127.Google Scholar
  9. 9.
    Ernsting J, Nicholsen A, Rainford D. Aviation Medicine. 3rd edn. Oxford, UK: Butterworth-Heinemann; 1999.Google Scholar
  10. 10.
    Nicogossian AE, Huntoon CL, Pool SL (eds.), Space Physiology and Medicine. 3rd edn. Philadelphia, PA: Lea & Febiger; 1994.Google Scholar
  11. 11.
    Hackett PH, Roach RC. High-Altitude Medicine., In: Auerbach PS (ed.), Wilderness Medicine. 3rd edn. St. Louis, MO: Mosby Year Book; 1995:3.Google Scholar
  12. 12.
    Lataste X. The blood-brain barrier in hypoxia. Int J Sports Med 1992; 13:S45-S47.CrossRefPubMedGoogle Scholar
  13. 13.
    Neubauer J, Melton J, Edelman N. Modulation of respiration dur-ing brain hypoxia. J Appl Physiol 1990; 68:441-451.PubMedGoogle Scholar
  14. 14.
    Hammond M, Gale GE, Kapitan K, et al. Pulmonary gas exchange in humans during normobaric hypoxic exercise. J Appl Physiol 1986; 16:1749-1757.Google Scholar
  15. 15.
    Wagner PD, Gale GE, Moon RE, et al. Pulmonary gas exchange in humans exercising at sea level and simulated altitude. J Appl Physiol 1986; 61:260-270.PubMedGoogle Scholar
  16. 16.
    Wood S. Interactions between hypoxia and hypothermia. Annu Rev Physiol 1991; 53:71-85.CrossRefPubMedGoogle Scholar
  17. 17.
    Yoneda I, Tomoda M, Tokumaru O, et al. Time of useful con-sciousness determination in aircrew members with reference to prior altitude chamber experience and age. Aviat Space Environ Med 2000; 71:72-76.PubMedGoogle Scholar
  18. 18.
    Pickard JS. The atmosphere and respiration. In: DeHart RL, Davis JR (eds.), Fundamentals of Aerospace Medicine. 3rd edn. Philadel-phia, PA: Lippincott Williams and Wilkins; 2002; Table 2.7, p. 37.Google Scholar
  19. 19.
    West JB. Tolerance to severe hypoxia: lessons from Mt. Ever-est. Acta Anaesthesiol Scand Suppl. 1990; 34:18-23.CrossRefGoogle Scholar
  20. 20.
    Sutton J, Reeves J, Wagner P, et al. Operation Everest II: oxy-gen transport during exercise at extreme hypoxia. J Appl Physiol 1988; 64:1309-1321.PubMedGoogle Scholar
  21. 21.
    Powell F, Huey K, Dwinell M. Central nervous system mecha-nisms of ventilatory acclimatization to hypoxia. Resp Physiol 2000; 121:223-236.CrossRefGoogle Scholar
  22. 22.
    Lambertsen C. Hypoxia, altitude and acclimatization. In: Mountcastle V (ed.), Medical Physiology, 14th edn. St. Louis, MO: Mosby; 1980.Google Scholar
  23. 23.
    Hackett P, Rabold M. High-altitude medical problems. In: Tintin-alli J, Ruiz E, Krome R (eds.), Emergency Medicine: A Com-prehensive Study Guide. 4th edn. New York, NY: McGraw-Hill Company; 1996.Google Scholar
  24. 24.
    Scholz H, Schurek H, Eckardt K, Bauer C. Role of erythropoietin in adaptation to hypoxia. Experientia 1990; 46:1197-1201.CrossRefPubMedGoogle Scholar
  25. 25.
    Young AJ, Young PM. Human acclimatization to high terrestrial altitude. In: Pandolf K, Sawka M, Gonzalez R (eds.), Human Performance Physiology and Environmental Medicine at Terrestrial Extremes.  Carmel, IN: Cooper Publishing Group; 1988.Google Scholar
  26. 26.
    Hochachka P. Mechanism and evolution of hypoxia-tolerance in humans. J Exp Biol 1998; 201:1243-1254.PubMedGoogle Scholar
  27. 27.
    Bebout D, Story D, Roca J, et al. Effects of altitude acclimatiza-tion on pulmonary gas exchange during exercise. J Appl Physiol 1989; 67:2286-2295.PubMedGoogle Scholar
  28. 28.
    Appenzeller O, Martignoni E. The autonomic nervous system and hypoxia: mountain medicine. J Auton Nerv Syst 1996; 57:1-12.CrossRefPubMedGoogle Scholar
  29. 29.
    Conkin J. The Mars Project: Avoiding Decompression Sickness on a Distant Planet. Houston, TX: NASA, Lyndon B. Johnson Space Center; 2000. NASA TM 2000-210188.Google Scholar
  30. 30.
    Waligora JM, Horrigan DJ, Nicogossian A. The physiology of spacecraft and space suit atmosphere selection. Acta Astronau-tica 1991; 23:171-177.CrossRefGoogle Scholar
  31. 31.
    Fenton L, Beck G, Djali S, Robinson M. Hypothermia induced by hyperbaric oxygen is not blocked by serotonin antagonists. Pharmacol Biochem Behav 1993; 44:357-364.CrossRefPubMedGoogle Scholar
  32. 32.
    Robertson W, Hargreaves J, Herlocher J, et al. Physiologic response to increased oxygen partial pressure II: respiratory stud-ies. Aerospace Med 1964; 35:618-622.PubMedGoogle Scholar
  33. 33.
    Clark J. Therapeutic and toxic effects of hyperbaric oxygenation. In: Crystal R, West J, et al. (eds.), The Lung: Scientific Founda-tion. New York: Raven Press Ltd.; 1991:2123-2131.Google Scholar
  34. 34.
    Montgomery AB, Luce JM, Murray JF. Retrosternal pain is an early indicator of oxygen toxicity. Am Rev Respir Dis 1989; 139:1548-50.PubMedGoogle Scholar
  35. 35.
    Caldwell PR, Lee WL Jr, Schildkraut HS, et al. Changes in lung volume, diffusing capacity, and blood gases in men breathing oxygen. J Appl Physiol 1966; 21:1477-83.PubMedGoogle Scholar
  36. 36.
    Nakae H, Tanaka H, Inaba H. Failure to clear casts and secretions following inhalation injury can be dangerous: report of a case. Burns 2001; 27:189-91.CrossRefPubMedGoogle Scholar
  37. 37.
    Robinson L, Miller RH. Smoke inhalation injuries. Am J Otolar-yngol 1986; 7:375-80.CrossRefGoogle Scholar
  38. 38.
    Mission Operations Directorate, Space Flight Training Division. International Space Station Familiarization Manual. Houston, TX: National Aeronautics and Space Administration; 1998. NASA TD 9702A.Google Scholar
  39. 39.
    Eckart P. Spaceflight Life Support and Biospherics. Torrance, CA: Microcosm Press; 1996.Google Scholar
  40. 40.
    Rahn H, Fenn WO. The Oxygen—Carbon Dioxide Diagram. WADC-TR-53-255, Wright-Patterson Air Force Base, Ohio 1953.Google Scholar
  41. 41.
    Gelfand R, Lambertsen CJ, Beck G, et al. Dynamic responses of SaO2 and “CBF” to abrupt exposure to inhaled 10% O2/4% CO2 at rest, followed by 50 and 100 watts exercise. Undersea Hyper-baric Med 1995; 22(Supp.):70-71.Google Scholar
  42. 42.
    Rousseau J. Atmospheric Control Systems for Space Vehicles. Report No. ASD-TDR-62-527, AiResearch Manufacturing Divi-sion, Los Angeles California; March 1963.Google Scholar
  43. 43.
    Wieland P. Designing for Human Presence in Space: An Introduc-tion to Environmental Control and Life Support Systems. NASA Marshall Space Flight Center, Huntsville, AL. NASA Scientific and Technical Information Program; 1994: Page 25. NASA RP-1324.Google Scholar
  44. 44.
    Wieland PO. Designing for Human Presence in Space: An Intro-duction to Environmental Control and Life Support Systems. Marshall Space Flight Center, AL: NASA Scientific and Tech-nical Information Program; 1994: Chapter 5. NASA RP-1324.Google Scholar
  45. 45.
    Churchill SE (ed.), Fundamentals of Space Life Sciences. Malabar, FL: Krieger Publishing Co.; 1997.Google Scholar
  46. 46.
    Rippstein WJ, Schneider HJ. Toxicological aspects of the Skylab program. In: Johnson RS, Dietlein LF (eds.), Biomedical Results From Skylab. Washington, DC: U.S. Government Printing Office; 1977:70-73. NASA SP-377.Google Scholar
  47. 47.
    Wieland PO. Designing for Human Presence in Space: An Intro-duction to Environmental Control and Life Support Systems. Mar-shall Space Flight Center, AL: NASA Scientific and Technical Information Program; 1994: Appendix C, C.2. NASA RP-1324.Google Scholar
  48. 48.
    Wieland PO. Designing for Human Presence in Space: An Intro-duction to Environmental Control and Life Support Systems. Marshall Space Flight Center, AL: NASA Scientific and Techni-cal Information Program; 1994; 2.3. NASA RP-1324.Google Scholar
  49. 49.
    Link MM. Space Medicine in Project Mercury. Washington, DC: NASA Scientific and Technical Information Division; 1965. NASA SP-4003.Google Scholar
  50. 50.
    Johnston RS, Dietlein LF, Berry CA (eds.), Biomedical Results of Apollo. Washington, DC: NASA Scientific and Technical Infor-mation Division; 1975. NASA SP-368.Google Scholar
  51. 51.
    Hacker BC, Grimwood, JM. On the Shoulders of Titans: A His-tory of Project Gemini. Washington, DC: NASA Scientific and Technical Information Division; 1977. NASA SP-4203.Google Scholar
  52. 52.
    Collins M. Carrying the Fire: an Astronaut’s Journeys. New York, NY: Farrar, Straus, and Giroux, Inc.; 1974.Google Scholar
  53. 53.
    Ezell, EC, Ezell LN. The Partnership: A History of the Apollo-Soyuz Test Project. Washington DC: NASA Scientific and Tech-nical Information Division; 1978. NASA SP-4209.Google Scholar
  54. West JB. Respiratory Physiology—The Essentials. Baltimore, MD: Williams & Wilkins Company; 1974.Google Scholar
  55. Wieland PO. Living Together in Space: The Design and Opera-tion of the Life Support Systems on the International Space Station. Marshall Space Flight Center, AL: NASA Scientific and Technical Information Program; 1998. NASA/TM-1998-206956.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Kira Bacal
    • 1
  • George Beck
    • 2
  • Michael R. Barratt
    • 3
  1. 1.Mauri Ora AssociatesNew Zealand
  2. 2.Impact InstrumentationWest CaldwellUSA
  3. 3.NASA Johnson Space CenterHoustonUSA

Personalised recommendations