Human Response to Space Flight

  • Ellen S. Baker
  • Michael R. Barratt
  • Mary L. Wear

This chapter presents a comprehensive framework for understanding the experience and clinico-physiological response of human beings to space flight. This is purposely not an exhaustive physiology review, but rather an overview of consistent and predictable changes that are clinically relevant. These changes include outward symptoms and effects on health and performance as well as laboratory values and test results deemed important for understanding the clinical norms associated with space flight. Further physiological details are included in the subsequent system-oriented chapters; interested readers are also referred to the more detailed work in the Handbook of Physiology [1] and the recent text Space Physiology by Buckey [2].

By way of introduction, this chapter offers a brief history of human space flight to provide a context for the current state of knowledge of space medicine.


International Space Station Space Flight Space Shuttle Orthostatic Intolerance Aviat Space Environ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fregly MJ, Blatteis CM (eds.), Handbook of Physiology: Section 4: Environment Physiology. III: The Gravitational Environment. New York, NY: Oxford University Press; 1996.Google Scholar
  2. 2.
    Buckey JC. Space Physiology. New York, NY: Oxford Univer-sity Press; 2006.Google Scholar
  3. 3.
    Berry C. Perspectives on Apollo. In: Johnston RS, Lawrence F, Dietlein MD, Charles A, Berry MD (eds.), Bioemedical results of Apollo. Washington, DC: Scientific and Technical Informa-tion Office, NASA; 1975:581-582.Google Scholar
  4. 4.
    Hanrahan JS. History of Research in Space Biology and Biody-namics at the U.S. Air Force Missile Development Center, Hol-loman Air Force Base, New Mexico 1946-1958. In: Project Man High. Holloman Air Force Base, New Mexico: Historical Divi-sion, Office of Information Services, Air Force Missile Devel-opment Center, Air Research and Development Command; 1958:18-27.Google Scholar
  5. 5.
    Dietlein LF. Summary and Conclusions. In: Johnston RS, Law-rence F, Dietlein MD, Charles A, Berry MD (eds.), Bioemedi-cal results of Apollo. Washington, DC: Scientific and Technical Information Office, NASA; 1975:579.Google Scholar
  6. 6.
    Gurovskii NN, Eryonin AV, Gazenko OG, Egorov AD, Bri-anov II, Ganin AM. Medical investigations during flights of the spacecraft Soyuz-12, Soyuz-13, Soyuz-14 and the orbital station Salyut-3. In: International Astronautical Congress, 25th. Amster-dam, Netherlands: International Astronautical Federation; 1974.Google Scholar
  7. 7.
    Dietlein L. Skylab: A beginning. In: Johnston RS, Dietlein LF (eds.), Bioemedical results from Skylab. Washington, DC: Scientific and Technical Information Office, NASA, SP-377; 1977:408-418.Google Scholar
  8. 8.
    Michel EL, Rummel JA, Sawin CF, Buderer MC, Lem JD. Results of Skylab Medical Experiment M171—metabolic activ-ity. In: Johnston R, Dietlein L (eds.), Biomedical Results of Skylab. Washington, DC: Scientific and Technical Information Office, NASA; 1977:372-387.Google Scholar
  9. 9.
    Davis JR, Vanderploeg JM, Santy PA, Jennings RT, Stewart DF. Space motion sickness during 24 flights of the space shuttle. Aviat Space Environ Med 1988; 59(12):1185-1189.PubMedGoogle Scholar
  10. 10.
    Matsnev EI, Yakovleva IY, Tarasov IK, et al. Space motion sick-ness: Phenomenology, countermeasures, and mechanisms. Aviat Space Environ Med 1983; 54(4):312-7.PubMedGoogle Scholar
  11. 11.
    Jennings RT. Managing space motion sickness. J Vestib Res 1998; 8(1):67-70.PubMedCrossRefGoogle Scholar
  12. 12.
    Buckey J, Lane L, Levine B, et al. Orthostatic intolerance after spaceflight. J App Physiol 1996; 81(1):7-18.Google Scholar
  13. 13.
    Schneider V, Oganov V, LeBlanc A, et al. Bone and body mass changes during space flight. Acta Astronaut 1995; 36(8-12): 463-466.PubMedCrossRefGoogle Scholar
  14. 14.
    Heer M, De Santo NG, Cirillo M, Drummer C. Body mass changes, energy, and protein metabolism in space. Am J Kidney Dis 2001; 38(3):691-695.PubMedCrossRefGoogle Scholar
  15. 15.
    Kozerenko OP, Grigoriev AI, Egerov AD. Results of investiga-tions of weightlessness effects during prolonged manned space flight onboard Salyut 6. The Physiologist 1981; 24(6 Suppl): S49-S54.Google Scholar
  16. 16.
    Smith SM, Zwart SR, Block G, Rice BL, Davis-Street JE. The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station. J Nutr 2005; 135:437-443.PubMedGoogle Scholar
  17. 17.
    Grigoriev AI, Bugrov SA, Bogomolov VV, et al. Medical results of the Mir year-long mission. Physiologist 1991; 34 (1 Suppl):S44-S48.PubMedGoogle Scholar
  18. 18.
    Thornton WE, Hoffler GW, Rummel JA. Anthropometric changes and fluid shifts. In: Johnston R, Dietlein L (eds.), Biomedical Results of Skylab. Washington, DC: Scientific and Technical Information Office, NASA; 1977:330-338.Google Scholar
  19. 19.
    NASA. Antrhopometry and biomechanics. In: Man-System Inte-gration Standards, NASA-STD-3000: National Aeronautics and Space Administration; 1989:3.56-57.Google Scholar
  20. 20.
    Billica RD, Barratt MR. Inflight Evaluation of apparatus and techniques for performance of medical and surgical procedures in microgravity. STS-40/SLS-1, SMIDEX medical restraint sys-tem. In: Spacelab Like Sciences 1 Final Report. Houston, TX: NASA JSC-26786; 1991:5.67-5.82.Google Scholar
  21. 21.
    Harris BA, Jr, Billica RD, Bishop SL, et al. Physical examination during space flight. Mayo Clin Proc 1997; 72(4):301-308.PubMedCrossRefGoogle Scholar
  22. 22.
    Draeger J, Schwartz R, Groenhoff S, Stern C. Self-tonometry under microgravity conditions. Aviat Space Environ Med 1995; 66 (6):568-570.PubMedGoogle Scholar
  23. 23.
    Herault S, Fomina G, Alferova I, Kotovskaya A, Poliakov V, Arbeille P. Cardiac, arterial and venous adaptation to weightlessness during 6-month MIR spaceflights with and without thigh cuffs (bracelets). Eur J Appl Physiol 2000; 81 (5):384-390.PubMedCrossRefGoogle Scholar
  24. 24.
    Guyton AC, Hall JE. Nervous regulation of the circulation, and rapid control of arterial pressure. In: Textbook of Medical Physi-ology. 10th edn. Philadelphia, PA: W. B. Saunders; 2000:184-194.Google Scholar
  25. 25.
    Fritsch-Yelle J, Charles J, Jones M, Wood M. Microgravity decreases heart rate and arterial pressure in humans. J Appl Physiol 1996; 80(3):910-914.PubMedGoogle Scholar
  26. 26.
    Buckey JC, Gaffney FA, Lane LD, et al. Central venous pressure in space. J Appl Physiol 1996; 81:19-25.PubMedGoogle Scholar
  27. 27.
    Norsk P, Damgaard M, Petersen L, et al. Vasorelaxation in space. Hypertension 2006; 47(1):69-73.PubMedCrossRefGoogle Scholar
  28. 28.
    Shykoff BE, Farhi LE, Olszowka AJ, et al. Cardiovascular response to submaximal exercise in sustained microgravity. J Appl Physiol 1996; 81:26-32.PubMedGoogle Scholar
  29. 29.
    Shiraishi M, Kamo T, Kamegai M, et al. Periodic structures and diurnal variation in blood pressure and heart rate in relation to microgravity on space station MIR. Biomed Pharmacother 2004; 58 (1 Suppl):S31-S34.PubMedCrossRefGoogle Scholar
  30. 30.
    Atkov O, Bednenko VS, Fomina GA. Ultrasound techniques in space medicine. Aviat Space Environ Med 1987; Suppl 58: A69-A73.Google Scholar
  31. 31.
    Foldager N, Andersen TA, Jessen FB, et al. Central venous pressure in humans during microgravity. J Appl Physiol 1996; 81 (1):408-412.PubMedGoogle Scholar
  32. 32.
    Leach CS, Alfrey CP, Suki WN, et al. Regulation of body fluid compartments during short-term spaceflight. J Appl Physiol 1996; 81(1):105-116.PubMedGoogle Scholar
  33. 33.
    Johnson PC, Driscoll TB, LeBlanc AD. Blood volume changes. In: Johnson R, Dietlein, LF (eds.), Biomedical Results of Skylab. Washington, DC: Scientific and Technical Information Office, NASA; 1977:235-241.Google Scholar
  34. 34.
    Alfrey CP, Udden MM, Leach-Huntoon C, Driscoll T, Pickett MH. Control of red blood cell mass in spaceflight. J Appl Physiol 1996; 81(1):98-104.PubMedGoogle Scholar
  35. 35.
    Prisk G, Guy H, Elliott A, Deutschman RR, West J. Pulmonary diffusing capacity, capillary blood volume, and cardiac output during sustained microgravity. J Appl Physiol 1993; 75(1):15-26.PubMedGoogle Scholar
  36. 36.
    Verbanck S, Larsson H, Linnarsson D, Prisk GK, West JB, Paiva M. Pulmonary tissue volume, cardiac output, and dif-fusing capacity in sustained microgravity. J Appl Physiol 1997; 83:810-6.PubMedGoogle Scholar
  37. 37.
    Perhonen MA, Franco F, Lane LD, et al. Cardiac atrophy after bed rest and spaceflight. J Appl Physiol 2002; 92(5):2222-2223.Google Scholar
  38. 38.
    Henry WL, Epstein SE, Griffith JM, Goldstein RE, Redwood DR. Effect of prolonged space flight on cardiac functions and dimensions. In: Johnston R, Dietlein L (eds.), Biomedical Results from Skylab. Washington, DC: Scientific and Technical Information Office, NASA; 1977:366-371.Google Scholar
  39. 39.
    Estenne M, Gorini M, Van Muylem A, Ninane V, Paiva M. Rib cage shape and motion in microgravity. J Appl Physiol 1992; 73 (3):946-954.PubMedGoogle Scholar
  40. 40.
    Videback R, Norsk P. Atrial distension in humans during micro-gravity induced by parabolic flights. J Appl Physiol 1997; 83:1862-1866.Google Scholar
  41. 41.
    Buckey JC. Central Venous Pressure. In: Prisk GK, Paiva M, West JB (eds.), Gravity and the Lung: Lessons from Microgravity. New York, NY.: Marcel Dekker Inc.; 2001:225-54.Google Scholar
  42. 42.
    Rice L, Alfrey CP. Modulation of red cell mass by neocytoly-sis in space and on Earth. Pflugers Arch 2000; 441(2-3 Suppl): R91-R94.PubMedGoogle Scholar
  43. 43.
    Watenpaugh DE, Hargens AR. The cardiovascular system in microgravity. In: Fregly MJ, Blatteis CM (eds.), Handbook of Physiology: Environmental Physiology. New York, NY: Oxford University Press; 1996:631-674.Google Scholar
  44. 44.
    Fritsch J, Eckberg D. Effects of weightlessness on human baro-reflex function. (Abstract). Aviat Space Environ Med 1992; 63:439.Google Scholar
  45. 45.
    Fritsch JM, Charles JB, Bennett BS, Jones MM, Eckberg DL. Short-duration spaceflight impairs human carotid barore-ceptor-cardiac reflex responses. J Appl Physiol 1992; 73(2): 664-671.PubMedGoogle Scholar
  46. 46.
    Fritsch-Yelle JM, Charles JB, Jones MM, Beightol LA, Eckberg DL. Spaceflight alters autonomic regulation of arterial pressure in humans. J Appl Physiol 1994; 77(4):1776-1783.PubMedGoogle Scholar
  47. 47.
    Ertl AC, Diedrich A, Biaggioni I. Baroreflex dysfunction induced by microgravity: Potential relevance to postflight orthostatic intolerance. Clin Auton Res 2000; 10(5):269-277.PubMedCrossRefGoogle Scholar
  48. 48.
    Cooke WH, Ames JEI, Crossman AA, et al. Nine months in space: Effects on human autonomic cardiovascular regulation. J Appl Physiol 2000; 89(3):1039-1045.PubMedGoogle Scholar
  49. 49.
    Baisch F, Beck L, Blomqvist G, et al. Cardiovascular response to lower body negative pressure stimulation before, during, and after space flight. Eur J Clin Invest 2000; 30(12):1055-1065.PubMedCrossRefGoogle Scholar
  50. 50.
    Ertl A, Diedrich A, Biaggioni I, et al. Human muscle sympa-thetic nerve activity and plasma noradrenaline kinetics in space. J Physiol 2002; 538(Pt 1):321-329.PubMedCrossRefGoogle Scholar
  51. 51.
    Hawkins WR, Zieglschmid JF. Clinical aspects of crew health. In: Johnston RS, Lawrence F. Dietlein MD, Charles A. Berry MD (eds.), Biomedical Results of Apollo. Washington, DC: Sci-entific and Technical Information Office, NASA; 1975:71-73.Google Scholar
  52. 52.
    Newkirk D. Almanac of Soviet Manned Space Flight. Houston, TX: Gulf Publishing Co.; 1990:328-329.Google Scholar
  53. 53.
    Gazenko OG, Grigoriev AI, Burgov SA, Yegerov VV, Bogo-molov VV, Tarasov IBKIK. Review of the major results of medical research during the flight of the second prime crew of the Mir Space Station. Kosmich Biol Aviakosmich Med 1990; 23:3-11.Google Scholar
  54. 54.
    Fritsch-Yelle J, Leuenberger U, D’Aunno D, et al. An episode of ventricular tachycardia during long-duration spaceflight. Am J Cardiol 1998; 81(11):1391-1392.PubMedCrossRefGoogle Scholar
  55. 55.
    Rossum AC, Wood ML, Bishop SL, Deblock H, Charles JB. Evaluation of cardiac rhythm disturbances during extravehicular activity. Am J Cardiol 1997; 79(8):1153-1155.PubMedCrossRefGoogle Scholar
  56. 56.
    Burton RR, Whinnery JE. Biodynamics: Sustained Acceleration. In: DeHart RL, Davis JR (eds.), Fundamentals of Aerospace Medicine. 3rd edn. Philadelphia, PA: Lippincott Williams and Wilkins; 2002:122-153.Google Scholar
  57. 57.
    Whinnery AM, Whinnery JE. The electrocardiographic response of females to centrifuge +Gz stress. Aviat Space Environ Med 1990; 61(11):1046-1051.PubMedGoogle Scholar
  58. 58.
    Glaister D. The effects of gravity and acceleration on the lung. Slough, UK: Technivison Services; 1970; AGARDograph 133.Google Scholar
  59. 59.
    Wantier M, Estenne M, Verbanck S, Prisk GK, Paiva M. Chest wall mechanics in sustained microgravity. J Appl Physiol 1998; 84 (6):2060-2065.PubMedGoogle Scholar
  60. 60.
    Prisk GK, Elliott AR, Guy HJ, Kosonen JM, West JB. Pulmo-nary gas exchange and its determinants during sustained micro-gravity on Spacelabs SLS-1 and SLS-2. J Appl Physiol 1995; 79 (4):1290-1298.PubMedGoogle Scholar
  61. 61.
    Prisk GK, Elliott AR, West JB. Sustained microgravity reduces the human ventilatory response to hypoxia but not hypercapnea. J Appl Physiol 2000; 88:1421-1430.PubMedGoogle Scholar
  62. 62.
    Elliot AR, Prisk GK, Guy HJB, West JB. Lung volumes during sustained microgravity on Spacelab SLS-1. J Appl Physiol 1994; 77:2005-2014.Google Scholar
  63. 63.
    Elliot AR, Prisk GK, Guy HJB, Kosonen JM, West JB. Forced expiration and maximum expiratory flow-volume curves dur-ing sustained microgravity on SLS-1. J Appl Physiol 1996; 81:33-43.Google Scholar
  64. 64.
    Prisk GK. Microgravity and the Lung. J Appl Physiol 2000; 89:385-396.PubMedGoogle Scholar
  65. 65.
    Verbandt Y, Wantier M, Prisk GK, Paiva M. Ventilation-perfu-sion matching in long-term microgravity. J Appl Physiol 2000; 89 (6):2407-2412. E.S. Baker et al.PubMedGoogle Scholar
  66. 66.
    Venturoli D, Semino P, Negrini D, Miserocchi G. Respiratory mechanics after 180 days space mission (EUROMIR’95). Acta Astronaut 1998; 42(1-8):185-204.PubMedCrossRefGoogle Scholar
  67. 67.
    Biering-Sorensen F, Bohr HH, Schaadt OP. Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Invest 1990; 20 (3):330-335.PubMedCrossRefGoogle Scholar
  68. 68.
    Wilmet E, Ismail AA, Heilporn A, Welraeds D, Bergmann P. Longitudinal study of the bone mineral content and of soft tissue composition after spinal cord section. Paraplegia 1995; 33 (11):674-677.PubMedGoogle Scholar
  69. 69.
    Smith MC, Rambaut PC, Vogel JM, Whittle MW. Bone min-eral measurement experiment M078. In: Johnston R, Dietlein L (eds.), Biomedical Results from Skylab. Washington, DC: Scien-tific and Technical Information Office, NASA; 1977:183-190.Google Scholar
  70. 70.
    Leblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM. Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 1990; 5(8):843-850.PubMedCrossRefGoogle Scholar
  71. 71.
    Pereira-Silva JA, Costa-Dias F, Fonseca JE, Canhao H, Resende C, Viana-Queiroz M. Low bone mineral density in professional scuba divers. Clin Rheumatol 2004; 23(1):19-20.PubMedCrossRefGoogle Scholar
  72. 72.
    Whedon GD, Lutwak L, Rambaut PC, et al. Mineral and nitrogen metabolic studies, experiment M071. In: Johnston R, Dietlein L (eds.), Biomedical Results from Skylab. Washington, DC: Scientific and Technical Information Office, NASA; 1977:pp. 164-174.Google Scholar
  73. 73.
    LeBlanc A, Lin C, Shackelford L, et al. Muscle volume, MRI relaxation times (T2), and body composition after spaceflight. J Appl Physiol 2000; 89(6):2158-2164.PubMedGoogle Scholar
  74. 74.
    LeBlanc A, Schneider V, Shackelford L, et al. Bone mineral and lean tissue loss after long duration space flight. J Musculoskel Neuron Interact 2000; 1(2):157-160.Google Scholar
  75. 75.
    Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long duration spaceflight. J Bone Miner Res 2004; 19(6):1006-1012.PubMedCrossRefGoogle Scholar
  76. 76.
    Sams C, Fogarty J, Julian-Gray T, Haralson C, et al. Biomedi-cal results of ISS expeditions 1-12. NASA Johnson Space Cen-ter. Presented at the 3rd Bi-annual Countermeasure Summit, Houston, TX. March 5-9, 2007.Google Scholar
  77. 77.
    Smith SM, Wastney ME, Morukov BV, et al. Calcium metabo-lism before, during, and after a 3 month spaceflight: Kinetic and biochemical changes. Am J Physiol Heart Circ Physiol Regula-tory Integrative Comp Physiol 1999; 277:R1-R10.Google Scholar
  78. 78.
    Smith SM, Nillen JL, Leblanc A, et al. Collagen cross-links excretion during space flight and bed rest. J Clin Endocrinol Metab 1998; 83:3584-3591.PubMedCrossRefGoogle Scholar
  79. 79.
    Caillot-Augusseau A, Lafage-Proust MH, Soler C, Pernod J, Dubois F, Alexandre C. Bone formation and resorption bio-logical markers in cosmonauts during and after a 180-day space flight (Euromir 95). Clin Chem 1998; 44(3):578-585.PubMedGoogle Scholar
  80. 80.
    Smith SM, Wastney ME, O’Brien KO, et al. Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the Mir space station. J Bone Miner Res 2005; 20(2):208-218.PubMedCrossRefGoogle Scholar
  81. 81.
    Grigoryev AI, Dorokhova BR, Semenov VY, et al. Fluid-elec-trolyte metabolism and renal function in cosmonauts following 185-day spaceflight [Article in Russian]. Kosmicheskaya Biol I Aviakosmicheskaya Meditsina 1985; 19(3):21-27.Google Scholar
  82. 82.
    Morey-Holton ER, Schnoes HK, DeLuca HF, et al. Vitamin D metab-olites and bioactive parathyroid hormone levels during spacelab 2. Aviat Space Environmental Medicine 1988; 59:1038-1041.Google Scholar
  83. 83.
    Tipton CM, Greenlead JE, Jackson CG. Neuroendocrine and immune system responses with spaceflights. Med Sci Sports Exerc 1996; 28:988-998.PubMedGoogle Scholar
  84. 84.
    Heer M. Nutritional interventions related to bone turnover in European space missions and simulation models. Nutrition 2002; 18(10):853-856.PubMedCrossRefGoogle Scholar
  85. 85.
    Thornton W, Hoffler G, Rummel J. Muscular deconditioning and its prevention in space flight. In: Johnston R, Dietlein L (eds.), Biomedical Results of Skylab. Washington, DC: Scientific and Technical Information Office, NASA; 1977:191-197.Google Scholar
  86. 86.
    LeBlanc A, Rowe R, Schneider V, Evans H, Hedrick T. Regional muscle loss after short duration spaceflight. Aviat Space Environ Med 1995; 66(12):1151-1154.PubMedGoogle Scholar
  87. 87.
    Akima H, Kawakami Y, Kubo K, et al. Effect of short-duration spaceflight on thigh and leg muscle volume. Med Sci Sports Exerc 2000; 32(10):1743-1747.PubMedCrossRefGoogle Scholar
  88. 88.
    Edgerton VR, Zhou MY, Ohira Y, et al. Human fiber size and enzymatic properties after 5 and 11 days of spaceflight. J Appl Physiol 1995; 78(5):1733-1739.PubMedGoogle Scholar
  89. 89.
    Zange J, Muller K, Schuber M, et al. Changes in calf muscle performance, energy metabolism, and muscle volume caused by long-term stay on space station MIR. Int J Sports Med 1997; 4 (18 Suppl):S308-S309.CrossRefGoogle Scholar
  90. 90.
    Greenisen MC, Hayes JC, Siconolfi SE, Moore AD Jr. Functional performance evaluation. In: Sawin CF, Taylor GR, Smith WL (eds.), Extended Duration Orbiter Medical Project. Houston, TX: National Aeronautics and Space Administration/SP-1999-534; 1999:3.1-24.Google Scholar
  91. 91.
    Lambertz D, Pérot C, Kaspranski R, Goubel F. Effects of longterm spaceflight on mechanical properties of muscles in humans J Appl Physiol 2001; 90:179-188.PubMedGoogle Scholar
  92. 92.
    Antonutto G, Bodem F, Zamparo P, di Prampero PE. Maximal power and EMG of lower limbs after 21 days spaceflight in one astronaut. J Gravit Physiol 1998; 5(1):P63-P66.PubMedGoogle Scholar
  93. 93.
    Antonutto G, Capelli C, Girardis M, Zamparo P, di Prampero PE. Effects of microgravity on maximal power of lower limbs during very short efforts in humans. J Appl Physiol 1999; 86(1):85-92.PubMedGoogle Scholar
  94. 94.
    Fitts RH, Riley DR, Widrick JJ. Physiology of a microgravity environment invited review: Microgravity and skeletal muscle. J Appl Physiol 2000; 89(2):823-839.PubMedGoogle Scholar
  95. 95.
    Widrick JJ, Knuth ST, Norenberg KM, et al. Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres. J Physiol 1999; 516(Pt 3):915-930.PubMedCrossRefGoogle Scholar
  96. 96.
    Goubel F. Changes in mechanical properties of human muscle as a result of spaceflight. Int J Sports Med 1997; 4 (18 Suppl):S285-S287.CrossRefGoogle Scholar
  97. 97.
    Rummel JA, Sawin CF, Michel EL. Exercise response. In: John-ston RS, Dietlein LF, Berry CA (eds.), Biomedical Results of Apollo. Washington, DC: Scientific and Technical Information Office, NASA; 1975:265-75.Google Scholar
  98. 98.
    Convertino VA. Physiological adaptations to weightlessness: Effects on exercise and work performance. Exercise and sport sciences reviews 1990; 18:119-166.PubMedCrossRefGoogle Scholar
  99. 99.
    Trappe T, Trappe S, Lee G, Widrick J, Fitts R, Costill D. Cardiorespiratory responses to physical work during and following 17 days of bed rest and spaceflight. J Appl Physiol 2006;100 (3):951-957.PubMedCrossRefGoogle Scholar
  100. 100.
    Grigoriev AI, Bugrov SA, Bogomolov VV, et al. Main medical results of extended flights on space station Mir in 1986-1990. Acta Astronaut 1993; 29(8):581-585.PubMedCrossRefGoogle Scholar
  101. 101.
    Clement G, Wood SJ, Reschke MF, Berthoz A, Igarashi M. Yaw and pitch visual-vestibular interaction in weightlessness. J Vestib Res 1999; 9(3):207-220.PubMedGoogle Scholar
  102. 102.
    Bock O, Fowler B, Comfort D. Human sensorimotor coordination during spaceflight: An analysis of pointing and tracking responses during the “Neurolab” Space Shuttle mission. Aviat Space Environ Med 2001; 72(10):877-883.PubMedGoogle Scholar
  103. 103.
    Manzey D, Lorenz TB, Heuers H, Sangals J. Impairments of manual tracking performance during spaceflight: More converging evidence from a 20-day space mission. Ergonomics 2000; 43(5):589-609.Google Scholar
  104. 104.
    Roll R, Gilhodes JC, Roll JP, Popov K, Charade O, Gurfinkel V. Proprioceptive information processing in weightlessness. Exp Brain Res 1998; 122(4):393-402.PubMedCrossRefGoogle Scholar
  105. 105.
    eschke MF, Bloomberg JJ, Harm DL, Paloski WH, Layne C, McDonald V. Posture, locomotion, spatial orientation, and motion sickness as a function of space flight. Brain Res Brain Res Rev 1998; 28(1-2):102-117.CrossRefGoogle Scholar
  106. 106.
    Macho L, Koska J, Ksinantova L, et al. Effects of real and simulated microgravity on response of sympathoadrenal system to various stress stimuli. Ann N Y Acad Sci 2004; 1018:550-561.PubMedCrossRefGoogle Scholar
  107. 107.
    Cox JF, Tahvanainen KU, Kuusela TA, et al. Influence of microgravity on astronauts’ sympathetic and vagal responses to Valsalva’s manoeuvre. J Physiol 2002; 538(Pt 1):309-320.PubMedCrossRefGoogle Scholar
  108. 108.
    Gauer OH, Henry JP. Circulatory basis of fluid volume control. Physiol rev 1963; 43:423-481.PubMedGoogle Scholar
  109. 109.
    Beckman EL, Coburn KR, Chambers RM, Deforest RE, Augerson WS, Benson VG. Physiologic changes observed in human subjects during zero G simulation by immersion in water up to neck level. Aeromedica acta 1961; 32:1031-1041.Google Scholar
  110. 110.
    Graveline DE, Jackson MM. Diuresis associated with prolonged water immersion. J Appl Physiol 1962; 17:519-524.PubMedGoogle Scholar
  111. 111.
    Leach CS, Rambaut PC. Biochemical responses of the Skylab crewmen: An overview. In: Johnston RS, Dietlein LF (eds.), Biomedical Results from Skylab SP-377. Washington, DC: Scientific and Technical Information Office, NASA; 1977:204-216.Google Scholar
  112. 112.
    Leach CS, Alfrey CP, Suki WN, et al. Regulation of body fluid compartments during short-term spaceflight. J Appl Physiol 1996; 81(1):105-116.PubMedGoogle Scholar
  113. 113.
    Schrier RW, Berl T, Anderson RJ. Osmotic and nonosmotic control of vasopressin release. Am J Physiol 1979; 236(4): F321-F332.PubMedGoogle Scholar
  114. 114.
    Eversmann T, Gottsmann M, Uhlich E, Ulbrecht G, von Werder K, Scriba PC. Increased secretion of growth hormone, prolactin, antidiuretic hormone, and cortisol induced by the stress of motion sickness. Aviat Space Environ Med 1978; 49(1 Pt 1):53-57.PubMedGoogle Scholar
  115. 115.
    Norsk P, Drummer C, Rocker L, et al. Renal and endocrine responses in humans to isotonic saline infusion during microgravity. J Appl Physiol 1995; 78(6):2253-2259.PubMedGoogle Scholar
  116. 116.
    Gerzer R, Heer M. Regulation of body fluid and salt homeostasis—From observations in space to new concepts on Earth. Curr pharm biotechnol 2005; 6(4):299-304.PubMedCrossRefGoogle Scholar
  117. 117.
    Drummer C, Norsk P, Heer M. Water and sodium balance in space. Am J Kidney Dis 2001; 38(3):684-690.PubMedCrossRefGoogle Scholar
  118. 118.
    Leach CS, Leonard JI, Rambaut PC, Johnson PC. Evaporative water loss in man in a gravity-free environment. J Appl Physiol 1978; 45(3):430-436.PubMedGoogle Scholar
  119. 119.
    Fortney SM, Mikhaylov V, Lee SM, Kobzev Y, Gonzalez RR, Greenleaf JE. Body temperature and thermoregulation during submaximal exercise after 115-day spaceflight. Aviat Space Environ Med 1998; 69(2):137-141.PubMedGoogle Scholar
  120. 120.
    Whitson PA, Pietrzyk RA, Pak CY. Renal stone risk assessment during Space Shuttle flights. The Journal of urology 1997; 158 (6):2305-2310.PubMedCrossRefGoogle Scholar
  121. 121.
    Whitson PA, Pietrzyk RA, Morukov BV, Sams CF. The risk of renal stone formation during and after long duration space flight. Nephron 2001; 89(3):264-270.PubMedCrossRefGoogle Scholar
  122. 122.
    Whitson PA, Pietrzyk RA, Sams CF. Urine volume and its effects on renal stone risk in astronauts. Aviat Space Environ Med 2001; 72(4):368-372.PubMedGoogle Scholar
  123. 123.
    Lebedev V. November: Tolia’s illness. In: Puckett D, Harrison CW (eds.), Diary of a Cosmonaut: 211 Days in Space. College Station, TX: Phytoresource Research, Inc. Information Service (Originally published in 1983 as Dnevnik kosmonavta by Nauka i Zhizn, Moscow); 1988:333-335.Google Scholar
  124. 124.
    Stein TP, Schluter MD, Moldawer LL. Endocrine relationships during human spaceflight. Am J Physiol 1999; 276(1 Pt 1):E155-E162.PubMedGoogle Scholar
  125. 125.
    Stein TP, Wade CE. The catecholamine response to spaceflight: Role of diet and gender. Am J Physiol Endocrinol Metab 2001;281 (3):E500-E506.PubMedGoogle Scholar
  126. 126.
    Strollo F, Norsk P, Roecker L, et al. Indirect evidence of CNS adrenergic pathways activation during spaceflight. Aviat Space Environ Med 1998; 69(8):777-780.PubMedGoogle Scholar
  127. 127.
    Stein TP, Leskiw MJ, Schluter MD. Effect of spaceflight on human protein metabolism. Am J Physiol 1993; 264(5 Pt 1): E824-E828.PubMedGoogle Scholar
  128. 128.
    McMonigal KA, Braverman LE, Dunn JT, et al. Thyroid function changes related to use of iodinated water in the U.S. Space Program. Aviat Space Environ Med 2000; 71(11):1120-1125.PubMedGoogle Scholar
  129. 129.
    Hinghofer-Szalkay HG, Noskov VB, Rossler A, Grigoriev AI, Kvetnansky R, Polyakov VV. Endocrine status and LBNP-induced hormone changes during a 438-day spaceflight: A case study. Aviat Space Environ Med 1999; 70(1):1-5.Google Scholar
  130. 130.
    Stein TP, Schulter MD, Boden G. Development of insulin resistance by astronauts during spaceflight. Aviat Space Environ Med 1994; 65(12):1091-1096.PubMedGoogle Scholar
  131. 131.
    Smirnov KV, Ugolev AM. Digestion and absorption. In: Leach-Huntoon CS, Antipov VV, Grigoriev AI (eds.), Humans in Spaceflight, Book I. 2nd edn. Reston, VA; Moscow: American Institute of Aeronautics and Astronautics; 1996:211-230.Google Scholar
  132. 132.
    Strollo F, Riondino G, Harris B, et al. The effect of microgravity on testicular androgen secretion. Aviat Space Environ Med 1998; 69(2):133-136.PubMedGoogle Scholar
  133. 133.
    Arun CP. The importance of being asymmetric: The physiology of digesta propulsion on Earth and in space. Ann N Y Acad Sci 2004; 1027:74-84.PubMedCrossRefGoogle Scholar
  134. 134.
    Harm DL, Sandoz GR, Stern RM. Changes in gastric myoelectric activity during space flight. Dig Dis Sci 2002; 47(8):1737-1745.PubMedCrossRefGoogle Scholar
  135. 135.
    Thornton WE, Linder BJ, Moore TP, Pool SL. Gastrointestinal motility in space motion sickness. Aviat Space Environ Med 1987; 58(9 Pt 2):A16-A21.PubMedGoogle Scholar
  136. 136.
    Lane HW, Whitson PA, Putcha L, et al. Regulatory physiology: Gastrointestinal function during extended duration space flight. In: Sawin CF, Taylor GR, Smith WL (eds.), Extended Duration Orbiter Medical Project Final Report. Houston, TX: National Aeronautics and Space Administration, SP-1999-534; 1999:2.4-2.6. E.S. Baker et al.Google Scholar
  137. 137.
    Tigranyan RA. Metabolic aspects of problems in stress in space flight. Problemy Kosmicheskoi Biologii 1985; 52:1-222.Google Scholar
  138. 138.
    Markin A, Strogonova L, Balashov O, Polyakov V, Tigner T. The dynamics of blood biochemical parameters in cosmonauts during long-term space flights. Acta Astronaut 1998; 42(1-8):247-253.PubMedCrossRefGoogle Scholar
  139. 139.
    Smith SM, Davis-Street JE, Fontenot TB, Lane HW. Assessment of a portable clinical blood analyzer during space flight. Clin Chem 1997; 43(6 Pt 1):1056-1065.PubMedGoogle Scholar
  140. 140.
    Cirillo M, De Santo NG, Heer M, et al. Low urinary albumin excretion in astronauts during space missions. Nephron Physiol 2003; 93(4):102-105.CrossRefGoogle Scholar
  141. 141.
    Kotovskaia AR, Vil’-Vil’iams I, Gavrilova LN, Elizarov S, Uliatovskii NV. Tolerance of +Gx by MIR 22-27 main crew in space flights. Aviakosm Ekolog Med 2001; 35(2):45050.Google Scholar
  142. 142.
    Jennings RT, Sawin CF, Barratt MR. Space operations. In: DeHart RL, Davis JR (eds.), Fundamentals of Aeropsace Medicine. Philadelphia, PA: Lippincott Williams and WIlkins; 2002:596-628.Google Scholar
  143. 143.
    Koloteva MI, Kotovskaia AR, Vil’-Vil’iams IF, Luk’ianiuk V, Gavrilova LN. G-tolerance of female cosmonauts during descent in space flights of 8 up to 169 days in duration Article in Russian. Aviakosm Ekolog Med 2001; 36(6):24-30.Google Scholar
  144. 144.
    Whitson PA, Charles JB, Williams WJ, Cintron NM. Changes in sympathoadrenal response to standing in humans after space-flight. J Appl Physiol 1995; 79(2):428-433.PubMedGoogle Scholar
  145. 145.
    Convertino VA. Consequences of cardiovascular adaptation to spaceflight: Implications for the use of pharmacological countermeasures. Gravit Space Biol Bull 2005; 18(2):59-69.PubMedGoogle Scholar
  146. 146.
    Meck JV, Waters WW, Ziegler MG, et al. Mechanisms of post-spaceflight orthostatic hypotension: Low alpha1-adrenergic receptor responses before flight and central autonomic dysregulation postflight. Am J Physiol Heart Circ Physiol 2004; 286(4):H1486-H1495.PubMedCrossRefGoogle Scholar
  147. 147.
    Gharib C, Custaud MA. Orthostatic tolerance after spaceflight or simulated weightlessness by head-down bed-rest. Bull Acad Natl Med Article in French 2002; 186(4):733-746; discussion 47-9.PubMedGoogle Scholar
  148. 148.
    Levine BD, Pawelczyk JA, Ertl AC, et al. Human muscle sympathetic neural and haemodynamic responses to tilt following spaceflight. J Physiol 2002; 1(538):331-340.CrossRefGoogle Scholar
  149. 149.
    Waters WW, Ziegler MG, Meck JV. Post-spaceflight orthostatic hypotension occurs mostly in women and is predicted by low vascular resistance. J Appl Physiol 2002; 92:586-594.PubMedGoogle Scholar
  150. 150.
    Perez SA, Charles JB, Fortner GW, Hurst VT, Meck JV. Car-diovascular effects of anti-G suit and cooling garment during space shuttle re-entry and landing. Aviat Space Environ Med 2003; 74(7):753-757.PubMedGoogle Scholar
  151. 151.
    Gunga HC, Kirsch K, Baartz F, et al. Erythropoietin under real and simulated microgravity conditions in humans. J Appl Physiol 1996; 81(2):761-773.PubMedGoogle Scholar
  152. 152.
    Kimzey SL. Hematology and Immunology Studies. In: Johnston RS, Dietlein LF (eds.), Biomedical Results from Skylab. Washington, DC: Scientific and Technical Information Office, NASA; 1977:249-282.Google Scholar
  153. 153.
    Grigor’ev AI, Noskov VB, Poliakov VV, et al. Dynamic changes in the reactivity of the hormonal system regulation with the impact by LBNP sessions in long-term space mission. Article in Russian. Aviakosm Ekolog Med 1998; 32(3):18-23.PubMedGoogle Scholar
  154. 154.
    Homick JL, E. F. Miller I. Apollo flight crew vestibular assessment. In: Johnston RS, Dietlein LF, Berry CA (eds.), Biomedical  Results of Apollo. Washington, DC: Scientific and Technical Information Office, NASA; 1975:322-340.Google Scholar
  155. 155.
    Homick JL, Reschke MF. The effects of prolonged exposure to weightlessness on postural equilibrium. In: Johnston RS, Dietlein LF (eds.), Biomedical Results from Skylab. Washington, DC: Scientific and Technical Information Office, NASA; 1977:104-112.Google Scholar
  156. 156.
    Bacal K, Billica R, Bishop S. Neurovestibular symptoms following space flight. J Vestib Res 2003; 13(2-3):93-102.PubMedGoogle Scholar
  157. 157.
    Black FO, Paloski WH, Doxey-Gasway DD, Reschke MF. Vestibular plasticity following orbital spaceflight: Recovery from postflight postural instability. Acta Otolaryngol Suppl 1995; 520 (Pt.2):450-454.PubMedCrossRefGoogle Scholar
  158. 158.
    Hlavacka F, Kornilova LN. Velocity of head movements and sensory-motor adaptation during and after short spaceflight. J Gravit Physiol 2004; 11(2):13-16.Google Scholar
  159. 159.
    Oganov VS. Changes in bone mineral density and human body composition in spaceflight. In: The Skeletal System, Weightlessness, and Osteoporosis. Moscow: Slovo; 2003:56-75.Google Scholar
  160. 160.
    Shackelford LC, LeBlanc A, Feiveson A, Oganov V. Bone loss in space: Shuttle/MIR experience and bed rest countermeasure program. In: First Biennial Space Biomedical Investigators’ Workshop. Houston, TX: NASA Johnson Space Center; 1999.Google Scholar
  161. 161.
    Barratt M, Houser S, Wear ML. Operational monitoring of pre-and post-flight blood parameters for first time shuttle flyers. In: 67th Annual Scientific Meeting, Aerospace Medical Association; 1997; 1997.Google Scholar
  162. 162.
    Hoffler GW, Johnson RL. Apollo flight crew cardiovascular evaluation. In: Johnston RS, Dietlein LF, Berry CA (eds.), Biomedical Results of Apollo. Washington, DC: Scientific and Technical Information Office, NASA; 1975:226-264.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ellen S. Baker
    • 1
  • Michael R. Barratt
    • 1
  • Mary L. Wear
    • 1
  1. 1.NASA Johnson Space CenterHoustonUSA

Personalised recommendations