Advertisement

Decompression-Related Disorders: Decompression Sickness, Arterial Gas Embolism, and Ebullism Syndrome

  • William T. Norfleet

The three maladies to be discussed in this chapter—decompression sickness, arterial gas embolism, and ebullism—all arise from changes in ambient atmospheric pressure, which is the pressure of the gas immediately surrounding an individual. In space flight, the largest planned change in ambient atmospheric pressure is associated with extravehicular activities (EVAs) that take place as the crew moves back and forth between the crew cabin and the environment outside, where they wear pressurized suits. The cabin atmospheric pressure in all current spacecraft typically approximates the atmospheric pressure found at sea level, namely 1 atm absolute pressure (ata) (or 101 kPa). From a strictly physiological point of view, this design specification is probably not optimal, but it serves other interests such as simplifying the conduct of biomedical research. Selected space suit pressures represent a compromise between engineering concerns, which dictate that the internal pressure of a space suit be low to maximize flexibility, and physiological risks. (The space suit used in the current U.S. space program, the extravehicular mobility unit, is pressurized to 30 kPa (4.3 psia); the Orlan suit, used in the current Russian space program, is pressurized to 38 kPa (5.5 psia).) Consequently, crewmembers performing EVAs experience substantial shifts in ambient atmospheric pressure. Unplanned crew cabin or space suit decompressions are also possible while living and working in the hard vacuum of space. The pathophysiological consequences of such exposures are the subject of this chapter [1].

Keywords

Bubble Formation Aviat Space Environ Decompression Illness Hypobaric Condition Hyperbaric Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Golding FC, Griffiths P, Hempleman HV, et al. Decompression sickness during construction of the Dartford Tunnel. Br J Ind Med 1960; 17:167-180.PubMedGoogle Scholar
  2. 2.
    U.S. Navy Diving Manual. NAVSEA 0994-LP-9010. Washing-ton, DC: U.S. Navy; 1993:8-22-8-26.Google Scholar
  3. 3.
    Weien RW. Altitude decompression sickness: The U.S. Army experience. In: Pilmanis AA (ed.), Proceedings of the 1990 Hypobaric Decompression Sickness Workshop. AL-SR-1992-0005. Brooks Air Force Base, TX: Air Force Systems Command; 1992; 379-383.Google Scholar
  4. 4.
    U.S. Navy Diving Manual. NAVSEA 0994-LP-9010. Washing-ton, DC: U.S. Navy; 1993:8-66.Google Scholar
  5. 5.
    Wirjosemito SA, Touhey JE, Workman WT. Type II altitude decompression sickness (DCS): U.S. Air Force experience with 133 cases. Aviat Space Environ Med 1989; 60:256-262.PubMedGoogle Scholar
  6. 6.
    Dutka AJ. Clinical findings in decompression illness: A proposed terminology. In: Moon RE, Sheffield PJ (eds.), Treatment of Decompression Sickness. Kensington, MD: Undersea and Hyper-baric Medical Society; 1996:1-9.Google Scholar
  7. 7.
    Bove AA. Nomenclature of pressure disorders. Undersea Hyperb Med 1997; 24:1-2.PubMedGoogle Scholar
  8. 8.
    Zheng Q, Durben DJ, Wolf GH, Angell CA. Liquids at large negative pressures: Water at the homogeneous nucleation limit. Science 1991; 254:829-832.PubMedGoogle Scholar
  9. 9.
    Weathersby PK, Homer LD, Flynn ET. Homogeneous nucleation of gas bubbles in vivo. J Appl Physiol 1982; 53:940-946.PubMedGoogle Scholar
  10. 10.
    Eckenhoff RG, Osborne SF, Parker JW, Bondi KR. Direct ascent from shallow air saturation exposures. Undersea Biomed Res 1986; 13:305-316.PubMedGoogle Scholar
  11. 11.
    Dixon GA. Evaluation of 9.5 psia as a suit pressure for prolonged extravehicular activity. Presented at the 23rd Annual Survival and Flight Equipment Symposium; 1985, Las Vegas, NV.Google Scholar
  12. 12.
    Vann RD, Grimstad J, Nielsen CH. Evidence for gas nuclei in decompressed rats. Undersea Biomed Res 1980; 7:107-112.PubMedGoogle Scholar
  13. 13.
    Evans A, Walder DN. Significance of gas micronuclei in the aetiol-ogy of decompression sickness. Nature 1969; 222:251-252.PubMedGoogle Scholar
  14. 14.
    McDonough PM, Hemmingsen EA. Bubble formation in crusta-ceans following decompression from hyperbaric gas exposures. J Appl Physiol 1984; 56:513-519.PubMedGoogle Scholar
  15. 15.
    McDonough PM, Hemmingsen EA. Swimming movements ini-tiate bubble formation in fish decompressed from elevated gas pressures. Comp Biochem Physiol A. 1985; 81:209-212.PubMedGoogle Scholar
  16. 16.
    Hemmingsen EA. Bubble formation mechanisms. In: Vann RD (ed.), The Physiological Basis of Decompression. Bethesda, MD: Undersea and Hyperbaric Medical Society; 1989:153-169.Google Scholar
  17. 17.
    Hayward ATJ. Tribonucleation of bubbles. Br J Appl Phys 1967; 18:641-644.Google Scholar
  18. 18.
    McDonough PM, Hemmingsen EA. Bubble formation in crabs induced by limb motions after decompression. J Appl Physiol 1984; 57:117-122.PubMedGoogle Scholar
  19. 19.
    Butler BD, Hills BA. The lung as a filter for microbubbles. J Appl Physiol 1979; 47:537-543.PubMedGoogle Scholar
  20. 20.
    Bove AA, Hallenbeck JM, Elliott DH. Circulatory responses to venous air embolism and decompression sickness in dogs. Undersea Biomed Res 1974; 1:207-220.PubMedGoogle Scholar
  21. 21.
    Butler BD, Katz J. Vascular pressures and passage of gas emboli through the pulmonary circulation. Undersea Biomed Res 1988; 15:203-209.PubMedGoogle Scholar
  22. 22.
    Lynch PR, Brigham M, Tuma R, et al. Origin and time course of gas bubbles following rapid decompression in the hamster. Undersea Biomed Res 1985; 12:105-114.PubMedGoogle Scholar
  23. 23.
    Spencer MP, Oyama Y. Pulmonary capacity for dissipation of venous gas emboli. Aerospace Med 1971; 42:822-827.PubMedGoogle Scholar
  24. 24.
    Okang GI, Vann RD. Bubble formation in blood and urine. In: Vann RD (ed.), The Physiological Basis of Decompression. Bethesda, MD: Undersea and Hyperbaric Medical Society; 1989:177-178.Google Scholar
  25. 25.
    Eatock BC, Nishi RY. Analysis of Doppler ultrasound data for the evaluation of dive profiles. In: Bove AA, Bachrach AJ, Greenbaum LJ (eds.), Proceedings of the 9th International Sym-posium on Underwater and Hyperbaric Physiology. Bethesda, MD: Undersea and Hyperbaric Medical Society; 1987:183-195.Google Scholar
  26. 26.
    Bayne CG, Hunt WS, Johanson DC, et al. Doppler bubble detec-tion and decompression sickness: A prospective trial. Undersea Biomed Res 1985; 12:327-332.PubMedGoogle Scholar
  27. 27.
    Hemmingsen BB, Steinberg NA, Hemmingsen EA. Intracellu-lar gas supersaturation tolerances of erythrocytes and resealed ghosts. Biophys J 1985; 47:491-496.PubMedGoogle Scholar
  28. 28.
    Hemmingsen EA, Hemmingsen BB. Bubble formation proper-ties of hydrophobic particles in water and cells of Tetrahymena. Undersea Biomed Res 1990; 17:67-78.PubMedGoogle Scholar
  29. 29.
    Hills BA, James PB. Spinal decompression sickness: Mechanical studies and a model. Undersea Biomed Res 1982; 9:185-201.PubMedGoogle Scholar
  30. 30.
    Powell MR, Spencer MP. The pathophysiology of decompres-sion sickness and the effects of Doppler detectable bubbles. Technical Report on ONR Contract N00014-73-C-0094; 1981.Google Scholar
  31. 31.
    Gersh I, Catchpole HR. Appearance and distribution of gas bub-bles in rabbits decompressed to altitude. J Cell Comp Physiol 1946; 28:253-268.Google Scholar
  32. 32.
    Chryssanthou C, Palaia T, Goldstein G, Stenger R. Increase in blood-brain barrier permeability by altitude decompression. Aviat Space Environ Med 1987; 58:1082-1086.PubMedGoogle Scholar
  33. 33.
    Vann RD. Vacuum phenomena: An annotated bibliography. In: Vann RD (ed.), The Physiological Basis of Decompression. Bethesda, MD: Undersea and Hyperbaric Medical Society; 1989:179-195.Google Scholar
  34. 34.
    Bason R. Altitude chamber DCS: USN experience 1981-1988. In: Pilmanis AA (ed.), Proceedings of the 1990 Hypobaric Decom-pression Sickness Workshop. AL-SR-1992-0005. Brooks Air Force Base, TX: Air Force Systems Command; 1992; 395-413.Google Scholar
  35. 35.
    Lee WH, Hairston P. Structural effects on blood proteins at the gas-blood interface. Fed Proc 1971; 30:1615-1622.PubMedGoogle Scholar
  36. 36.
    Ogston D, Bennett B. Surface mediated reactions in the forma-tion of thrombin, plasmin, and kallikrein. Br Med Bull 1978; 34:107-112.PubMedGoogle Scholar
  37. 37.
    Chenoweth DE, Cooper SW, Hugli TE, et al. Complement activa-tion during cardiopulmonary bypass: Evidence for generation of C3a and C5a anaphylatoxins. N Engl J Med 1981; 304:497-503.PubMedGoogle Scholar
  38. 38.
    Ward CA, Koheil A, McCulloch D, et al. Activation of com-plement at plasma-air or serum-air interface of rabbits. J Appl Physiol 1986; 60:1651-1658.PubMedGoogle Scholar
  39. 39.
    Philp RB, Ackles KN, Inwood MJ et al. Changes in the hemo-static system and in blood and urine chemistry of human subjects following decompression from a hyperbaric environment. Aerosp Med 1972a; 43:498-505.PubMedGoogle Scholar
  40. 40.
    Philp RB. A review of blood changes associated with compres-sion-decompression: Relationship with decompression sickness. Undersea Biomed Res 1974; 1:117-150.Google Scholar
  41. 41.
    Bove AA. The basis for drug therapy in decompression sickness. Undersea Biomed Res 1982; 9:91-111.PubMedGoogle Scholar
  42. 42.
    Philp RB, Inwood MJ, Warren BA. Interactions between gas bubbles and components of the blood: Implications in decom-pression sickness. Aerosp Med 1972b; 43:946-953.Google Scholar
  43. 43.
    Thorsen T, Lie RT, Holmsen H. Induction of platelet aggrega-tion in vitro by microbubbles of nitrogen. Undersea Biomed Res 1989; 16:453-464.PubMedGoogle Scholar
  44. 44.
    Haller C, Sercombe R, Verrechia C, Fritsch H, et al. Effect of the muscarinic agonist carbachol on pial arteries in vivo after endothelial damage by air embolism. J Cereb Blood Flow Metab 1987; 7:605-611.PubMedGoogle Scholar
  45. 45.
    Anderson DK, Means ED. Iron-induced lipid peroxidation in spinal cord: Protection with mannitol and methylprednisolone. J Free Radic Biol Med 1985; 1:59-64.PubMedGoogle Scholar
  46. 46.
    Hardman JM, Beckman EL. Pathogenesis of central nervous system decompression sickness. Undersea Biomed Res 1990; 17:95-96.Google Scholar
  47. 47.
    Anderson DA, Nagasawa GK, Norfleet WT, et al. Oxygen pres-sures between 0.12 and 2.5 atmospheres; circulatory function and nitrogen elimination. Undersea Biomed Res 1991; 18:279-292.PubMedGoogle Scholar
  48. 48.
    Van Liew HD, Schoenfisch WH, Olszowka AJ. Exchanges of nitrogen between a gas pocket and tissue in a hyperbaric environ-ment. Respir Physiol 1969; 6:23-28.Google Scholar
  49. 49.
    Vann RD, Thalmann ED. Decompression physiology and prac-tice. In: Bennett PB, Elliott DH (eds.), The Physiology and Medi-cine of Diving. London: Saunders; 1993:376-432.Google Scholar
  50. 50.
    Waligora JM, Horrigan D Jr, Conkin J, Hadley AT III. Verifica-tion of an altitude decompression sickness prevention protocol for Shuttle operation utilizing a 10.2 psi pressure stage. Houston, TX: NASA Johnson Space Center; 1984. NASA TM-58529.Google Scholar
  51. 51.
    Hempleman HV. History of decompression procedures. In: Ben-nett PB, Elliott DH (eds.), The Physiology and Medicine of Div-ing. London: Saunders; 1993:342-375.Google Scholar
  52. 52.
    Brew SK, Kenny CT, Webb RK, Gorman DF. The outcome of 125 divers with dysbaric illness treated by recompression at HMNZS PHILOMEL. SPUMS J 1990; 20:226-230.Google Scholar
  53. 53.
    Erde A, Edmonds C. Decompression sickness: A clinical series. J Occup Med 1975; 17:324-328.PubMedGoogle Scholar
  54. 54.
    Bennett PB, Coggin R, Roby J. Control of HPNS in humans dur-ing rapid compression with trimix to 650 m (2131 ft). Undersea Biomed Res 1981; 8:85-100.PubMedGoogle Scholar
  55. 55.
    Piccard J. Aeroemphysema and the birth of gas bubbles. Proc Staff Meetings Mayo Clinic 1941; 16:700-704.Google Scholar
  56. 56.
    Neubauer JC, Dixon JP, Herndon CM. Fatal pulmonary decom-pression sickness: A case report. Aviat Space Environ Med 1988; 59:1181-1184.PubMedGoogle Scholar
  57. 57.
    Dixon JP. Death from altitude-induced decompression sickness: Major pathophysiologic factors. In: Pilmanis AA (ed.), Proceed-ings of the 1990 Hypobaric Decompression Sickness Workshop. AL-SR-1992-0005. Brooks Air Force Base, TX: Air Force Sys-tems Command; 1992:97-105.Google Scholar
  58. 58.
    Fryer DI. Severe and fatal post-descent shock. In: The Advisory Group for Aerospace Research and Development. Subatmospheric Decompression Sickness in Man. Brussels: North Atlantic Treaty Organization; 1969. AGARD monograph 123.Google Scholar
  59. 59.
    Baumgartner N, Weien RW. Decompression sickness due to USAF altitude chamber exposure (1985-1987). In: Pilmanis AA (ed.), Proceedings of the 1990 Hypobaric Decompression Sick-ness Workshop. AL-SR-1992-0005. Brooks Air Force Base, TX: Air Force Systems Command; 1992:363-376.Google Scholar
  60. 60.
    Weien RW. Comments. In: Pilmanis AA (ed.), Proceedings of the 1990 Hypobaric Decompression Sickness Workshop. AL-SR-1992-0005. Brooks Air Force Base, TX: Air Force Systems Command; 1992:371.Google Scholar
  61. 61.
    Harding RW. DCS experience outside North America. In: Pil-manis AA (ed.), Proceedings of the 1990 Hypobaric Decom-pression Sickness Workshop. AL-SR-1992-0005. Brooks Air Force Base, TX: Air Force Systems Command; 1992:467-471.Google Scholar
  62. 62.
    Ferris EB, Engel GL. The clinical nature of high altitude decom-pression sickness. In: Fulton JF (ed.), Decompression Sickness. Philadelphia, PA: Saunders; 1951:4-52.Google Scholar
  63. 63.
    Barnard EE, Hanson JM, Rowton-Lee MA, et al. Post-decom-pression shock due to extravasation of plasma. BMJ 1966; 5506:154-155.Google Scholar
  64. 64.
    Powell MR, Waligora JM, Norfleet WT, Kumar KV. Project Argo: Gas Phase Formation in Simulated Microgravity. Houston, TX: NASA Johnson Space Center; 1993. NASA TM-104762.Google Scholar
  65. 65.
    Hills BA. Intermittent flow in tendon capillary bundles. J Appl Physiol 1979; 46:696-702.PubMedGoogle Scholar
  66. 66.
    McCallum RI, Harrison JAB. Dysbaric osteonecrosis: Aseptic necrosis of bone. In: Bennett PB, Elliott DH (eds.), The Physiol-ogy and Medicine of Diving. London: Saunders; 1993:563-584.Google Scholar
  67. 67.
    Hodgson CJ, Davis JC, Randolph CL, Chambers GH. Seven year follow-up x-ray survey for bone changes in low pressure cham-ber operators. Aerospace Med 1968; 39:417-421.PubMedGoogle Scholar
  68. 68.
    Dick APK, Massey EW. Neurologic presentation of decompres-sion sickness and air embolism in sport divers. Neurology 1985; 35:667-671.PubMedGoogle Scholar
  69. 69.
    Peters BH, Levin HS, Kelly PJ. Neurologic and psychologic manifestations of decompression sickness in divers. Neurology 1977; 27:125-127.PubMedGoogle Scholar
  70. 70.
    Vaernes RJ, Eidsvik S. Central nervous dysfunction after near miss accidents in diving. Aviat Space Environ Med 1982; 53:803-807.PubMedGoogle Scholar
  71. 71.
    Adkisson GH, Macleod MA, Hodgson M, et al. Cerebral perfu-sion deficits in dysbaric illness. Lancet 1989; 15:119-122.Google Scholar
  72. 72.
    Francis TJR, Dutka AJ, Hallenbeck JM. Pathophysiology of decompression sickness. In: Bove AA, Davis JC (eds.), Diving Medicine. Philadelphia, PA: Saunders; 1990:170-187.Google Scholar
  73. 73.
    Francis TJR, Pearson RR, Robertson AG, et al. Central nervous system decompression sickness: Latency of 1070 human cases. Undersea Biomed Res 1988; 15:403-418.PubMedGoogle Scholar
  74. 74.
    Francis TJR, Pezeshkpour GH, Dutka AJ. Arterial gas embolism as a pathophysiologic mechanism for spinal cord decompression sickness. Undersea Biomed Res 1989; 16:439-452.PubMedGoogle Scholar
  75. 75.
    Hallenbeck JM, Bove AA, Elliott DH. Mechanisms underlying spinal cord damage in decompression sickness. Neurology 1975; 25:308-316.PubMedGoogle Scholar
  76. 76.
    Hallenbeck JM. Cinephotomicrography of dog spinal vessels during cord-damaging decompression sickness. Neurology 1976; 26:190-199.PubMedGoogle Scholar
  77. 77.
    Batson OV. The valsalva maneuver and the vertebral vein sys-tem. Angiology 1942; 11:443-447.Google Scholar
  78. 78.
    Onuigbo WI. Batson’s theory of vertebral venous metastasis: A review. Oncology 1975; 32:145-150.Google Scholar
  79. 79.
    Hughes JT. Venous infarction of the spinal cord. Neurology 1971; 21:794-800.PubMedGoogle Scholar
  80. 80.
    Francis TJR, Pezeshkpour GH, Dutka AJ, et al. Is there a role for the autochthonous bubble in the pathogenesis of spinal cord decom-pression sickness? J Neuropathol Exp Neurol 1988; 47:475-487.PubMedGoogle Scholar
  81. 81.
    Mastaglia FL, McCallum RI, Walder DN. Myelopathy associ-ated with decompression sickness. A report of six cases. Clin Exp Neurol 1983; 19:54-59.PubMedGoogle Scholar
  82. 82.
    Palmer AC, Calder IM, McCallum RI, Mastaglia FL. Spinal cord degeneration in a case of “recovered” spinal decompression sick-ness. BMJ 1981; 283:888.PubMedGoogle Scholar
  83. 83.
    Palmer AC, Calder IM, Hughes JT. Spinal cord damage in active divers. Undersea Biomed Res 1988; 15(Suppl.):70.Google Scholar
  84. 84.
    Giertsen JC, Sandstad E, Morild I, et al. An explosive decom-pression accident. Am J Forensic Med Pathol 1988; 9:94-101.PubMedGoogle Scholar
  85. 85.
    Calder IM, Palmer AC, Hughes JT, et al. Spinal cord degenera-tion associated with type II decompression sickness: Case report. Paraplegia 1989; 27:51-57.PubMedGoogle Scholar
  86. 86.
    Sykes JJW, Yaffee LJ. Light and electron microscopic alterations in spinal cord myelin sheaths after decompression sickness. Undersea Biomed Res 1985; 12:251-258.PubMedGoogle Scholar
  87. 87.
    Francis TJR. Neurologic complications of decompression illness—mechanisms and pathology. In: Pilmanis AA (ed.), Proceedings of the 1990 Hypobaric Decompression Sickness Workshop. AL-SR-1992-0005. Brooks Air Force Base, TX: Air Force Systems Command; 1992:167-186.Google Scholar
  88. 88.
    Francis TJR, Hardman JM, Beckman EL. A pressure threshold for in-situ bubble formation in the canine spinal cord. Undersea Biomed Res 1990; 17(Suppl.):69.Google Scholar
  89. 89.
    Haymaker W, Davidson C. Fatalities resulting from exposure to simulated high altitudes in decompression chambers. A clinico-pathological study. J Neuropathol Exp Neurol 1950; 9:29-59.PubMedGoogle Scholar
  90. 90.
    Dunn JE, Bancroft RW, Haymaker W, Foft JW. Experimental animal decompressions to less than 2 mmHg absolute (pathologic effects). Aerospace Med 1965; 36:725-732.PubMedGoogle Scholar
  91. 91.
    Helps SC, Parsons DW, Reilly PL, Gorman DF. The effect of gas emboli on rabbit cerebral blood flow. Stroke 1990; 21:94-99.PubMedGoogle Scholar
  92. 92.
    Nishimoto R, Wolman M, Spatz M, Klatzo I. Pathophysiologic correlations in the blood brain barrier damage due to air embolism. Adv Neurol 1978; 20:237-244.PubMedGoogle Scholar
  93. 93.
    Chryssanthou C, Springer M, Lipshitz S. Blood-brain and blood-lung barrier alteration by dysbaric exposure. Undersea Biomed Res 1977; 4:117-128.PubMedGoogle Scholar
  94. 94.
    Nohara A, Yusa T. Reversibility in blood-brain barrier, micro-circulation, and histology in rat brain after decompression. Undersea Hyperbaric Med 1997; 24:15-21.Google Scholar
  95. 95.
    Dutka AJ, Kochanek PM, Hallenbeck JM. Influence of granulocytopenia on canine cerebral ischemia induced by air embolism. Stroke 1989; 20:390-395.PubMedGoogle Scholar
  96. 96.
    Fritz H, Hossman KA. Arterial air embolism in the cat brain. Stroke 1979; 10:581-589.PubMedGoogle Scholar
  97. 97.
    Stone DA, Godard J, Corretti MC, et al. Patent foramen ovale: Association between the degree of shunt by contrast trans-esophageal echocardiography and the risk of future ischemic neurologic events. Am Heart J 1996; 131:158-161.PubMedGoogle Scholar
  98. 98.
    Di Tullio M, Sacco RL, Venketasubramanian N, et al. Comparison of diagnostic techniques for the detection of a patent foramen ovale in stroke patients. Stroke 1993; 24:1020-1024.PubMedGoogle Scholar
  99. 99.
    Job FP, Ringelstein EB, Grafen Y, et al. Comparison of tran-scranial contrast Doppler sonography and transesophageal contrast echocardiography for the detection of patent foramen ovale in young stroke patients. Am J Cardiol 1994; 74:381-384.PubMedGoogle Scholar
  100. 100.
    Germonpre P, Dendale P, Unger P, et al. Patent foramen ovale and decompression sickness in sports divers. J Appl Physiol 1998; 84:1622-1626.PubMedGoogle Scholar
  101. 101.
    Knauth M, Ries S, Pohimann S, et al. Cohort study of multiple brain lesions in sport divers: Role of a patent foramen ovale. BMJ 1997; 314:701-705.PubMedGoogle Scholar
  102. 102.
    Clark JB, Hayes GB. Patent foramen ovale and type II altitude decompression sickness (abstract). Aviat Space Environ Med 1991; 62:445.Google Scholar
  103. 103.
    Gallagher KL, Hopkins EW, Clark JB, et al. U.S. Navy experience with type II decompression sickness and the association with patent foramen ovale (abstract). Aviat Space Environ Med 1996; 67:712.Google Scholar
  104. 104.
    Kerut EK, Norfleet WT, Plotnick GD, et al. Patent foramen ovale: A review of associated conditions and the impact of physiological size. J Am Coll Cardiol 2001; 38:613-623.PubMedGoogle Scholar
  105. 105.
    Heimbach RD, Sheffield PJ. Decompression sickness and pulmonary overpressure accidents. In: DeHart RL (ed.), Fundamentals of Aerospace Medicine. 2nd edn. Baltimore, MD: Williams & Wilkins; 1996:131-161.Google Scholar
  106. 106.
    Isakov AP, Broome JR, Dutka AJ. Acute carpal tunnel syndrome in a diver: Evidence of peripheral nervous system involvement in decompression illness. Ann Emerg Med 1996; 28:90-93.PubMedGoogle Scholar
  107. 107.
    Ball R, Auker CR, Ford GC, Lawrence D. Decompression sickness presenting as forearm swelling and peripheral neuropathy: A case report. Aviat Space Environ Med 1998; 69:690-692.Google Scholar
  108. 108.
    Shields TG, Minsaas B, Elliott DH, McCallum (eds.), Long Term Neurologic Consequences of Deep Diving. Stavanger, Norway: European Undersea Biomedical Society; 1983.Google Scholar
  109. 109.
    Edmonds C, Hayward L. Intellectual impairment with diving: A review. In: Bove AA, Bachrach AJ, Greenbaum LJ (eds.), Proceedings of the 9th International Symposium on Underwater and Hyperbaric Physiology. Bethesda, MD: Undersea and Hyperbaric Medical Society; 1987:877-886.Google Scholar
  110. 110.
    Palmer AC, Calder IM, Hughes JT. Spinal cord degeneration in divers. Lancet 1987; 12:1365-1366.Google Scholar
  111. 111.
    Cooke JP, Bancroft RW. Heart rate response of anesthetized and unanesthetized dogs to noise and near-vacuum decompression. Aerospace Med 1966; 37:704-709.PubMedGoogle Scholar
  112. 112.
    Bendrick GA, Ainscough MJ, Pilmanis AA, et al. Prevalence of decompression sickness among U-2 pilots. Aviat Space Environ Med 1996; 67:199-206.PubMedGoogle Scholar
  113. 113.
    Davis JC, Elliott DH. Treatment of decompression disorders. In: Bennett PB, Elliott DH (eds.), The Physiology and Medicine of Diving. London: Bailliere Tindall; 1982:475-476.Google Scholar
  114. 114.
    Butler BD, Hills BA. Transpulmonary passage of venous air emboli. J Appl Physiol 1985; 59:543-547.PubMedGoogle Scholar
  115. 115.
    Marquez J, Sladen A, Gendell H, et al. Paradoxical cerebral air embolism without an intracardiac septal defect. J Neurosurg 1981; 55:997-1000.PubMedGoogle Scholar
  116. 116.
    Butler BD, Luehr S, Katz J. Venous gas embolism: Time course of residual pulmonary intravascular bubbles. Undersea Biomed Res 1989; 16:21-29.PubMedGoogle Scholar
  117. 117.
    Butler BD, Conkin J, Luehr S. Pulmonary hemodynamics, extravascular lung water and residual gas bubbles following low dose venous gas embolism in dogs. Aviat Space Environ Med 1989; 60:1178-1182.PubMedGoogle Scholar
  118. 118.
    Ohkunda K, Nakahara K, Binder A, Staub NC. Venous air emboli in sheep: Reversible increase in lung microvascular per-meability. J Appl Physiol 1981; 51:887-894.Google Scholar
  119. 119.
    Butler BD. Pulmonary effects of decompression stress in the rat. Undersea Biomed Res 1991; 18(Suppl.):74.Google Scholar
  120. 120.
    Levy SE, Stein M, Totten RS, et al. Ventilation-perfusion abnormalities in experimental pulmonary embolism. J Clin Invest 1965; 44:1699-1707.PubMedGoogle Scholar
  121. 121.
    Soloff LA, Rodman T. Acute pulmonary embolism. 1. Review. Am Heart J 1967; 74:710-724.PubMedGoogle Scholar
  122. 122.
    Davis JC. Treatment of decompression sickness and arterial gas embolism. In: Bove AA, Davis JC (eds.), Diving Medicine. Philadelphia, PA: Saunders; 1990:249-260.Google Scholar
  123. 123.
    Broome JR, Dick EJ Jr. Neurological decompression illness in swine. Aviat Space Environ Med 1996; 67:217-213.Google Scholar
  124. 124.
    Elliott DH, Moon RE. Manifestations of the decompression disorders. In: Bennett PB, Elliot DH (eds.), The Physiology of Medicine of Diving. London: WB Saunders; 1993:481-505.Google Scholar
  125. 125.
    Ikeda T, Oiwa H, Llewellyn ME. Decompression sickness with subsequent lymphatic manifestation following recompression treatment: A case report in a heavy drinker. Tokai J Exp Clin Med 1988; 13:79-83.PubMedGoogle Scholar
  126. 126.
    Lambertsen CJ. Relations of isobaric gas counterdiffusion and decompression gas lesion diseases. In: Vann RD (ed.), The Physiological Basis of Decompression. Bethesda, MD: Undersea and Hyperbaric Medical Society; 1989:87-103.Google Scholar
  127. 127.
    Hodgson M, Beran RG, Shirtley G. The role of computed tomography in the assessment of neurologic sequelae of decompression sickness. Arch Neurol 1988; 45:1033-1035.PubMedGoogle Scholar
  128. 128.
    Rinck PA, Svihus R, de Francisco P. MR imaging of the central nervous system in divers. J Magn Reson Imaging 1991; 1:293-299.PubMedGoogle Scholar
  129. 129.
    Wilmshurst PT, O’Doherty MJ, Nunan TO. Cerebral perfusion deficits in divers with neurological decompression illness. Nucl Med Commun 1993; 14:117-120.PubMedGoogle Scholar
  130. 130.
    Lowe VJ, Hoffman JM, Hanson MW, et al. Cerebral imaging of decompression injury patients with 18-F-2-fluoro-2-deoxyglucose positron emission tomography. Undersea Hyperbaric Med 1994; 21:103-114.Google Scholar
  131. 131.
    Hanson MW, Jordan LK III. Neurological imaging in patients with decompression illness. In: Moon RE, Sheffield PJ (eds.), Treatment of Decompression Sickness. Kensington, MD: Undersea and Hyperbaric Medical Society; 1996:140-151.Google Scholar
  132. 132.
    Zwirewich CV, Muller NL, Abboud RT, Lepawsky M. Non-cardiogenic pulmonary edema caused by decompression sickness: Rapid resolution following hyperbaric therapy. Radiology 1987; 163:81-82.Google Scholar
  133. 133.
    Garrett JL, Bradshaw P. The USAF chamber training flight profiles. In: Pilmanis AA (ed.), Proceedings of the 1990 Hypobaric Decompression Sickness Workshop. AL-SR-1992-0005. Brooks Air Force Base, TX: Air Force Systems Command; 1992:347-359.Google Scholar
  134. 134.
    Weien RW, Baumgartner N. Altitude decompression sickness: Hyperbaric therapy results in 528 cases. Aviat Space Environ Med 1990; 61:833-836.PubMedGoogle Scholar
  135. 135.
    Bason R, Yacavone D. Decompression sickness: U.S. Navy altitude chamber experience 1 October 1981 to 30 September 1988. Aviat Space Environ Med 1991; 62:1180-1184.PubMedGoogle Scholar
  136. 136.
    Kumar VK, Billica RD, Waligora JM. Utility of Doppler-detectable microbubbles in the diagnosis and treatment of decompression sickness. Aviat Space Environ Med 1997; 68:151-158.PubMedGoogle Scholar
  137. 137.
    Kannan N, Raychaudhuri A, Pilmanis AA. A loglogistic model for altitude decompression sickness. Aviat Space Environ Med 1998; 69:965-970.PubMedGoogle Scholar
  138. 138.
    Conkin J, Bedahl, SR, Van Liew HD. A computerized data-bank of decompression sickness incidence in altitude chambers. Aviat Space Environ Med 1992; 63:819-824.PubMedGoogle Scholar
  139. 139.
    Conkin J, Powell MR, Foster PP, Waligora JM. Information about venous gas emboli improves prediction of hypobaric decompression sickness. Aviat Space Environ Med 1998; 69:8-16.PubMedGoogle Scholar
  140. 140.
    Ryles MT, Pilmanis AA. The initial signs and symptoms of altitude decompression sickness. Aviat Space Environ Med 1996; 67:983-989.PubMedGoogle Scholar
  141. 141.
    Kimbrell PN. Treatment of altitude decompression sickness. In: Moon RE, Sheffield PJ (eds.), Treatment of Decompression 11. Decompression-Related Disorders: Decompression Sickness, Arterial Gas Embolism, and Ebullism Syndrome 245 Sickness. Kensington, MD: Undersea and Hyperbaric Medical Society; 1996:43-51.Google Scholar
  142. 142.
    Rudge FW. The role of ground level oxygen in the treatment of altitude chamber decompression sickness. Aviat Space Environ Med 1992; 63:1102-1105.PubMedGoogle Scholar
  143. 143.
    Demboski JT, Pilmanis AA. Effectiveness of ground level oxygen as therapy for pain-only altitude decompression sickness. Aviat Space Environ Med 1994; 65:454.Google Scholar
  144. 144.
    Sukoff MH, Ragatz RE. Hyperbaric oxygenation for the treatment of acute cerebral edema. Neurosurgery 1982; 10:29-38.PubMedGoogle Scholar
  145. 145.
    Miller JD, Ledingham IM, Jennett WB. Effects of hyperbaric oxygen on intracranial pressure and cerebral blood flow in experimental cerebral oedema. Neurosurg Psych 1970; 33:745-755.Google Scholar
  146. 146.
    Zamboni WA, Roth AC, Russell RC, et al. The effect of acute hyperbaric oxygen therapy on axial pattern skin flap survival when administered during and after total ischemia. J Reconstr Microsurg 1989; 5:343-347.PubMedGoogle Scholar
  147. 147.
    Zamboni WA, Roth AC, Russell RC, Kucan J. The effect of hyperbaric oxygen treatment on the microcirculation of ischemic skeletal muscle. Undersea Biomed Res 1990; 17(Suppl.):26.Google Scholar
  148. 148.
    Clark JM. Oxygen toxicity. In: Bennett PB, Elliot DH (eds.), The Physiology and Medicine of Diving. London: WB Saunders; 1993:121-169.Google Scholar
  149. 149.
    Flynn ET, Bayne CG. Diving medical officer student guide. Course A-6A-0010. Washington, DC: U.S. Government Printing Office; 1977a:321-326.Google Scholar
  150. 150.
    Butler FK, Knafelc ME. Screening for oxygen intolerance in U.S. Navy divers. Undersea Biomed Res 1986; 13:91-98.PubMedGoogle Scholar
  151. 151.
    Bean JW. Factors influencing clinical oxygen toxicity. Ann NY Acad Sci 1965; 117:745-755.PubMedGoogle Scholar
  152. 152.
    Flynn ET, Bayne CG. Diving medical officer student guide. Course A-6A-0010. Washington: U.S. Government Printing Office; 1977b:300-311.Google Scholar
  153. 153.
    Butler FK, Thalmann ED. Central nervous system oxygen toxicity in closed circuit scuba divers II. Undersea Biomed Res 1986; 13:193-223.PubMedGoogle Scholar
  154. 154.
    Hendricks PL, Hall DA, Hunter WL Jr, Haley PJ. Extension of pulmonary O2 tolerance in man at 2 ata by intermittent O2 exposure. J Appl Physiol 1977; 42:593-599.PubMedGoogle Scholar
  155. 155.
    Harabin AL, Survanshi SS, Weathersby PK, et al. The modulation of oxygen toxicity by intermittent exposure. Toxicol Appl Pharmacol 1988; 93:298-311.PubMedGoogle Scholar
  156. 156.
    U.S. Navy Diving Manual. NAVSEA 0994-LP-9010. Washington, DC: U.S. Navy; 1993c:8-59.Google Scholar
  157. 157.
    Workman RD. Treatment of bends with oxygen at high pressure. Aerospace Med 1968; 39:1076-1083.PubMedGoogle Scholar
  158. 158.
    Leitch DR, Hallenbeck JM. Oxygen in the treatment of spinal cord decompression sickness. Undersea Biomed Res 1985; 12:269-289.PubMedGoogle Scholar
  159. 159.
    Sykes JJ, Hallenbeck JM, Leitch DR. Spinal cord decompression sickness: A comparison of recompression therapies in an animal model. Aviat Space Environ Med 1986; 57:561-568.PubMedGoogle Scholar
  160. 160.
    U.S. Navy Diving Manual. NAVSEA 0994-LP-9010. Washington, DC: U.S. Navy; 1993.Google Scholar
  161. 161.
    Greer HD. Neurological consequences of diving. In: Bove AA, Davis JC (eds.), Diving Medicine. Philadelphia, PA: Saunders; 1990:223-232.Google Scholar
  162. 162.
    Green JW, Tichenor J, Curley MD. Treatment of type I decompression sickness using the U.S. Navy treatment algorithm. Undersea Biomed Res 1989; 16:465-470.PubMedGoogle Scholar
  163. 163.
    Pilmanis A. Treatment of air embolism and decompression sickness. SPUMS J 1987; 17:27-32.Google Scholar
  164. 164.
    Van Meter K. Treatment of decompression illness (DCI) and arterial gas embolism (AGE): U.S. experience, New Orleans practice protocols for DCI and AGE. In: Moon RE, Sheffield PJ (eds.), Treatment of Decompression Sickness. Kensington, MD: Undersea and Hyperbaric Medical Society; 1996:203-239.Google Scholar
  165. 165.
    Moon RE and Sheffield PJ. Consensus statement. In: Moon RE, Sheffield PJ (eds.), Treatment of Decompression Sickness. Kensington, MD: Undersea and Hyperbaric Medical Society; 1996:417-426.Google Scholar
  166. 166.
    Office of Undersea Research. NOAA Diving Manual. Washington, DC: National Oceanic and Atmospheric Administration; 1991.Google Scholar
  167. 167.
    Drummond JC, Moore SS. The influence of dextrose adminis-tration on neurologic outcome after temporary spinal cord ischemia in the rabbit. Anesthesiology 1989; 70:64-70.PubMedGoogle Scholar
  168. 168.
    Cogar WB. Intravenous lidocaine as adjunctive therapy in the treatment of decompression illness. Ann Emerg Med 1997; 29:284-286.PubMedGoogle Scholar
  169. 169.
    Drewry A, Gorman DF. Lidocaine as an adjunct to hyperbaric therapy in decompression illness: A case report. Undersea Biomed Res 1992; 19:187-190.Google Scholar
  170. 170.
    Kizer KW. Corticosteroids in treatment of serious decompression sickness. Ann Emerg Med 1981; 10:485-488.PubMedGoogle Scholar
  171. 171.
    Francis TJR, Dutka AJ, Clark JB. An evaluation of dexamethasone in the treatment of acute experimental spinal decompression sickness. In: Bove AA, Bachrach AJ, Greenbaum LJ (eds.), Proceedings of the 9th International Symposium on Underwater and Hyperbaric Physiology. Bethesda, MD: Undersea and Hyperbaric Medical Society; 1987:999-1013.Google Scholar
  172. 172.
    Lynch PR, Krasner LJ, Vinciquerra T, Shaffer TH. Effects of intravenous perfluorocarbon and oxygen breathing on acute decompression sickness in the hamster. Undersea Biomed Res 1989; 16:275-282.PubMedGoogle Scholar
  173. 173.
    Catron PW, Flynn ET Jr. Adjuvant drug therapy for decompression sickness: A review. Undersea Biomed Res 1982; 9:161-174.Google Scholar
  174. 174.
    Philp RB, Bennett PB, Andersen JC, et al. Effects of aspirin and dipyridamole on platelet function, hematology, and blood chemistry of saturation divers. Undersea Biomed Res 1979; 6:127-146.PubMedGoogle Scholar
  175. 175.
    Norfleet WT. Analgesic use by astronauts during the peri-EVA period. Aviat Space Environ Med 1993; 64:423.Google Scholar
  176. 176.
    Powell MR, Norfleet WT, Kumar KV, Butler BD. Patent foramen ovale and hypobaric decompression. Aviat Space Environ Med 1995; 66:273-275.PubMedGoogle Scholar
  177. 177.
    Rudge FW, Shafer MR. The effect of delay on treatment outcome in altitude-induced decompression sickness. Aviat Space Environ Med. 1991; 62:687-690.PubMedGoogle Scholar
  178. 178.
    National Aeronautics and Space Administration. SSP flight data file. Houston, TX: NASA-Johnson Space Center; 1997:2-13. JSC-48092.Google Scholar
  179. 179.
    National Aeronautics and Space Administration. Decompression Sickness Procedures and Guidelines. Houston, TX: NASA-Johnson Space Center; 1998. JPG-1800.3.Google Scholar
  180. 180.
    Moon RE, Gorman DF. Treatment of the decompression disorders. In: Bennett PB, Elliot DH (eds.), The Physiology of Medicine of Diving. London: WB Saunders; 1993:506-541.Google Scholar
  181. 181.
    Francis TJR, Gorman DF. Pathogenesis of the decompression disorders. In: Bennett PB, Elliot DH (eds.), The Physiology of Medicine of Diving. London: WB Saunders, 1993; 454-480.Google Scholar
  182. 182.
    Dreyfuss D, Saumon G. Barotrauma is volutrauma, but which volume is the one responsible? Intensive Care Med 1992; 18:139-141.PubMedGoogle Scholar
  183. 183.
    Kalfon P, Rao GSU, Gallart L, et al. Permissive hypercapnia with and without expiratory washout in patients with severe acute respiratory distress syndrome. Anesthesiology 1997; 87:6-17.PubMedGoogle Scholar
  184. 184.
    Verbrugge SJC, de Anda GV, Gommers D, et al. Exogenous surfactant preserves lung function and reduces alveolar Evans blue dye influx in a rat model of ventilation-induced lung injury. Anesthesiology 1998; 89:467-474.PubMedGoogle Scholar
  185. 185.
    Schaeffer KE, McNulty WP, Carey C, Liebow AA. Mechanisms in development of interstitial emphysema and air embolism on decompression from depth. J Appl Physiol 1958; 13:15-29.Google Scholar
  186. 186.
    Gorman DF, Browning DM. Cerebral vasoreactivity and arterial gas embolism. Undersea Biomed Res 1986; 13:317-335.PubMedGoogle Scholar
  187. 187.
    Gorman DF, Browning DM, Parsons DW. Redistribution of cerebral arterial gas emboli: A comparison of treatment regimens. In: Bove AA, Bachrach AJ, Greenbaum LJ (eds.), Proceedings of the 9th International Symposium on Underwater and Hyperbaric Physiology. Bethesda, MD: Undersea and Hyperbaric Medical Society; 1987:1031-1050.Google Scholar
  188. 188.
    Hills BA, James PB. Microbubble damage to the blood-brain barrier: Relevance to decompression sickness. Undersea Biomed Res 1991; 18:111-116.Google Scholar
  189. 189.
    Broome JR, Smith DJ. Pneumothorax as a complication of recompression therapy for cerebral arterial gas embolism. Undersea Biomed Res 1992; 19:447-455.PubMedGoogle Scholar
  190. 190.
    Stonier JC. A study in prechamber treatment of cerebral air embolism patients by a first provider at Santa Catalina Island. Undersea Biomed Res 1985; 12(Suppl.):58.Google Scholar
  191. 191.
    Brooks GJ, Green RD, Leitch DR. Pulmonary barotrauma in submarine escape trainees and the treatment of cerebral arterial air embolism. Aviat Space Environ Med 1986; 57:1201-1207.PubMedGoogle Scholar
  192. 192.
    Gorman DF, Pearce A, Webb RK. Dysbaric illness treated at the Royal Adelaide Hospital 1987: A factorial analysis. SPUMS J 1988; 18:95-101.Google Scholar
  193. 193.
    Leitch DR, Green RD. Pulmonary barotrauma in divers and the treatment of cerebral arterial gas embolism. Aviat Space Environ Med 1986; 57:931.PubMedGoogle Scholar
  194. 194.
    Butler BD, Laine GA, Lieman BC, et al. Effect of the Trendelenburg position on the distribution of arterial air emboli in dogs. Ann Thorac Surg 1988; 45:198-202.PubMedCrossRefGoogle Scholar
  195. 195.
    Dutka AJ. Therapy for dysbaric central nervous system ischaemia: Adjuncts to recompression. In: Bennett PB, Moon RE (eds.), Diving Accident Management. Bethesda, MD: Undersea and Hyperbaric Medical Society; 1990:222-234.Google Scholar
  196. 196.
    Leitch DR, Greenbaum LJ, Hallenbeck JM. Cerebral air embolism I-IV. Undersea Biomed Res 1984; 11:221-274.PubMedGoogle Scholar
  197. 197.
    Ward JE. The true nature of the boiling of body fluids in space. J Aviat Med 1956; 27:429-439.PubMedGoogle Scholar
  198. 198.
    Kemph JP, Burch BH, Beman FM, Hitchcock FA. Further observations on dogs explosively decompressed to an ambient pressure of 30 mmHg. J Aviat Med 1954; 25:107-112.Google Scholar
  199. 199.
    Hitchcock FA, Kemph JP. The boiling of body liquids at extremely high altitudes. J Aviat Med 1955; 26:289-297.PubMedGoogle Scholar
  200. 200.
    Busby DE. Space Clinical Medicine. A Prospective Look at Medical Problems from Hazards of Space Operations. Dordrecht: Reidel; 1968; 20-30, 31-37.Google Scholar
  201. 201.
    Roth EM. Compendium of Human Responses to the Aerospace Environment. Section 12. Washington, DC: National Aeronautics and Space Administration; 1968. NASA CR-1205(III).Google Scholar
  202. 202.
    Bancroft RW, Cooke JP, Cain SM. Comparison of anoxia with and without ebullism. J Appl Physiol 1968; 25:230-237.PubMedGoogle Scholar
  203. 203.
    Koestler AG, Reynolds HH. Rapid decompression of chimpanzees to a near vacuum. J Appl Physiol 1968; 25:153-158.PubMedGoogle Scholar
  204. 204.
    Kolesari GL, Kindwall EP. Survival following accidental decompression to an altitude greater than 74,000 feet (22,555 m). Aviat Space Environ Med 1982; 53:1211-1214.PubMedGoogle Scholar
  205. 205.
    Air Land and Sea Application Center. Multiservice Tactics, Techniques, and Procedures for Risk Management. Langley Air Force Base, VA: Air Land Sea Application Center; 2001. AFTTP(I) 3-2.34.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • William T. Norfleet
    • 1
  1. 1.Department of AnesthesiologyYale University School of MedicineNew HavenUSA

Personalised recommendations