Advertisement

Surgery pp 1947-1963 | Cite as

Immunology of Cancer

  • Craig L. SlingluffJr.

Abstract

A central principle of tumor immunology is that cancer can be prevented or controlled by a host immune response. Thus, a significant corollary is that the progression of cancer represents, in some measure, a failure of the host immune system to control cancer growth. In the lay community, it is commonly accepted that immunological control of cancer is possible, but the medical community has traditionally been more skeptical. Increasingly, however, host-tumor interactions that affect the progression of cancer are being defined, and clinical trials are providing evidence for the benefit of immunological therapies.

Keywords

Major Histocompatibility Complex Major Histocompatibility Complex Class Metastatic Melanoma Renal Cell Cancer Major Histocompatibility Complex Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burnet FM. The concept of immunologic surveillance. Prog Exp Tumor Res 1970;13:1–27.PubMedGoogle Scholar
  2. 2.
    Ehrlich P. Uber den jetzigen Stand der Karzinomforschung. Ned Tijdschr Geneesk 1909;5:273–290.Google Scholar
  3. 3.
    Delaloye AB, Delaloye B. Radiolabeled monoclonal antibodies in tumour imaging and therapy: out of fashion? Eur J Nucl Med 1995;22:571–580.PubMedGoogle Scholar
  4. 4.
    Zuckier LS, DeNardo GL. Trials and tribulations: oncological antibody imaging comes to the fore. Semin Nucl Med 1997;27:10–29.PubMedCrossRefGoogle Scholar
  5. 5.
    Sirisriro R, Podoloff DA, Patt YZ, et al. 99Tcm-IMMU4 imaging in recurrent colorectal cancer: efficacy and impact on surgical management. Nucl Med Commun 1996;17:568–576.PubMedCrossRefGoogle Scholar
  6. 6.
    LaValle GJ, Martinez DA, Sobel D, et al. Assessment of disseminated pancreatic cancer: a comparison of traditional exploratory laparotomy and radioimmunoguided surgery. Surgery (St. Louis) 1997;122:867–871.PubMedCrossRefGoogle Scholar
  7. 7.
    Schneebaum S, Papo J, Graif M, et al. Radioimmunoguided surgery benefits for recurrent colorectal cancer. Ann Surg Oncol 1997;4:371–376.PubMedCrossRefGoogle Scholar
  8. 8.
    Stigbrand T, Ullen A, Sandstrom P, et al. Twenty years with monoclonal antibodies: state of the art-where do we go? Acta Oncol 1996;35:259–265.PubMedCrossRefGoogle Scholar
  9. 9.
    Gamble AR, Bell JA, Ronan JE, et al. Use of tumour marker immunoreactivity to identify primary site of metastatic cancer. Br Med J 1993;306:295–298.CrossRefGoogle Scholar
  10. 10.
    Mottolese M, Venturo I, Donnorso RP, et al. Use of selected combinations of monoclonal antibodies to tumor associated antigens in the diagnosis of neoplastic effusions of unknown origin. Eur J Cancer Clin Oncol 1998;28:1277–1284.Google Scholar
  11. 11.
    Tureci O, Usener D, Schneider S, Sahin U. Identification of tumor-associated autoantigens with SEREX. Methods Mol Med 2005;109:137–154.PubMedGoogle Scholar
  12. 12.
    Chen YT. Identification of human tumor antigens by serological expression cloning: an online review on SEREX. Cancer Immun 2004;[updated 2004 Mar 10; cited 2004 Apr 1]. http://www. cancerimmunity.org/SEREX/.Google Scholar
  13. 13.
    Chen YT, Scanlan MJ, Sahin U, et al. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci U S A 1997;94:1914–1918.PubMedCrossRefGoogle Scholar
  14. 14.
    Van den Eynde BJ, van der Bruggen P. T cell defined tumor antigens. Curr Opin Immunol 1997;9:684–693.PubMedCrossRefGoogle Scholar
  15. 15.
    Jager E, Chen YT, Drijfhout JW, et al. Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J Exp Med 1998;187:265–270.PubMedCrossRefGoogle Scholar
  16. 16.
    Tureci O, Sahin U, Schobert I, et al. The SSX-2 gene, which is involved in the t(X;18) translocation of synovial sarcomas, codes for the human tumor antigen HOM-MEL-40. Cancer Res 1996;56:4766–5772.PubMedGoogle Scholar
  17. 17.
    Storkus WJ, Howell DN, Salter RD, et al. NK susceptibility varies inversely with target cell class I HLA antigen expression. J Immunol 1987;138:1657–1659.PubMedGoogle Scholar
  18. 18.
    Kageshita T, Wang Z, Calorini L, et al. Selective loss of human leukocyte class I allospecificities and staining of melanoma cells by monoclonal antibodies recognizing monomorphic determinants of class I human leukocyte antigens. Cancer Res 1993;53:3349–3354.PubMedGoogle Scholar
  19. 19.
    Khanna R. Tumour surveillance: missing peptides and MHC molecules. Immunol Cell Biol 1998;76:20–26.PubMedCrossRefGoogle Scholar
  20. 20.
    Chang CC, Campoli M, Ferrone S. HLA class I antigen expression in malignant cells: why does it not always correlate with CTL-mediated lysis? Curr Opin Immunol 2005;16:644–650.CrossRefGoogle Scholar
  21. 21.
    Chouaib S, Thiery J, Gati A, et al. Tumor escape from killing: role of killer inhibitory receptors and acquisition of tumor resistance to cell death. Tissue Antigens 2002;60(4):273.PubMedCrossRefGoogle Scholar
  22. 22.
    Steffens U, Vyas Y, Dupont B, et al. Nucleotide and amino acid sequence alignment for human killer cell inhibitory receptors (KIR). Tissue Antigens 1998;51:398–13.PubMedCrossRefGoogle Scholar
  23. 23.
    Uhrberg M, Valiante NM, Shum BP, et al. Human diversity in killer cell inhibitory receptor genes. Immunity 1997;7:753–763.PubMedCrossRefGoogle Scholar
  24. 24.
    Christensen MD, Geisler C. Recruitment of SHP-1 protein tyrosine phosphatase and signalling by a chimeric T cell receptor-killer inhibitory receptor. Scand J Immunol 2000;51:557–564.PubMedCrossRefGoogle Scholar
  25. 25.
    Bakker AB, Phillips JH, Figdor CG, et al. Killer cell inhibitory receptors for MHC class I molecules regulate lysis of melanoma cells mediated by NK cells, gamma delta T cells, and antigen-specific CTL. J Immunol 1998;160:5239–5245.PubMedGoogle Scholar
  26. 26.
    Mingari MC, Moretta A, Moretta L. Regulation of KIR expression in human T cells: a safety mechanism that may impair protective T-cell responses. Immunol Today 1998;19:153–157.PubMedCrossRefGoogle Scholar
  27. 27.
    Ikeda H, Lethe B, Lehmann F, et al. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 1997;6:199–208.PubMedCrossRefGoogle Scholar
  28. 28.
    Morgan DA, Ruscetti FW, Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrow. Science 1976;193:1007–1008.PubMedCrossRefGoogle Scholar
  29. 29.
    Kedar E, Ikejiri BL, Gorelik E, et al. Natural cell-mediated cytotoxicity in vitro and inhibition of tumor growth in vivo by murine lymphoid cells cultured with T cell growth factor (TCGF). Cancer Immunol Immunother 1982;13:14–23.PubMedCrossRefGoogle Scholar
  30. 30.
    Rosenberg SA, Mule JJ, Spiess PJ, et al. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J Exp Med 1985;161:1169–1188.PubMedCrossRefGoogle Scholar
  31. 31.
    Eberlein TJ, Rosenstein M, Rosenberg SA. Regression of a disseminated syngeneic solid tumor by systemic transfer of lymphoid cells expanded in interleukin 2. J Exp Med 1982;156:385–397.PubMedCrossRefGoogle Scholar
  32. 32.
    Fisher RI, Coltman CA Jr, Doroshow JH, et al. Metastatic renal cell cancer treated with interleukin-2 and lymphokine-activated killer cells. A phase II clinical trial. Ann Intern Med 1998;108:518–523.Google Scholar
  33. 33.
    Dutcher JP, Creekmore S, Weiss GR, et al. A phase II study of interleukin-2 and lymphokine-activated killer cells in patients with metastatic malignant melanoma. J Clin Oncol 1989;7:477–485.PubMedGoogle Scholar
  34. 34.
    Rosenberg SA, Yang JC, Topalian SL, et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2 [see comments]. Comment in JAMA 1994;271(12):945–946; comment in JAMA 1994;272(17):1327. JAMA 1994;271:907–913.Google Scholar
  35. 35.
    Fisher RI, Rosenberg SA, Fyfe G. Long-term survival update for high-dose recombinant interleukin-2 in patients with renal cell carcinoma. Cancer J Sci Am 2000;6(suppl 1):S55–S57.PubMedGoogle Scholar
  36. 36.
    Yang JC, Sherry RM, Steinberg SM, et al. Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer. J Clin Oncol 2003;21:3127–3132.PubMedCrossRefGoogle Scholar
  37. 37.
    Phan GQ, Attia P, Steinberg SM, et al. Factors associated with response to high-dose interleukin-2 in patients with metastatic melanoma. J Clin Oncol 2001;19:3477–3482.PubMedGoogle Scholar
  38. 38.
    Chang E, Rosenberg SA. Patients with melanoma metastases at cutaneous and subcutaneous sites are highly susceptible to interleukin-2-based therapy. J Immunother 2001;24:88–90.PubMedCrossRefGoogle Scholar
  39. 39.
    Gross L. Intradermal immunization of C3H mice against a sarcoma that originated in an animal of the same line. Cancer Res 1943;3:326–333.Google Scholar
  40. 40.
    Klarnet JP, Matis LA, Kern DE, et al. Antigen-driven T cell clones can proliferate in vivo, eradicate disseminated leukemia, and provide specific immunologic memory. J Immunol 1987;138:4012–4017.PubMedGoogle Scholar
  41. 41.
    Vose BM, Bonnard GD. Human tumor antigens defined by cytotoxicity and proliferative responses of cultured lymphoid cells. Nature (Lond) 1982;296:359–361.PubMedCrossRefGoogle Scholar
  42. 42.
    Slingluff CL Jr, Darrow T, Vervaert C, et al. Human cytotoxic T cells specific for autologous melanoma cells: successful generation from lymph node cells in seven consecutive cases. J Natl Cancer Inst 1988;80:1016–1026.PubMedCrossRefGoogle Scholar
  43. 43.
    Rosenberg SA, Yannelli JR, Yang JC, et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2 [see comments]. J Natl Cancer Inst 1994;86:1159–1166.PubMedCrossRefGoogle Scholar
  44. 44.
    Dudley ME, Wunderlich JR, Yang JC, et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 2005;23:2346–2357.PubMedCrossRefGoogle Scholar
  45. 45.
    Darrow TL, Slingluff CLJ, Seigler HF. The role of HLA class I antigens in recognition of melanoma cells by tumor-specific cytotoxic T lymphocytes. Evidence for shared tumor antigens. J Immunol 1989;142:3329–3335.PubMedGoogle Scholar
  46. 46.
    Slovin SF, Lackman RD, Ferrone S, et al. Cellular immune response to human sarcomas: cytotoxic T cell clones reactivity with autologous sarcomas. I. Development, phenotype, and specificity. J Immunol 1986;137:3042–3048.PubMedGoogle Scholar
  47. 47.
    Van Bleek GM, Nathenson SG. Isolation of endogenously processed immunodominant viral peptides form the class I H-2Kb molecule. Nature (Lond) 1990;348:213.PubMedCrossRefGoogle Scholar
  48. 48.
    Falk K, Rotzschke O, Deres K, et al. Identification of naturally processed viral nonapeptides allow their quantification in infected cells and suggests an allele-specific T cell epitope forecast. J Exp Med 1991;174:425–434.PubMedCrossRefGoogle Scholar
  49. 49.
    Udaka K, Tsomides TJ, Eisen HN. A naturally occurring peptide recognized by alloreactive CD8+ cytotoxic T lymphocytes in associateion with a class I MHC protein. Cell 1992;69:989.PubMedCrossRefGoogle Scholar
  50. 50.
    Novellino L, Castelli C, Parmiani G. A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother 2005;54:187–207.PubMedCrossRefGoogle Scholar
  51. 51.
    Bystryn JC, Rigel D, Friedman RJ, et al. Prognostic significance of hypopigmentation in malignant melanoma. Arch Dermatol 1987;123:1053–1055.PubMedCrossRefGoogle Scholar
  52. 52.
    Rosenberg SA, White DE. Vitiligo in patients with melanoma: normal tissue antigens can be targets for cancer immunotherapy. J Immunother Emphasis Tumor Immunol 1996;19:81–84.PubMedGoogle Scholar
  53. 53.
    Gregor RT. Vitiligo and malignant melanoma: a significant association? S Afr Med J 1976;50:1447–1449.PubMedGoogle Scholar
  54. 54.
    Wagner SN, Wagner C, Schultewolter T, et al. Analysis of Pmel17/gp100 expression in primary human tissue specimens: implications for melanoma immuno-and gene-therapy. Cancer Immunol Immunother 1997;44:239–247.PubMedCrossRefGoogle Scholar
  55. 55.
    Tjoa BA, Erickson SJ, Bowes VA, et al. Follow-up evaluation of prostate cancer patients infused with autologous dendritic cells pulsed with PSMA peptides. Prostate 1997;32:272–278.PubMedCrossRefGoogle Scholar
  56. 56.
    Multhoff G, Botzler C. Heat-shock proteins and the immune response. Ann N Y Acad Sci 1998;851:86–93.PubMedCrossRefGoogle Scholar
  57. 57.
    Tamura Y, Peng P, Liu K, et al. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 1997;278:117–120.PubMedCrossRefGoogle Scholar
  58. 58.
    Castelli C, Rivoltini L, Rini F, et al. Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer. Cancer Immunol Immunother 2004;53:227–233.PubMedCrossRefGoogle Scholar
  59. 59.
    Cantrell DA, Smith KA. Transient expression of interleukin 2 receptors. Consequences for T cell growth. J Exp Med 1983;158:1895–1911.PubMedCrossRefGoogle Scholar
  60. 60.
    Hefeneider SH, Conlon PJ, Henney CS, et al. In vivo interleukin 2 administration augments the generation of alloreactive cytolytic T lymphocytes and resident natural killer cells. J Immunol 1983;130:222–227.PubMedGoogle Scholar
  61. 61.
    Bensinger SJ, Walsh PT, Zhang J, et al. Distinct IL-2 receptor signaling pattern in CD4+CD25+ regulatory T cells. J Immunol 2004;172:5287–5296.PubMedGoogle Scholar
  62. 62.
    Setoguchi R, Hori S, Takahashi T, et al. Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 2005;201:723–735.PubMedCrossRefGoogle Scholar
  63. 63.
    Scheffold A, Huhn J, Hofer T. Regulation of CD4+ CD25+ regulatory T cell activity: it takes (IL-)two to tango. Eur J Immunol 2005;35:1336–1341.PubMedCrossRefGoogle Scholar
  64. 64.
    Muller U, Steinhoff U, Reis LF, et al. Functional role of type I and type II interferons in antiviral defense. Science 1994;264:1918–1921.PubMedCrossRefGoogle Scholar
  65. 65.
    Colamonici OR, Porterfield B, Domanski P, et al. Ligand-independent anti-oncogenic activity of the alpha subunit of the type I interferon receptor. J Biol Chem 1994;269:27275–27279.PubMedGoogle Scholar
  66. 66.
    Platanias LC, Uddin S, Domanski P, et al. Differences in interferon alpha and beta signaling. Interferon beta selectively induces the interaction of the alpha and betaL subunits of the type I interferon receptor. J Biol Chem 1996;271:23630–23633.PubMedCrossRefGoogle Scholar
  67. 67.
    Kowalzick L, Weyer U, Lange P, et al. Systemic therapy of advanced metastatic malignant melanoma with a combination of fibroblast interferon-beta and recombinant interferon-gamma. Dermatologica 1990;181:298–303.PubMedCrossRefGoogle Scholar
  68. 68.
    Creagan ET, Loprinzi CL, Ahmann DL, et al. A phase I-II trial of the combination of recombinant leukocyte A interferon and recombinant human interferon-gamma in patients with metastatic malignant melanoma. Cancer (Phila) 1988;62:2472–2474.PubMedCrossRefGoogle Scholar
  69. 69.
    Creagan ET, Schaid DJ, Ahmann DL, et al. Recombinant interferons in the management of advanced malignant melanoma. Updated review of five prospective clinical trials and long-term responders. Am J Clin Oncol 1988;11:652–659.PubMedCrossRefGoogle Scholar
  70. 70.
    Gleave ME, Elhilali M, Fradet Y, et al. Interferon gamma-1b compared with placebo in metastatic renal-cell carcinoma. Canadian Urologic Oncology Group. N Engl J Med 1988;38:1265–1271.Google Scholar
  71. 71.
    Brown TD, Goodman PJ, Fleming T, et al. Phase II trial of recombinant DNA gamma-interferon in advanced colorectal cancer: a Southwest Oncology Group study. J Immunother 1991;10:379–382.PubMedCrossRefGoogle Scholar
  72. 72.
    Abdel-Wahab Z, Dar M, Osanto S, et al. Eradication of melanoma pulmonary metastases by immunotherapy with tumor cells engineered to secrete interleukin-2 or gamma interferon. Cancer Gene Ther 1997;4:33–41.PubMedGoogle Scholar
  73. 73.
    Abdel-Wahab Z, Weltz C, Hester D, et al. A phase I clinical trial of immunotherapy with interferon-gamma gene-modified autologous melanoma cells: monitoring the humoral immune response. Cancer (Phila) 1997;80:401–412.PubMedCrossRefGoogle Scholar
  74. 74.
    Dranoff G, Jaffee E, Lazenby A, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A 1993;90:3539–3543.PubMedCrossRefGoogle Scholar
  75. 75.
    Spitler LE, Grossbard ML, Ernstoff MS, et al. Adjuvant therapy of stage HI and IV malignant melanoma using granulocyte-macrophage colony-stimulating factor [see comments]. J Clin Oncol 2000;18:1614–1621.PubMedGoogle Scholar
  76. 76.
    Ando K, Hiroishi K, Kaneko T, et al. Perforin, Fas/Fas ligand, and TNF-alpha pathways as specific and bystander killing mechanisms of hepatitis C virus-specific human CTL. J Immunol 1997;158:5283–5291.PubMedGoogle Scholar
  77. 77.
    Lee RK, Spielman J, Zhao DY, et al. Perforin, Fas ligand, and tumor necrosis factor are the major cytotoxic molecules used by lymphokine-activated killer cells. J Immunol 1996;157:1919–1925.PubMedGoogle Scholar
  78. 78.
    Bartlett DL, Ma G, Alexander HR, et al. Isolated limb reperfusion with tumor necrosis factor and melphalan in patients with extremity melanoma after failure of isolated limb perfusion with chemotherapeutics. Cancer (Phila) 1997;80:2084–2090.PubMedCrossRefGoogle Scholar
  79. 79.
    Tracey KJ, Fong Y, Hesse DG, et al. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteremia. Nature (Lond) 1987;330:662–664.PubMedCrossRefGoogle Scholar
  80. 80.
    Jones AL, Selby P. Tumour necrosis factor: clinical relevance. Cancer Surv 1989;8:817–836.PubMedGoogle Scholar
  81. 81.
    Wojtowicz-Praga S. Reversal of tumor-induced immunosuppression: a new approach to cancer therapy. J Immunother 1997;20:165–177.PubMedCrossRefGoogle Scholar
  82. 82.
    Vanky F, Nagy N, Hising C, et al. Human ex vivo carcinoma cells produce transforming growth factor beta and thereby can inhibit lymphocyte functions in vitro. Cancer Immunol Immunother 1997;43:317.PubMedCrossRefGoogle Scholar
  83. 83.
    Hirte H, Clark DA. Generation of lymphokine-activated killer cells in human ovarian carcinoma ascitic fluid: identification of transforming growth factor-beta as a suppressive factor. Cancer Immunol Immunother 1991;32:296.PubMedCrossRefGoogle Scholar
  84. 84.
    Dalai BI, Keown PA, Greenberg AH. Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. Am J Pathol 1993;143:381.Google Scholar
  85. 85.
    McCune BK, Mullin BR, Flanders KC, et al. Localization of transforming growth factor-beta isotypes in lesions of the human breast. Hum Pathol 1992;23:13.PubMedCrossRefGoogle Scholar
  86. 86.
    Walker RA, Dearing SJ. Transforming growth factor beta 1 in ductal carcinoma in situ and invasive carcinomas of the breast. Eur J Cancer 1992;28:641.PubMedCrossRefGoogle Scholar
  87. 87.
    Wojtowicz-Praga S, Verma UN, Wakefield L, et al. Modulation of B16 melanoma growth and metastasis by anti-transforming growth factor beta antibody and interleukin-2. J Immunother Emphasis Tumor Immunol 1996;19:169.PubMedGoogle Scholar
  88. 88.
    Fakhrai H, Dorigo O, Shawler DL, et al. Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy. Proc Natl Acad Sci U S A 1996;93:2909–2914.PubMedCrossRefGoogle Scholar
  89. 89.
    Dorigo O, Shawler DL, Royston I, et al. Combination of transforming growth factor beta antisense and interleukin-2 gene therapy in the murine ovarian teratoma model. Gynecol Oncol 1998;71:204–210.PubMedCrossRefGoogle Scholar
  90. 90.
    Hussain SF, Paterson Y. CD4+ CD25+ regulatory T cells that secrete TGF-beta and IL-10 are preferentially induced by a vaccine vector. J Immunother 2004;27:339–346.PubMedCrossRefGoogle Scholar
  91. 91.
    Nakagomi H, Pisa P, Pisa EK, et al. Lack of interleukin-2 (IL-2) expression and selective expression of IL-10 mRNA in human renal cell carcinoma. Int J Cancer 1995;63:366–371.PubMedCrossRefGoogle Scholar
  92. 92.
    Tanchot C, Guillaume S, Delon J, et al. Modifications of CD8+ T cell function during in vivo memory or tolerance induction. Immunity 1998;8:581–590.PubMedCrossRefGoogle Scholar
  93. 93.
    Petersson M, Charo J, Salazar-Onfray F, et al. Constitutive IL-10 production accounts for the high NK sensitivity, low MHC class I expression, and poor transporter associated with antigen processing (TAP)-1/2 function in the prototype NK target YAC-1. J Immunol 1998;161:2099–2105.PubMedGoogle Scholar
  94. 94.
    Fortis C, Foppoli M, Gianotti L, et al. Increased interleukin-10 serum levels in patients with solid tumours. Cancer Lett 1996;104:1–5.PubMedCrossRefGoogle Scholar
  95. 95.
    Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005;6:345–352.PubMedCrossRefGoogle Scholar
  96. 96.
    Tomer Y, Sherer Y, Shoenfeld Y. Autoantibodies, autoimmunity and cancer. Oncol Rep 1998;5:753–761.PubMedGoogle Scholar
  97. 97.
    Peterson K, Rosenblum MK, Kotanides H, et al. Paraneoplastic cerebellar degeneration. I. A clinical analysis of 55 anti-Yo antibody-positive patients. Neurology 1992;42:1931–1937.PubMedGoogle Scholar
  98. 98.
    Golumbek P, Levitsky H, Jaffee L, et al. The antitumor immune response as a problem of self-nonself discrimination: implications for immunotherapy. Immunol Res 1993;12:183–192.PubMedCrossRefGoogle Scholar
  99. 99.
    Schendel DJ, Gansbacher B, Oberneder R, et al. Tumor-specific lysis of human renal cell carcinomas by tumor-infiltrating lymphocytes. I. HLA-A2 restricted recognition of autologous and allogeneic tumor lines. J Immunol 1993;151:4209–4220.PubMedGoogle Scholar
  100. 100.
    Slingluff CLJ, Cox AL, Stover JMJ, et al. Cytotoxic T-lymphocyte response to autologous human squamous cell cancer of the lung: epitope reconstitution with peptides extracted from HLA-Aw68. Cancer Res 1994;54:2731–2737.PubMedGoogle Scholar
  101. 101.
    Ioannides CG, Fisk B, Pollack MS, et al. Cytotoxic T-cell clones isolated from ovarian tumor-infiltrating lymphocytes recognize common determinants to non-ovarian tumour clones. Scand J Immunol 1993;37:413–424.PubMedCrossRefGoogle Scholar
  102. 102.
    Yasumura S, Hirabayashi H, Schwartz DR, et al. Human cytotoxic T-cell lines with restricted specificity for squamous cell carcinoma of the head and neck. Cancer Res 1993;53:1461–1468.PubMedGoogle Scholar
  103. 103.
    Peoples GE, Goedegebuure PS, Andrews JV, et al. HLA-A2 presents shared tumor-associated antigens derived from endogenous proteins in ovarian cancer. J Immunol 1993;151:5481–5491.PubMedGoogle Scholar
  104. 104.
    Schwartzentruber DJ, Solomon D, Rosenberg SA, et al. Characterization of lymphocytes infiltrating human breast cancer: specific immune reactivity detected by measuring cytokine secretion. J Immunother 1992;12:1–12.PubMedCrossRefGoogle Scholar
  105. 105.
    Wolfel T, Herr W, Coulie P, et al. Lysis of human pancreatic adenocarcinoma cells by autologous HLA-class I-restricted cytolytic T-lymphocyte (CTL) clones. Int J Cancer 1993;54:636–644.PubMedCrossRefGoogle Scholar
  106. 106.
    Dessureault S, Graham F, Gallinger S. B7-1 gene transfer into human cancer cells by infection with an adenovirus-B7 (Ad-B7) expression vector. Ann Surg Oncol 1996;3:317–324.PubMedCrossRefGoogle Scholar
  107. 107.
    Turka LA, Ledbetter JA, Lee K, et al. CD28 is an inducible T cell surface antigen that transduces a proliferative signal in CD3+ mature thymocytes. J Immunol 1990;144:1646–1653.PubMedGoogle Scholar
  108. 108.
    Koulova L, Clark EA, Shu G, et al. The CD28 ligand B7/BB1 provides costimulatory signal for alloactivation of CD4+ T cells. J Exp Med 1991;173:759–762.PubMedCrossRefGoogle Scholar
  109. 109.
    Hathcock KS, Laszlo G, Pucillo C, et al. Comparative analysis of B7-1 and B7-2 costimulatory ligands: expression and function. J Exp Med 1994;180:631–640.PubMedCrossRefGoogle Scholar
  110. 110.
    deVries TJ, Fourkour A, Wobbes T, et al. Heterogeneous expression of immunotherapy candidate proteins gp100, MART-1, and tyrosinase in human melanoma cell lines and in human melanocyte lesions. Cancer Res 1997;57:3223.Google Scholar
  111. 111.
    Kawakami Y, Zakut R, Topalian SL, et al. Shared human melanoma antigens. Recognition by tumor-infiltrating lymphocytes in HLA-A2.1-transfected melanomas. J Immunol 1992;148:638–643.PubMedGoogle Scholar
  112. 112.
    Horn SS, Topalian SL, Simonis T, et al. Common expression of melanoma tumor-associated antigens recognized by human tumor infiltrating lymphocytes: analysis by human lymphocyte antigen restriction. J Immunother 1991;10:153–164.CrossRefGoogle Scholar
  113. 113.
    Bakker AB, Schreurs MW, de Boer AJ, et al. Melanocyte lineage-specific antigen gp100 is recognized by melanoma-derived tumor-infiltrating lymphocytes. J Exp Med 1994;179:1005–1009.PubMedCrossRefGoogle Scholar
  114. 114.
    Elliott BE, Carlow DA, Rodricks AM, et al. Perspectives on the role of MHC antigens in normal and malignant cell development. Adv Cancer Res 1989;53:181–245.PubMedCrossRefGoogle Scholar
  115. 115.
    Doyle A, Martin WJ, Funa K, et al. Markedly decreased expression of class I histocompatibility antigens, protein, and mRNA in human small-cell lung cancer. J Exp Med 1985;161:1135–1151.PubMedCrossRefGoogle Scholar
  116. 116.
    Lassam N, Jay G. Suppression of MHC class I RNA in highly oncogenic cells occurs at the level of transcription initiation. J Immunol 1989;143:3792–3797.PubMedGoogle Scholar
  117. 117.
    Lehmann F, Marchand M, Hainaut P, et al. Differences in the antigens recognized by cytolytic T cells on two successive metastases of a melanoma patient are consistent with immune selection. Eur J Immunol 1995;25:340–347.PubMedCrossRefGoogle Scholar
  118. 118.
    Jager E, Ringhoffer M, Altmannsberger M, et al. Immunoselection in vivo: independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma. Int J Cancer 1997;71:142–147.PubMedCrossRefGoogle Scholar
  119. 119.
    Rivoltini L, Barracchini KC, Viggiano V, et al. Quantitative correlation between HLA class I allele expression and recognition of melanoma cells by antigen-specific cytotoxic T lymphocytes. Cancer Res 1995;55:3149–3157.PubMedGoogle Scholar
  120. 120.
    Restifo NP, Esquivel F, Kawakami Y, et al. Identification of human cancers deficient in antigen processing. J Exp Med 1993;177:265–272.PubMedCrossRefGoogle Scholar
  121. 121.
    Restifo NP, Esquivel F, Asher AL, et al. Defective presentation of endogenous antigens by a murine sarcoma. Implications for the failure of an anti-tumor immune response. J Immunol 1991;147:1453–1459.PubMedGoogle Scholar
  122. 122.
    Sanda MG, Restifo NP, Walsh JC, et al. Molecular characterization of defective antigen processing in human prostate cancer. J Natl Cancer Inst 1995;87:280–285.PubMedCrossRefGoogle Scholar
  123. 123.
    Sibille C, Gould KG, Willard-Gallo K, et al. LMP2+ proteasomes are required for the presentation of specific antigens to cytotoxic T lymphocytes. Curr Biol 1995;5:923–930.PubMedCrossRefGoogle Scholar
  124. 124.
    Maeurer MJ, Gollin SM, Martin D, et al. Tumor escape from immune recognition: lethal recurrent melanoma in a patient associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen. J Clin Invest 1996;98:1633–1641.PubMedCrossRefGoogle Scholar
  125. 125.
    Hahne M, Rimoldi D, Schroter M, et al. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape [see comment]. Science 1996;274:1363–1366.PubMedCrossRefGoogle Scholar
  126. 126.
    Jager E, Ringhoffer M, Karbach J, et al. Inverse relationship of melanocyte differentiation antigen expression in melanoma tissues and CD8+ cytotoxic-T-cell responses: evidence for immunoselection of antigen-loss variants in vivo. Int J Cancer 1996;66:470–476.PubMedCrossRefGoogle Scholar
  127. 127.
    Bansal V, Ochoa JB. Arginine availability, arginase, and the immune response. Curr Opin Clin Nutr Metab Care 2003;6:223–228.PubMedCrossRefGoogle Scholar
  128. 128.
    Munn DH, Mellor AL. IDO and tolerance to tumors. Trends Mol Med 2004;10:15–18.PubMedCrossRefGoogle Scholar
  129. 129.
    Munn DH, Sharma MD, Lee JR, et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 2002;297:1867–1870.PubMedCrossRefGoogle Scholar
  130. 130.
    Gajewski TF, Peterson AC, Slingluff C, McKee M, Harlin H. Reciprocal expression of indoleamine-2,3-dioxygenase (IDO) and arginase-I in metastatic melanoma tumors. J Clin Oncol 2005; ASCO abstract 7523.Google Scholar
  131. 131.
    Gajewski TF. Overcoming immune resistance in the tumor microenvironment by blockade of indoleamine 2,3-dioxygenase and programmed death ligand 1. Curr Opin Invest Drugs 2004;5:1279–1283.Google Scholar
  132. 132.
    Yamshchikov GV, Mullins DW, Chang CC, et al. Sequential immune escape and shifting of T cell responses in a long-term survivor of melanoma. J Immunol 2005;174:6863–6871.PubMedGoogle Scholar
  133. 133.
    Chappell DB, Restifo NP. T cell-tumor cell: a fatal interaction? Cancer Immunol Immunother 1998;47:65–71.PubMedCrossRefGoogle Scholar
  134. 134.
    Perkins D, Wang Z, Donovan C, et al. Regulation of CTLA-4 expression during T cell activation. J Immunol 1996;156:4154–4159.PubMedGoogle Scholar
  135. 135.
    Hurwitz AA, Yu TF, Leach DR, et al. CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc Natl Acad Sci U S A 1998;95:10067–10071.PubMedCrossRefGoogle Scholar
  136. 136.
    Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 1995;182:459–465.PubMedCrossRefGoogle Scholar
  137. 137.
    Chambers CA, Sullivan TJ, Allison JP. Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity 1997;7:885–895.PubMedCrossRefGoogle Scholar
  138. 138.
    Attia P, Phan GQ, Maker AV, et al. Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4 [see comment]. J Clin Oncol 2005;23:6043–6053.PubMedCrossRefGoogle Scholar
  139. 139.
    Blank C, Gajewski TF, Mackensen A. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol Immunother 2005;54:307–314.PubMedCrossRefGoogle Scholar
  140. 140.
    Hsueh EC, Gupta RK, Qi K, et al. Correlation of specific immune responses with survival in melanoma patients with distant metastases receiving polyvalent melanoma cell vaccine. J Clin Oncol 1998;16:2913–2920.PubMedGoogle Scholar
  141. 141.
    Clemente CG, Mihm MC Jr, Bufalino R, et al. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer (Phila) 1996;77:1303–1310.PubMedCrossRefGoogle Scholar
  142. 142.
    Aaltomaa S, Lipponen P, Eskelinen M, et al. Lymphocyte infiltrates as a prognostic variable in female breast cancer. Eur J Cancer 1992;28 A:859–864.CrossRefGoogle Scholar
  143. 143.
    Clark WH Jr, Elder DE, Guerry D, et al. Model predicting survival in stage I melanoma based on tumor progression. J Natl Cancer Inst 1989;81:1893–1904.PubMedCrossRefGoogle Scholar
  144. 144.
    Naito Y, Saito K, Shiiba K, et al. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 1998;58:3491–3494.PubMedGoogle Scholar
  145. 145.
    DeLisle D. Traite du Vice Cancereux. Paris: Couturier Fils, 1774.Google Scholar
  146. 146.
    Fehleisen F. Uber die Zuchtung der Erysipel-Kokken auf Kun-stlichen Nahrboden und die Ubertragbarkeit auf den Menschen. Deutsch Med Wochenschr 1882;8:533.Google Scholar
  147. 147.
    Bruns P. Die Heilwirkung des Erysipels auf Geschwulste. Beitr Klin Chir 1887;3:443.Google Scholar
  148. 148.
    Coley WB. The mixed toxins of erysipelas and Bacillus prodigiosus in the treatment of sarcoma. JAMA 1900;34:906–908.Google Scholar
  149. 149.
    Coley WB. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelatis and the Bacillus prodigiousis. Proc R Soc Med Surg Sect 1909;3:1.Google Scholar
  150. 150.
    Patard JJ, Saint F, Velotti F, et al. Immune response following intravesical bacillus Calmette-Guerin instillations in superficial bladder cancer: a review. Urol Res 1998;26:155–159.PubMedCrossRefGoogle Scholar
  151. 151.
    Morton DL, Eilber FR, Malgrem RA, et al. Immunological factors which influence response to immunotherapy in malignant melanoma. Surgery (St. Louis) 1970;68:158–164.PubMedGoogle Scholar
  152. 152.
    Lieberman R, Wybran J, Epstein W. The immunologic and histopathologic changes of BCG-mediated tumor regression in patients with malignant melanoma. Cancer (Phila) 1975;35:756–777.PubMedCrossRefGoogle Scholar
  153. 153.
    Vermorken JB. Active specific immunotherapy for stage II and stage HI human colon cancer: a randomised trial. Lancet 1999;353:345–350.PubMedCrossRefGoogle Scholar
  154. 154.
    Harris JE, Ryan L, Hoover HC Jr, et al. Adjuvant active specific immunotherapy for stage II and HI colon cancer with an autologous tumor cell vaccine: Eastern Cooperative Oncology Group Study E5283. J Clin Oncol 2000;18:148–157.PubMedGoogle Scholar
  155. 155.
    Berd D, Maguire HC Jr, Schuchter LM, et al. Autologous haptenmodified melanoma vaccine as postsurgical adjuvant treatment after resection of nodal metastases. J Clin Oncol 1997;15:2359–2370.PubMedGoogle Scholar
  156. 156.
    Wallack MK, Sivanandham M, Balch CM, et al. Surgical adjuvant active specific immunotherapy for patients with stage HI melanoma: the final analysis of data from a phase III, randomized, double-blind, multicenter vaccinia melanoma oncolysate trial. J Am Coll Surg 1998;187:69–77.PubMedCrossRefGoogle Scholar
  157. 157.
    Tafra L, Dale PS, Wanek LA, et al. Resection and adjuvant immunotherapy for melanoma metastatic to the lung and thorax. J Thorac Cardiovasc Surg 1995;110:119–129.PubMedCrossRefGoogle Scholar
  158. 158.
    Morton DL, Foshag LJ, Hoon DS, et al. Prolongation of survival in metastatic melanoma after active specific immunotherapy with a new polyvalent melanoma vaccine. Ann Surg 1992;216:463–82.PubMedCrossRefGoogle Scholar
  159. 159.
    Reynolds SR, Oratz R, Shapiro RL, et al. Stimulation of CD8+ T cell responses to MAGE-3 and Melan A/MART-1 by immunization to a polyvalent melanoma vaccine. Int J Cancer 1997;72:972–976.PubMedCrossRefGoogle Scholar
  160. 160.
    Applebaum J, Reynolds S, Knispel J, et al. Identification of melanoma antigens that are immunogenic in humans and expressed in vivo. J Natl Cancer Inst 1998;90:146–149.PubMedCrossRefGoogle Scholar
  161. 161.
    Bystryn JC, Zeleniuch-Jacquotte A, Oratz R, et al. Double-blind trial of a polyvalent, shed-antigen, melanoma vaccine [see comment]. Clin Cancer Res 2001;7:1882–1887.PubMedGoogle Scholar
  162. 162.
    Zhou X, Jun dY, Thomas AM, et al. Diverse CD8+ T-cell responses to renal cell carcinoma antigens in patients treated with an autologous granulocyte-macrophage colony-stimulating factor gene-transduced renal tumor cell vaccine. Cancer Res 2005;65:1079–1088.PubMedGoogle Scholar
  163. 163.
    Soiffer R, Hodi FS, Haluska F, et al. Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol 2003;21:3343–3350.PubMedCrossRefGoogle Scholar
  164. 164.
    Salgia R, Lynch T, Skarin A, et al. Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma [see comment]. J Clin Oncol 2003;21:624–630.PubMedCrossRefGoogle Scholar
  165. 165.
    Jaffee EM, Hruban RH, Biedrzycki B, et al. Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J Clin Oncol 2001;19:145–156.PubMedGoogle Scholar
  166. 166.
    Helling F, Zhang S, Shang A, et al. GM2-KLH conjugate vaccine: increased immunogenicity in melanoma patients after administration with immunological adjuvant QS-21. Cancer Res 1995;55:2783–2788.PubMedGoogle Scholar
  167. 167.
    Livingston P, Zhang S, Adluri S, et al. Tumor cell reactivity mediated by IgM antibodies in sera from melanoma patients vaccinated with GM2 ganglioside covalently linked to KLH is increased by IgG antibodies. Cancer Immunol Immunother 1997;43:324–330.PubMedCrossRefGoogle Scholar
  168. 168.
    Livingston PO, Adluri S, Helling F, et al. Phase 1 trial of immunological adjuvant QS-21 with a GM2 ganglioside-keyhole limpet haemocyanin conjugate vaccine in patients with malignant melanoma. Vaccine 1994;12:1275–1280.PubMedCrossRefGoogle Scholar
  169. 169.
    Livingston PO, Wong GY, Adluri S, et al. Improved survival in stage HI melanoma patients with GM2 antibodies: a randomized trial of adjuvant vaccination with GM2 ganglioside. J Clin Oncol 1994;12:1036–1044.PubMedGoogle Scholar
  170. 170.
    Kirkwood JM, Ibrahim JG, Sosman JA, et al. High-dose interferon alfa-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-in melanoma: results of inter-group trial E1694/S9512/C509801. J Clin Oncol 2001;19:2370–2380.PubMedGoogle Scholar
  171. 171.
    Davis TA, Maloney DG, Czerwinski DK, et al. Anti-idiotype antibodies can induce long-term complete remissions in non-Hodgkin’s lymphoma without eradicating the malignant clone. Blood 1998;92:1184–1190.PubMedGoogle Scholar
  172. 172.
    Weng WK, Czerwinski D, Timmerman J, et al. Clinical outcome of lymphoma patients after idiotype vaccination is correlated with humoral immune response and immunoglobulin G Fc receptor genotype. [Erratum appears in J Clin Oncol 2005; 23(1):248.] J Clin Oncol 2004;22:4717–4724.PubMedCrossRefGoogle Scholar
  173. 173.
    Timmerman JM, Czerwinski DK, Davis TA, et al. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 2002;99:1517–1526.PubMedCrossRefGoogle Scholar
  174. 174.
    Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004;10:909–915.PubMedCrossRefGoogle Scholar
  175. 175.
    Huang AYC, Golumbek P, Ahmadzadeh M, et al. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 1994;264:961–965.PubMedCrossRefGoogle Scholar
  176. 176.
    Tuting T, DeLeo AB, Lotze MT, et al. Genetically modified bone marrow-derived dendritic cells expressing tumor-associated viral or “self” antigens induce antitumor immunity in vivo. Eur J Immunol 1997;27:2702–2707.PubMedCrossRefGoogle Scholar
  177. 177.
    Mayordomo JI, Zorina T, Storkus WJ, et al. Bone marrow-derived dendritic cells serve as potent adjuvants for peptide-based antitumor vaccines. Stem Cells 1997;15:94–103.PubMedCrossRefGoogle Scholar
  178. 178.
    Dematos P, Abdel-Wahab Z, Vervaert C, et al. Vaccination with dendritic cells inhibits the growth of hepatic metastases in B6 mice. Cell Immunol 1998;185:65–74.PubMedCrossRefGoogle Scholar
  179. 179.
    Gilboa E, Nair SK, Lyerly HK. Immunotherapy of cancer with dendritic-cell-based vaccines. Cancer Immunol Immunother 1998;46:82–87.PubMedCrossRefGoogle Scholar
  180. 180.
    Morse MA, Lyerly HK, Gilboa E, et al. Optimization of the sequence of antigen loading and CD40-ligand-induced maturation of dendritic cells. Cancer Res 1998;58:2965–2968.PubMedGoogle Scholar
  181. 181.
    Nair SK, Snyder D, Rouse BT, et al. Regression of tumors in mice vaccinated with professional antigen-presenting cells pulsed with tumor extracts. Int J Cancer 1997;70:706–715.PubMedCrossRefGoogle Scholar
  182. 182.
    Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide-or tumor lysate-pulsed dendritic cells. Nat Med 1998;4:328–332.PubMedCrossRefGoogle Scholar
  183. 183.
    Banchereau J, Palucka AK, Dhodapkar M, et al. Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res 2001;61:6451–6458.PubMedGoogle Scholar
  184. 184.
    Hersey P, Menzies SW, Halliday GM, et al. Phase I/II study of treatment with dendritic cell vaccines in patients with disseminated melanoma. Cancer Immunol Immunother 2004;53:125–134.PubMedCrossRefGoogle Scholar
  185. 185.
    Munn DH, Sharma MD, Hou D, et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. [Erratum appears in J Clin Invest 2004; 114(4):599.] J Clin Invest 2004;114:280–290.PubMedGoogle Scholar
  186. 186.
    Dhodapkar MV, Steinman RM, Krasovsky J, et al. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 2001;193:233–238.PubMedCrossRefGoogle Scholar
  187. 187.
    Bhardwaj N. Interactions of viruses with dendritic cells: a double-edged sword. J Exp Med 1997;186:795–799.PubMedCrossRefGoogle Scholar
  188. 188.
    Chakraborty A, Li L, Chakraborty NG, et al. Stimulatory and inhibitory differentiation of human myeloid dendritic cells. Clin Immunol 2000;94:88–98.PubMedCrossRefGoogle Scholar
  189. 189.
    Starzl TE, Demetris AJ, Rao AS, et al. Migratory nonparenchymal cells after organ allotransplantation: with particular reference to chimerism and the liver. Prog Liver Dis 1994;12:191–213.PubMedGoogle Scholar
  190. 190.
    Schadendorf D, Nestle FO, Broecker E-B, et al. Dacarbacine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) as first-line treatment of patients with metastatic melanoma: results of a prospective-randomized phase III study. J Clin Oncol 2004;22:7508 (abstr 7508).Google Scholar
  191. 191.
    Lee P, Wang F, Kuniyoshi J, et al. Effects of interleukin-12 on the immune response to a multipeptide vaccine for resected metastatic melanoma. J Clin Oncol 2001;19:3836–3847.PubMedGoogle Scholar
  192. 192.
    Slingluff CL Jr, Petroni GR, Yamshchikov GV, et al. Clinical and immunologic results of a randomized phase II trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J Clin Oncol 2003;21:4016–4026.PubMedCrossRefGoogle Scholar
  193. 193.
    Weber J, Sondak VK, Scotland R, et al. Granulocyte-macrophage-colony-stimulating factor added to a multipeptide vaccine for resected stage II melanoma. Cancer (Phila) 2003;97:186–200.PubMedCrossRefGoogle Scholar
  194. 194.
    Scheibenbogen C, Schadendorf D, Bechrakis NE, et al. Effects of granulocyte-macrophage colony-stimulating factor and foreign helper protein as immunologic adjuvants on the T-cell response to vaccination with tyrosinase peptides. Int J Cancer 2003;104:188–194.PubMedCrossRefGoogle Scholar
  195. 195.
    Speiser DE, Lienard D, Rufer N, et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J Clin Invest 2005;115:739–746.PubMedGoogle Scholar
  196. 196.
    Fagerberg J, Ragnhammar P, Liljefors M, et al. Humoral antiidiotype and anti-anti-idiotypic immune response in cancer patients treated with monoclonal antibody 17-1 A. Cancer Immunol Immunother 1996;42:81–87.PubMedCrossRefGoogle Scholar
  197. 197.
    Scott AM, Welt S. Antibody-based immunological therapies. Curr Opin Immunol 1997;9:718.CrossRefGoogle Scholar
  198. 198.
    Stern P, Herrmann R. Overview of monoclonal antibodies in cancer therapy: present and promise. Crit Rev Oncol-Hematol 2005;54:11–29.PubMedCrossRefGoogle Scholar
  199. 199.
    Atkins MB, Kunkel L, Sznol M, et al. High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long-term survival update. Cancer J Sci Am 2000;6(suppl 1):S11–S14.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Craig L. SlingluffJr.
    • 1
  1. 1.Department of SurgeryUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations