Surgery pp 1933-1945 | Cite as

Fundamentals of Cancer Cell Biology and Molecular Targeting

  • Steven N. Hochwald
  • David Bloom
  • Vita Golubovskaya
  • William G. Cance


Despite recent advances in surgery, chemotherapy, and radiation treatment, survival of patients with advanced malignancy remains suboptimal. Fortunately, our understanding of the origins of cancer has changed dramatically during the past 25 years, owing in large part to the revolution in molecular biology that has changed all biomedical research. Powerful experimental tools are available to cancer biologists and have made it possible to uncover and dissect the complex molecular machinery operating inside normal and malignant cells. In addition, these tools have allowed researchers to pinpoint the defects that cause cancer cells to signal and proliferate abnormally.


Vascular Endothelial Growth Factor Epidermal Growth Factor Receptor Chronic Myeloid Leukemia Focal Adhesion Kinase Epidermal Growth Factor Receptor Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature (Lond) 2001;411:355–365.PubMedCrossRefGoogle Scholar
  2. 2.
    Craven RJ, Lightfoot H, Cance WG. A decade of tyrosine kinases: from gene discovery to therapeutics. Surg Oncol 2003;12:39–50.PubMedCrossRefGoogle Scholar
  3. 3.
    Jones RJ, Brunton VG, Frame MC. Adhesion-linked kinases in cancer: emphasis on src, focal adhesion kinase and PI 3-kinase. Eur J Cancer 2000;36:1595–1606.PubMedCrossRefGoogle Scholar
  4. 4.
    Lawlor MA, Alessi DR. PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 2001;114:2903–2910.PubMedGoogle Scholar
  5. 5.
    McLean G, Avizienyte E, Frame MC. Focal adhesion kinase as a potential target in oncology. Expert Opin Pharmacother 2003;4:227–234.PubMedCrossRefGoogle Scholar
  6. 6.
    Mendelsohn J, Baselga J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol 2003;21:2787–2799.PubMedCrossRefGoogle Scholar
  7. 7.
    Mareel M, Leroy A. Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev 2003;83:337–376.PubMedGoogle Scholar
  8. 8.
    Boyer B, Valles AM, Edme N. Induction and regulation of epithelial-mesenchymal transitions. Biochem Pharmacol 2000;60:1091–1099.PubMedCrossRefGoogle Scholar
  9. 9.
    Balda MS, Matter K. Epithelial cell adhesion and the regulation of gene expression. Trends Cell Biol 2003;13:310–318.PubMedCrossRefGoogle Scholar
  10. 10.
    Frisch SM, Vuori K, Ruoslahti E, Chan-Hui PY. Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 1996;134:793–799.PubMedCrossRefGoogle Scholar
  11. 11.
    Ruoslahti E, Reed JC. Anchorage dependence, integrins and apoptosis. Cell 1994;77:477–478.PubMedCrossRefGoogle Scholar
  12. 12.
    Rodriguez-Fernandez JL. Why do so many stimuli induce tyrosine phosphorylation of FAK? Bioessays 1999;21:1069–1075.PubMedCrossRefGoogle Scholar
  13. 13.
    Sulston JE, Schierenberg E, White JG, et al. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983;100:64.PubMedCrossRefGoogle Scholar
  14. 14.
    Cerretti DP, Kozlosky CJ, Mosley B, et al. Molecular cloning of the interleukin-1 beta converting enzyme. Science 1992;256:97–100.PubMedCrossRefGoogle Scholar
  15. 15.
    Thornberry NA, Bull HG, Calaycay JR, et al. A novel heterodi-meric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature (Lond) 1992;356:768–774.PubMedCrossRefGoogle Scholar
  16. 16.
    Yuan J, Shaham S, Ledoux S, et al. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 1993;75:641–652.PubMedCrossRefGoogle Scholar
  17. 17.
    Hengartner MO, Horvitz HR. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-onco-gene bcl-2. Cell 1994;76:665–676.PubMedCrossRefGoogle Scholar
  18. 18.
    Vaux DL, Weissman IL, Kim SK. Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science 1992;258:1955–1957.PubMedCrossRefGoogle Scholar
  19. 19.
    Leist M, Jaattela M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2001;2:589–598.PubMedCrossRefGoogle Scholar
  20. 20.
    Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998;281:1312–1316.PubMedCrossRefGoogle Scholar
  21. 21.
    Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates and functions during apoptosis. Annu Rev Biochem 1999;68:383–424.PubMedCrossRefGoogle Scholar
  22. 22.
    Strasser A, O’Connor L, Dixit VM. Apoptosis signaling. Annu Rev Biochem 2000;69:217–245.PubMedCrossRefGoogle Scholar
  23. 23.
    Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995;81:505–512.PubMedCrossRefGoogle Scholar
  24. 24.
    Chinnaiyan AM, Tepper CG, Seldin MF, et al. FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis. J Biol Chem 1996;271:4961–4965.PubMedCrossRefGoogle Scholar
  25. 25.
    Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 1995;81:495–504.PubMedCrossRefGoogle Scholar
  26. 26.
    Stanger BZ, Leder P, Lee TH, et al. RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 1995;81:513–523.PubMedCrossRefGoogle Scholar
  27. 27.
    Cory S, Adams J. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2002;2:647–656.PubMedCrossRefGoogle Scholar
  28. 28.
    Kirkin V, Joos S, Zornig M. The role of Bcl-2 family members in tumorigenesis. Biochim Biophys Acta 2004;1644:229–249.PubMedCrossRefGoogle Scholar
  29. 29.
    Lane DP. p53, guardian of the genome. Nature (Lond) 1992;358:15–16.PubMedCrossRefGoogle Scholar
  30. 30.
    Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors. Nature (Lond) 1992;356:215–221.PubMedCrossRefGoogle Scholar
  31. 31.
    Williams BO, Remington L, Albert DM, et al. Mice deficient in both p53 and Rb develop tumors primarily of endocrine origin. Cancer Res 1995;55:1146–1151.Google Scholar
  32. 32.
    Wei MC, Zong WX, Cheng EG, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001;292:727–730.PubMedCrossRefGoogle Scholar
  33. 33.
    Ionov Y, Yamamoto H, Krajewski S. Mutational inactivation of the proapoptotic gene BAX confers selective advantage during tumor clonal evolution. Proc Natl Acad Sci U S A 2000;97:10872–10877.PubMedCrossRefGoogle Scholar
  34. 34.
    Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 2000;18:621–663.PubMedCrossRefGoogle Scholar
  35. 35.
    Ghosh S, Karin M. Missing pieces in the NF-κB puzzle. Cell 2002;109(suppl):S81–S96.PubMedCrossRefGoogle Scholar
  36. 36.
    Baldwin AS. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB. J Clin Invest 2001;107:241–246.PubMedCrossRefGoogle Scholar
  37. 37.
    Karin M, Cao Y, Greten FR, et al. NF-κB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002;2:301–310.PubMedCrossRefGoogle Scholar
  38. 38.
    Beg AA, Baltimore D. An essential role for NF-κB in preventing TNF-α-induced cell death. Science 1996;274:782–784.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang C-Y, Mayo MW, Baldwin AS Jr. TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science 1996;274:784–787.PubMedCrossRefGoogle Scholar
  40. 40.
    Van Antwerp DJ, Martin SJ, Kafri T, et al. Suppression of TNF-α-induced apoptosis by NF-κB. Science 1996;274:787–789.PubMedCrossRefGoogle Scholar
  41. 41.
    Liu Z-G, Hu H, Goeddel DV, et al. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis, while NF-κB activation prevents cell death. Cell 1996;87:565–576.PubMedCrossRefGoogle Scholar
  42. 42.
    Rayet B, Gelinas C. Aberrant rel/nfkb genes and activity in human cancer. Oncogene 1999;18:6938–6947.PubMedCrossRefGoogle Scholar
  43. 43.
    Lin A, Karin M. NF-kappaB in cancer: a marked target. Semin Cancer Biol 2003;13:107–114.PubMedCrossRefGoogle Scholar
  44. 44.
    Lee HH, Dadgostar H, Cheng Q, et al. NF-κB-mediated up-regulation of Bcl-x and Bfl-l/Al is required for CD40 survival signaling in B lymphocytes. Proc Natl Acad Sci USA 1999;96:9136–9141.PubMedCrossRefGoogle Scholar
  45. 45.
    Chen C, Edelstein LC, Gelinas C. The Rel/NF-κB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol 2000;20:2687–2695.PubMedCrossRefGoogle Scholar
  46. 46.
    Grossmann M, O’Reilly LA, Gugasyan R, et al. The anti-apoptotic activities of Rel and RelA required during B-cell maturation involve the regulation of Bcl-2 expression. EMBO J 2000;19:6351–6360.PubMedCrossRefGoogle Scholar
  47. 47.
    Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182–1186.PubMedGoogle Scholar
  48. 48.
    Folkman J, Shing Y. Angiogenesis. J Biol Chem 1992;267:10931–10934.PubMedGoogle Scholar
  49. 49.
    Folkman J, Watson K, Ingber D, et al. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature (Lond) 1989;339:58–61.CrossRefGoogle Scholar
  50. 50.
    Eckhardt G. Angiogenesis inhibitors as cancer therapy. Hosp Pract 1999;34(1):63–68, 77–79, 83–84.CrossRefGoogle Scholar
  51. 51.
    Folkman J. Fundamental concepts of the angiogenic process. Curr Mol Med 2003;3:643–651.PubMedCrossRefGoogle Scholar
  52. 52.
    Hanahan D, Folkman J. Patterns of emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996;86:353–364.PubMedCrossRefGoogle Scholar
  53. 53.
    Hojilla CV, Mohammed FF, Khokha R. Matrix metalloprotein-ases and their tissue inhibitors direct cell fate during cancer development. Br J Cancer 2003;89:1817–1821.PubMedCrossRefGoogle Scholar
  54. 54.
    O’Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994;79:315–328.PubMedCrossRefGoogle Scholar
  55. 55.
    O’Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997;88:277–285.PubMedCrossRefGoogle Scholar
  56. 56.
    Sridhar SS, Shepherd FA. Targeting angiogenesis: a review of angiogenesis inhibitors in the treatment of lung cancer. Lung Cancer 2003;Suppl 1:S81–S91.CrossRefGoogle Scholar
  57. 57.
    Fidler IJ, Ellis LM. The implications of angiogenesis to the biology and therapy of cancer metastasis. Cell 1994;79:185–188.PubMedCrossRefGoogle Scholar
  58. 58.
    Liotta LA, Steeg PS, Settler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 1991;64:327–336.PubMedCrossRefGoogle Scholar
  59. 59.
    Meert AP, Paesmans M, Martin B, et al. The role of microvessel density on the survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer 2002;87:694–701.PubMedCrossRefGoogle Scholar
  60. 60.
    Sauer G, Deissler H. Angiogenesis: prognostic and therapeutic implications in gynecologic and breast malignancies. Curr Opin Obstet Gynecol 2003;15:45–49.PubMedCrossRefGoogle Scholar
  61. 61.
    Poon RT, Fan ST, Wong J. Clinical significance of angiogenesis in gastrointestinal cancers: a target for novel prognostic and therapeutic approaches. Ann Surg 2003;238:9–28.PubMedCrossRefGoogle Scholar
  62. 62.
    Shirabe K, Shimada M, Tsujita E, et al. Prognostic factors in node-negative intrahepatic cholangiocarcinoma with special reference to angiogenesis. Am J Surg 2004;187:538–542.CrossRefGoogle Scholar
  63. 63.
    Delmotte P, Martin B, Paesmans M, et al. VEGF and survival of patients with lung cancer: a systematic literature review and meta-analysis. Rev Mai Respir 2002;19:577–584.Google Scholar
  64. 64.
    Vihinen P, Kahari VM. Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int J Cancer 2002;99:157–166.PubMedCrossRefGoogle Scholar
  65. 65.
    Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001;2:127–137.PubMedCrossRefGoogle Scholar
  66. 66.
    Fujino S, Enokibori T, Tezuka N, et al. A comparison of epidermal growth factor receptor levels and other prognostic parameters in non-small cell lung cancer. Eur J Cancer 1996;32A:2070–2074.PubMedCrossRefGoogle Scholar
  67. 67.
    Rusch V, Klimstra D, Venkatraman E, et al. Overexpression of the epidermal growth factor receptor and its ligand transforming growth factor is frequent in resectable non-small cell lung cancer but does not predict tumor progression. Clin Cancer Res 1997;3:515–522.PubMedGoogle Scholar
  68. 68.
    Fontanini G, De Laurentiis M, Vignati S, et al. Evaluation of epidermal growth factor-related growth factors and receptors and of neoangiogenesis in completely resected stage I-IIIA non-small cell lung cancer: amphiregulin and microvessel count are independent prognostic indicators of survival. Clin Cancer Res 1998;4:241–249.PubMedGoogle Scholar
  69. 69.
    Salomon DS, Brandt R, Ciardiello F, et al. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995;53:167–176.Google Scholar
  70. 70.
    Messa C, Russo F, Caruso MG, et al. EGF, TGF-α, and EGF-R in human colorectal adenocarcinoma. Acta Oncol 1998;37:285–289.PubMedCrossRefGoogle Scholar
  71. 71.
    Fischer-Colbrie J, Witt A, Heinzl H, et al. EGFR and steroid receptors in ovarian carcinoma: comparison with prognostic parameters and out come of patients. Anticancer Res 1997;17:613–619.PubMedGoogle Scholar
  72. 72.
    Bartlett JM, Langdon SP, Simpson BJ, et al. The prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer. Br J Cancer 1996;73:301–306.PubMedGoogle Scholar
  73. 73.
    Walker RA, Dearing SJ. Expression of epidermal growth factor receptor mRNA and protein in primary breast carcinomas. Breast Cancer Res Treat 1999;53:167–176.PubMedCrossRefGoogle Scholar
  74. 74.
    Beckmann MW, Niederacher D, Massenkeil G, et al. Expression analyses of epidermal growth factor receptor and HER-2/neu: no advantage of prediction of recurrence or survival in breast cancer patients. Oncology 1996;53:441–447.PubMedCrossRefGoogle Scholar
  75. 75.
    Bucci B, D’Agnano I, Botti C, et al. EGF-R expression in ductal breast cancer: proliferation and prognostic implications. Anticancer Res 1997;17:769–774.PubMedGoogle Scholar
  76. 76.
    Uegaki K, Nio Y, Inoue Y, et al. Clinicopathological significance of epidermal growth factor and its receptor in human pancreatic cancer. Anticancer Res 1997;17:3841–3847.PubMedGoogle Scholar
  77. 77.
    Xu F, Lupu R, Rodriguez GC; et al. Antibody-induced growth inhibition is mediated through immunochemically and functionally distinct epitopes on the extracellular domain of the c-erb-2 (HER-2/neu) gene product pl85. Int J Cancer 1993;53:401–408.PubMedCrossRefGoogle Scholar
  78. 78.
    Baselga J, Tripathy D, Mendelsohn J, et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 1996;14:737–744.PubMedGoogle Scholar
  79. 79.
    Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanized anti-HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999;17:2639–2648.PubMedGoogle Scholar
  80. 80.
    Nahta R, Iglehart JD, Kempkes B, et al. Rate-limiting effects of cyclin Dl in transformation by ErbB2 predicts synergy between herceptin and flavopiridol. Cancer Res 2002;62:2267–2271.PubMedGoogle Scholar
  81. 81.
    Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 2002;20:719–726.PubMedCrossRefGoogle Scholar
  82. 82.
    Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001;344:783–792.PubMedCrossRefGoogle Scholar
  83. 83.
    Cunningham D, Humblet Y, Siena S, et al. Cetuximab (C225) alone or in combination with irinotecan (CPT-11) in patients with epidermal growth factor receptor (EGFR)-positive, irinote-can-refractory metastatic colorectal cancer (MCRC). Proc Am Soc Clin Oncol 2003;22:1012.Google Scholar
  84. 84.
    Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol 2003;21:2237–2246.PubMedCrossRefGoogle Scholar
  85. 85.
    Kris MG, Natale RB, Herbst RS, et al. A phase II trial of ZD1839 (Iressa) in advanced non-small cell lung cancer (NSCLC) patients who had failed platinum-and docetaxel-based regimens (IDEAL 2). Proc Am Soc Clin Oncol 2002;21:292a.Google Scholar
  86. 86.
    Senzer NN, Soulieres D, Siu L, et al. Phase 2 evaluation of OSI-774, a potent oral antagonist of the EGFR-TK in patients with advanced squamous cell carcinoma of the head and neck. Proc Am Soc Clin Oncol 2001;20:2a.Google Scholar
  87. 87.
    Finkler N, Gordon A, Crozier M, et al. Phase 2 evaluation of OSI-774, a potent oral antagonist of the EGFR-TK in patients with advanced ovarian carcinoma. Proc Am Soc Clin Oncol 2001;20:208a.Google Scholar
  88. 88.
    Perez-Soler R, Chachoua A, Huberman M, et al. Final results from a phase II study of erlotinib (Tarceva) monotherapy in patients with advanced non-small cell lung cancer following failure of platinum-based chemotherapy. Lung Cancer 2003;41(suppl 2):S246.CrossRefGoogle Scholar
  89. 89.
    Giaccone G, Johnson DH, Manegold C, et al. A phase III clinical trial of ZD1839 (Iressa) in combination with gemcitabine and cisplatin in chemotherapy-naive patients with advanced non-small-cell lung cancer (INTACT 1). Ann Oncol 2002;13(suppl 5):2.Google Scholar
  90. 90.
    Johnson DH, Herbst R, Giaccone G, et al. ZD1839 (Iressa) in combination with paclitaxel and carboplatin in chemotherapy-naive patients with advanced non-small-cell lung cancer (NSCLC): results from a phase III clinical trial (INTACT 2). Ann Oncol 2002;13(suppl 5):127.Google Scholar
  91. 91.
    Sirotnak FM. Studies with ZD1839 in preclinical models. Semin Oncol 2003;30(suppl 1):12–20.PubMedCrossRefGoogle Scholar
  92. 92.
    Mellinghoff IK, Sawyers CL. Kinase inhibitor therapy in cancer. Princ Pract Oncol 2000;14:1–11.Google Scholar
  93. 93.
    Druker BJ, Lydon NB. Lessons learned from the development of an Abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J Clin Invest 2000;105:3–7.PubMedCrossRefGoogle Scholar
  94. 94.
    DeMatteo RP, Lewis JL, Leung D, et al. Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann Surg 2000;231:51–58.PubMedCrossRefGoogle Scholar
  95. 95.
    Edmondson J, Marks R, Buckner J, et al. Contrast of response to D-MAP + sargramostim between patients with advanced malignant gastrointestinal stromal tumors and patients with other advanced leiomyosarcomas. Proc Am Soc Clin Oncol 1999;18:541.Google Scholar
  96. 96.
    Joensuu H, Roberts PJ, Sarlomo-Rikala M, et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 2001;344:1052–1056.PubMedCrossRefGoogle Scholar
  97. 97.
    Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 2002;347:472–480.PubMedCrossRefGoogle Scholar
  98. 98.
    Heinrich MC, Corless CL, Demetri GD, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 2003;21:4342–4349.PubMedCrossRefGoogle Scholar
  99. 99.
    Smith JK, Mamoon NM, Duhe RJ. Emerging roles of targeted small molecule protein-tyrosine kinase inhibitors in cancer therapy. Oncol Res 2004;14:175–225.PubMedGoogle Scholar
  100. 100.
    DeMatteo RP. The GIST of targeted cancer therapy: a tumor (gastrointestinal stromal tumor), a mutated gene (c-kit), and a molecular inhibitor (STI571). Ann Surg Oncol 2002;9:831–839.PubMedCrossRefGoogle Scholar
  101. 101.
    Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350:2335–2342.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Steven N. Hochwald
    • 1
  • David Bloom
    • 2
  • Vita Golubovskaya
    • 2
  • William G. Cance
    • 2
  1. 1.Department of Surgical Oncology, Molecular Genetics and MicrobiologyUniversity of Florida College of MedicineGainesvilleUSA
  2. 2.Department of SurgeryUniversity of Florida College of MedicineGainesvilleUSA

Personalised recommendations