Surgery pp 1901-1924 | Cite as

Genetics of Cancer

  • John E. Phay
  • Jeffrey F. Moley


Numerous discoveries of genetic abnormalities in cancer cells have pointed to the paramount importance of genetic defects in the origin and development of cancer. Although other factors certainly play a role in the growth and maintenance of the transformed state (such as hormones, growth factors, and cytokines), defects in critical genes in cancer cells are undoubtedly at the heart of most malignant states.


Germline Mutation Multiple Endocrine Neoplasia Type Malignant Peripheral Nerve Sheath Tumor Familial Cancer Syndrome Inherit Cancer Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fialkow P. The origin and development of human tumors studied with cell markers. N Engl J Med 1974;291:26–35.PubMedGoogle Scholar
  2. 2.
    Rous P. A Sarcoma of fowl transmissable by an agent separable from the tumor cells. J Exp Med 1911;13:397.CrossRefPubMedGoogle Scholar
  3. 3.
    Wang L, Galehouse D, Mellon P, Duesberg P, Mason WS, Vogt PK. Mapping oligonucleotides of the Rous sarcoma virus that segregate with polymerase group-specific antigen markers in recombinants. Proc Natl Acad Sci U S A 1976;73:3952–3956.PubMedCrossRefGoogle Scholar
  4. 4.
    Shih C, Weinberg R. Isolation of transforming sequence from a human bladder carcinoma cell line. Cell 1982;29:161–169.PubMedCrossRefGoogle Scholar
  5. 5.
    Perucho M, Goldfarb M, Shimizu K, Lama C, Fogh J, Wigler M. Humor tumor-derived cell lines contain common and different transforming genes. Cell 1981;27:467–476.PubMedCrossRefGoogle Scholar
  6. 6.
    Schimke R. Gene Amplification. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1982.Google Scholar
  7. 7.
    Shwab M, Alitalo K, Klemphauer K, et al. Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma tumor. Nature (Lond) 1983;305:245–248.CrossRefGoogle Scholar
  8. 8.
    Brodeur G, Seeger R, Schwab M, et al. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 1984;224:1121–1124.PubMedCrossRefGoogle Scholar
  9. 9.
    Rowley J. A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and giemsa staining. Nature (Lond) 1973;243:290–293.PubMedCrossRefGoogle Scholar
  10. 10.
    deKlein A, Van Kessel A, Grosveld G, et al. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature (Lond) 1982;300:765–767.CrossRefGoogle Scholar
  11. 11.
    Heisterkamp N, Stam K, Groffen J, et al. Structural organization of the bcr gene and its role in the Ph9 translocation. Nature (Lond) 1985;315:758–761.PubMedCrossRefGoogle Scholar
  12. 12.
    Kurzrock R, Gutterman J, Talpaz M. The molecular genetics of Philadelphia chromosome-positive leukemias. N Engl J Med 1988;319:990–998.PubMedGoogle Scholar
  13. 13.
    Rabbitts T. Chromosomal translocations in human cancer. Nature (Lond) 1994;372:143–149.PubMedCrossRefGoogle Scholar
  14. 14.
    Pereira-Smith O, Smith J. Evidence for the recessive nature of cellular immortality. Science 1983;221:964–966.PubMedCrossRefGoogle Scholar
  15. 15.
    Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 1971;68:820–823.PubMedCrossRefGoogle Scholar
  16. 16.
    Cavanee W, Dryja T, Phillips R, et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature (Lond) 1983;305:779–784.CrossRefGoogle Scholar
  17. 17.
    Friend S, Bernards R, Rogelj S, et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature (Lond) 1986;323:643–646.PubMedCrossRefGoogle Scholar
  18. 18.
    Leach FS, Nicolaides NC, Papadopoulos N, et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 1993;75:1215–1225.PubMedCrossRefGoogle Scholar
  19. 19.
    Bronner CE, Baker SM, Morrison PT, et al. Mutation in the DNA mismatch repair gene homologue hMLHl is associated with hereditary non-polyposis colon cancer. Nature (Lond) 1994;368:258–261.PubMedCrossRefGoogle Scholar
  20. 20.
    Papadopoulos N, Nicolaides NC, Wei YF, et al. Mutation of a mutL homolog in hereditary colon cancer. Science 1994;263:1625–1629.PubMedCrossRefGoogle Scholar
  21. 21.
    Fishel R, Lescoe MK, Rao MRS, et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 1993;75:1027–1038.PubMedCrossRefGoogle Scholar
  22. 22.
    Vogelstein B, Fearon E, Hamilton S. Genetic alterations during colorectal tumor development. N Engl J Med 1988;319:525–532.PubMedGoogle Scholar
  23. 23.
    Vogelstein B, Fearon ER, Kern SE, et al. Allelotype of colorectal carcinomas. Science 1989;244:207–211.PubMedCrossRefGoogle Scholar
  24. 24.
    Powell SM, Zilz N, Beazer-Barclay Y, et al. APC mutations occur early during colorectal tumorigenesis. Nature (Lond) 1992;359:235–237.PubMedCrossRefGoogle Scholar
  25. 25.
    Herrera L, Kakati S, Gibas L, Pietrzak E, Sandberg AA. Gardner syndrome in a man with an interstitial deletion of 5q. Am J Med Genet 1986;25:473–76.PubMedCrossRefGoogle Scholar
  26. 26.
    Giardiello FM, Brensinger JD, Petersen GM, et al. The use and interpretation of commercial APC gene testing for familial adenomatous polyposis [see comments]. N Engl J Med 1997;336:823–827.PubMedCrossRefGoogle Scholar
  27. 27.
    American Society of Clinical Oncology. American Society of Clinical Oncology policy statement update: genetic testing for cancer susceptibility. J Clin Oncol 2003;21:2397–2406.CrossRefGoogle Scholar
  28. 28.
    Houlston RS, Collins A, Slack J, Morton NE. Dominant genes for colorectal cancer are not rare. Ann Hum Genet 1992;56:99–103.PubMedCrossRefGoogle Scholar
  29. 29.
    Laken SJ, Petersen GM, Gruber SB, et al. Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nat Genet 1997;17:79–83.PubMedCrossRefGoogle Scholar
  30. 30.
    Kinzler KW, Nilbert MC, Su LK, et al. Identification of FAP locus genes from chromosome 5q21. Science 1991;253:661–665.PubMedCrossRefGoogle Scholar
  31. 31.
    Groden J, Thliveris A, Samowitz W, et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 1991;66:589–600.PubMedCrossRefGoogle Scholar
  32. 32.
    Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell 1996;87:159–170.PubMedCrossRefGoogle Scholar
  33. 33.
    Jones S, Emmerson P, Maynard J, et al. Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G:C to T:A muatations. Hum Mol Genet 2002;11:2961–2967.PubMedCrossRefGoogle Scholar
  34. 34.
    Iwama T, Mishima Y. Factors affecting the risk of rectal cancer following rectum-preserving surgery in patients with familial adenomatous polyposis. Dis Colon Rectum 1994;37:1024–1026.PubMedCrossRefGoogle Scholar
  35. 35.
    Ambroze WL Jr, Orangio GR, Lucas G. Surgical options for familial adenomatous polyposis. Sem Surg Oncol 1995;11:423–427.CrossRefGoogle Scholar
  36. 36.
    Debinski HS, Spigelman AD, Hatfield A, Williams CB, Phillips RK. Upper intestinal surveillance in familial adenomatous polyposis. Eur J Cancer 1995;31A:1149–1153.PubMedCrossRefGoogle Scholar
  37. 37.
    Lynch HT, Smyrk T, Watson P, et al. Hereditary colorectal cancer. Semin Oncol 1991;18:337–366.PubMedGoogle Scholar
  38. 38.
    Rodriguez-Bigas MA, Mahoney MC, Karakousis CP, Petrelli NJ. Desmoid tumors in patients with familial adenomatous polyposis. Cancer (Phila) 1994;74:1270–1274.PubMedCrossRefGoogle Scholar
  39. 39.
    Church J, Simmang C. Practice parameters for the treatment of patients with dominantly inherited colorectal cancer. Dis Colon Rect 2003;46:1001.CrossRefGoogle Scholar
  40. 40.
    Lynch HT, Smyrk T, Lanspa S, Lynch J. Colonoscopy in relation to the evolving genetics of familial colorectal cancer. Endoscopy 1995;27:43–49; discussion 61–62.PubMedCrossRefGoogle Scholar
  41. 41.
    Nystrom-Lahti M, Parsons R, Sistonen P, et al. Mismatch repair genes on chromosomes 2p and 3p account for a major share of hereditary nonpolyposis colorectal cancer families evaluable by linkage. Am J Hum Genet 1994;55:659–665.PubMedGoogle Scholar
  42. 42.
    Lynch HT, Smyrk T, Lynch J, Fitzgibbons R Jr, Lanspa S, McGinn T. Update on the differential diagnosis, surveillance and management of hereditary non-polyposis colorectal cancer. Eur J Cancer 1995;31A:1039–1046.PubMedCrossRefGoogle Scholar
  43. 43.
    Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature (Lond) 1997;386:623–627.PubMedCrossRefGoogle Scholar
  44. 44.
    Burke W, Petersen G, Lunch P, et al. Recommendations for follow-up care of individuals with an inherited predisposition to cancer. I. Hereditary nonpolyposis colon cancer. Cancer genetics studies consortium. JAMA 1997;277:915–919.PubMedCrossRefGoogle Scholar
  45. 45.
    Honchel R, Hailing KC, Schaid DJ, Pittelkow M, Thibodeau SN. Microsatellite instability in Muir-Torre syndrome. Cancer Res 1994;54:1159–1163.PubMedGoogle Scholar
  46. 46.
    Bapat B, Xia L, Madlensky L, et al. The genetic basis of Muir-Torre syndrome includes the hMLHl locus [letter]. Am J Hum Genet 1996;59:736–739.PubMedGoogle Scholar
  47. 47.
    Giardello FM, Brensinger JD, Termette AC, et al. Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology 2000;119:1447–1453.CrossRefGoogle Scholar
  48. 48.
    Spigelman AD, Arese P, Phillips RK. Polyposis: the Peutz-Jeghers syndrome. Br J Surg 1995;82:1311–1314.PubMedCrossRefGoogle Scholar
  49. 49.
    Brugarolas J, Kaelin WG. Dysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes. Cancer Cell 2004;6:7–10.PubMedCrossRefGoogle Scholar
  50. 50.
    Howe JR, Roth S, Ringold JC, et al. Mutations in the SMAD4/ DPC4 gene in juvenile polyposis. Science 1998;280:1086–1088.PubMedCrossRefGoogle Scholar
  51. 51.
    Radford DM, Zehnbauer BA. Inherited breast cancer. Surg Clin N Am 1996;76:205–220.PubMedCrossRefGoogle Scholar
  52. 52.
    Miki Y, Swensen J, Shattuck-Eidens D, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994;266:66–71.PubMedCrossRefGoogle Scholar
  53. 53.
    Wooster R, Bignell G, Lancaster J, et al. Identification of the breast cancer susceptibility gene BRCA2 [see comments]. Nature (Lond) 1995;378:789–792.PubMedCrossRefGoogle Scholar
  54. 54.
    Yoshida K, Miki Y. Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci 204;95:866–871.CrossRefGoogle Scholar
  55. 55.
    Easton DF, Ford D, Bishop DT. Breast and ovarian cancer incidence in BRCA1-mutation carriers: Breast Cancer Linkage Consortium. Am J Hum Genet 1995;56:265–271.PubMedGoogle Scholar
  56. 56.
    Struewing JP, Hartge P, Wacholder S, et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews [see comments]. N Engl J Med 1997;336:1401–1408.PubMedCrossRefGoogle Scholar
  57. 57.
    Liede A, Karlan BY, Narod SA. Cancer risks for male carriers of germline mutations in BRCA1 or BRCA2: a review of the literature. J Clin Oncol 2004;22:735–742.PubMedCrossRefGoogle Scholar
  58. 58.
    Couch FJ, DeShano ML, Blackwood MA, et al. BRCA1 mutations in women attending clinics that evaluate the risk of breast cancer [see comments]. N Engl J Med 1997;336:1409–1415.PubMedCrossRefGoogle Scholar
  59. 59.
    Schrag D, Kuntz KM, Garber JE, Weeks JC. Decision analysis—effects of prophylactic mastectomy and oophorectomy on life expectancy among women with BRCA1 or BRCA2 mutations [see comments]. N Engl J Med 1997;336:1465–1471.PubMedCrossRefGoogle Scholar
  60. 60.
    Hartmann LC, Schaid DJ, Woods JE, et al. Efficacy of bilateral prophylactic mastectomy in women with a family history of breast cancer. N Engl J Med 1999;340:77–84.PubMedCrossRefGoogle Scholar
  61. 61.
    Frebourg T, Barbier N, Yan YX, et al. Germ-line p53 mutations in 15 families with Li-Fraumeni syndrome. Am J Hum Genet 1995;56:608–615.PubMedGoogle Scholar
  62. 62.
    Liaw D, Marsh DJ, Li J, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 1997;16:64–67.PubMedCrossRefGoogle Scholar
  63. 63.
    Athma P, Rappaport R, Swift M. Molecular genotyping shows that ataxia-telangiectasia heterozygotes are predisposed to breast cancer. Cancer Genet Cytogenet 1996;92:130–134.PubMedCrossRefGoogle Scholar
  64. 64.
    FitzGerald MG, Bean JM, Hegde SR, et al. Heterozygous ATM mutations do not contribute to early onset of breast cancer [see comments]. Nat Genet 1997;15:307–310.PubMedCrossRefGoogle Scholar
  65. 65.
    Mulligan L, Kwok J, Healy C. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A (MEN 2A). Nature (Lond) 1993;363:458–460.PubMedCrossRefGoogle Scholar
  66. 66.
    Donis-Keller H, Dou S, Chi D, et al. Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol Genet 1993;2:851–856.PubMedCrossRefGoogle Scholar
  67. 67.
    Hofstra RM, Landsvater RM, Ceccherini I, et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma [see comments]. Nature (Lond) 1994;367:375–376.PubMedCrossRefGoogle Scholar
  68. 68.
    Chandrasekharappa SC, Guru SC, Manickam P, et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997;276:404–407.PubMedCrossRefGoogle Scholar
  69. 69.
    Milne TA, Hughes CM, Lloyd R, et al. Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc Natl Acad Sci U S A 2005;102(3):749–754.PubMedCrossRefGoogle Scholar
  70. 70.
    Wells SA Jr, Farndon JR, Dale JK, Leight DS, Dilley WG. Long-term evaluation of patients with primary parathyroid hyperplasia managed by total parathyroidectomy and heterotopic autotransplantation. Ann Surg 1980;192:451–458.PubMedGoogle Scholar
  71. 71.
    Moley JF, Wells SA. Multiple endocrine neoplasia. In: Niederhuber JE, ed. Current Therapy in Oncology. St. Louis: Mosby Year Book, 1993:282–292.Google Scholar
  72. 72.
    Santoro M, Carlomango F, Romano A, et al. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 1995;267:381–383.PubMedCrossRefGoogle Scholar
  73. 73.
    Goodfellow PJ, Wells SA Jr. RET gene and its implications for cancer. J Natl Cancer Inst 1995;87:1515–1523.PubMedCrossRefGoogle Scholar
  74. 74.
    Wells S, Baylin S, Linehan W, Farrel R, Cox E, Cooper C. Provocative agents and the diagnosis of medullary carcinoma of the thyroid gland. Ann Surg 1978;188:139–141.PubMedCrossRefGoogle Scholar
  75. 75.
    Moley JF. Medullary thyroid cancer. Surg Clin N Am 1995;75:405–420.PubMedGoogle Scholar
  76. 76.
    Wells SA, Chi DD, Toshima K, et al. Predictive DNA testing and prophylactic thyroidectomy in patients at risk for multiple endocrine neoplasia type 2A. Ann Surg 1994;220:237–250.PubMedCrossRefGoogle Scholar
  77. 77.
    Wells SAJ, Moley JF, DeBenedetti MK, Skinner MA. Prophylactic thyroidectomy in patients with MEN2A and familial medullary thyroid carcinoma. Sixth International Workshop on Multiple Endocrine Neoplasia and Von Hippel-Lindau Disease. Noordwijkerhout, The Netherlands: Leeuwenhorst Congress Center, 1997.Google Scholar
  78. 78.
    Eisenhofer G, Lenders JWM, Linehan WM, et al. Plasma normeta-nephrine and metanephrine for detecting pheochromocytoma in von Hippel-Lindau disease and multiple endocrine neoplasia type 2. N Engl J Med 1999;340:1872–1879.PubMedCrossRefGoogle Scholar
  79. 79.
    Sawka AM, Jaeschke R, Singh RJ, Young WF. A comparison of biochemical tests for pheochromocytoma: measurement of fractionated plasma metanephrines compared with the combination of 24-hour urinary metanephrines and catecholamines. J Clin Endocrinol Metab 2003;88:553–558.PubMedCrossRefGoogle Scholar
  80. 80.
    Neumann HPH, Pawlu C, Peczkowska M, et al. Distant clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA 2004;292:943–951.PubMedCrossRefGoogle Scholar
  81. 81.
    Neumann HPH, Bausch B, McWinney SR, et al. Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med 2002;346:1459–1466.PubMedCrossRefGoogle Scholar
  82. 82.
    Carpten JD, Robbins CM, Villablanca A, et al. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet 2002;32:584–588.CrossRefGoogle Scholar
  83. 83.
    Rozenblatt-Rosen O, Hughes CM, Nannepaga SJ, et al. The parafibromin tumor suppressor protein is part of a human Paf 1 complex. Mol Cell Biol 2005;25:612–620.PubMedCrossRefGoogle Scholar
  84. 84.
    Stratakis CA. Genetics of Peutz-Jeghers syndrome, Carney complex and other familial lentiginoses. Horm Res 2000;54:334–343.PubMedCrossRefGoogle Scholar
  85. 85.
    Kirschner LS, Carney JA, Pack S, et al. Mutations in the gene encoding the type la regulatory subunit of the protein kinase A (PRKARIA) in patients with Carney complex. Nat Genet 2000;26:89–92.PubMedCrossRefGoogle Scholar
  86. 86.
    Brooks-Wilson AR, Kaurah P, Suriano G, et al. Germline Eadherin mutations in hereditary diffuse gastric cancer: assessment of 42 new families and review of genetic screening criteria. J Med Genet 2004;41:508–517.PubMedCrossRefGoogle Scholar
  87. 87.
    Caldas C, Carneiro F, Lynch HT, et al. Familial gastric cancer: overview and guidelines for management. J Med Genet 1999;36:873–880.PubMedGoogle Scholar
  88. 88.
    Yu CE, Oshima J, Fu YH, et al. Positional cloning of the Werner’s syndrome gene. Science 1996;272:258–262.PubMedCrossRefGoogle Scholar
  89. 89.
    Goldberg Y, Dibbern K, Klein J, Riccardi VM, Graham JM Jr. Neurofibromatosis type 1: an update and review for the primary pediatrician. Clin Pediatr 1996;35:545–561.CrossRefGoogle Scholar
  90. 90.
    Riccardi VM, Powell PP. Neurofibrosarcoma as a complication of von Recklinghausen neurofibromatosis. Neurofibromatosis 1989;2:152–165.PubMedGoogle Scholar
  91. 91.
    Arun D, Gutmann DH. Recent advances in neurofibromatosis type 1. Curr Opin Neurol 2004;17:101–105.PubMedCrossRefGoogle Scholar
  92. 92.
    Wallace MR, Marchuk DA, Andersen LB, et al. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients [published correction appears in Science 1990;250:1749]. Science 1990;249:181–186.PubMedCrossRefGoogle Scholar
  93. 93.
    Cawthon RM, Weiss R, Xu GF, et al. A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations [published correction appears in Cell 1990;62: following 608]. Cell 1990;62:193–201.PubMedCrossRefGoogle Scholar
  94. 94.
    Rouleau GA, Merel P, Lutchman M, et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2 [see comments]. Nature (Lond) 1993;363:515–521.PubMedCrossRefGoogle Scholar
  95. 95.
    Trofatter JA, MacCollin MM, Rutter JL, et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 1993;75:826.PubMedCrossRefGoogle Scholar
  96. 96.
    Anonymous, NIH Consensus Conference. Diagnosis and treatment of early melanoma [see comments]. JAMA 1992;268:1314–1319.CrossRefGoogle Scholar
  97. 97.
    Risch N, Sherman S. Genetic Analysis Workshop 7: summary of the melanoma workshop. Cytogenet Cell Genet 1992;59:148–158.PubMedCrossRefGoogle Scholar
  98. 98.
    Slade J, Marghoob AA, Salopek TG, Rigel DS, Kopf AW, Bart RS. Atypical mole syndrome: risk factor for cutaneous malignant melanoma and implications for management. J Am Acad Dermatol 1995;32:479–494.PubMedCrossRefGoogle Scholar
  99. 99.
    Hussussian CJ, Struewing JP, Goldstein AM, et al. Germline p16 mutations in familial melanoma [see comments]. Nat Genet 1994;8:15–21.PubMedCrossRefGoogle Scholar
  100. 100.
    Cannon-Albright LA, Kamb A, Skolnick M. A review of inherited predisposition to melanoma. Semin Oncol 1996;23:667–672.PubMedGoogle Scholar
  101. 101.
    Gillanders E, Juo SHH, Holland EA, et al. Localization of a novel melanoma susceptibility locus to lp22. Am J Hum Genet 2003;73:301–313.PubMedCrossRefGoogle Scholar
  102. 102.
    Soufir N, Avril MF, Chompret A, et al. Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France: the French Familial Melanoma Study Group. Hum Mol Genet 1998;7:209–216.PubMedCrossRefGoogle Scholar
  103. 103.
    Tucker MA, Fraser MC, Golstein AM, Elder DE, Guerry DT, Organic SM. Risk of melanoma and other cancers in melanoma-prone families. J Invest Dermatol 1993;100:350S–355S.PubMedCrossRefGoogle Scholar
  104. 104.
    Goldstein AM, Fraser MC, Struewing JP, et al. Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4 mutations [see comments]. N Engl J Med 1995;333:970–974.PubMedCrossRefGoogle Scholar
  105. 105.
    Whelan AJ, Bartsch D, Goodfellow PJ. Brief report: a familial syndrome of pancreatic cancer and melanoma with a mutation in the CDKN2 tumor-suppressor gene [see comments]. N Engl J Med 1995;333:975–977.PubMedCrossRefGoogle Scholar
  106. 106.
    Goldstein AM, Struewing JP, Fraser MC, Smith MW, Tucker MA. Prospective risk of cancer in CDKN2A germline mutation carriers. J Med Genet 2004;41:421–424.PubMedCrossRefGoogle Scholar
  107. 107.
    Latif F, Tory K, Gnarra J, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene [see comments]. Science 1993;260:1317–1320.PubMedCrossRefGoogle Scholar
  108. 108.
    Gnarra JR, Tory K, Weng Y, et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet 1994;7:85–90.PubMedCrossRefGoogle Scholar
  109. 109.
    Maher ER, Yates JR, Harries R, et al. Clinical features and natural history of von Hippel-Lindau disease [see comments]. Q J Med 1990;77:1151–1163.PubMedGoogle Scholar
  110. 110.
    Crossey PA, Richards FM, Foster K, et al. Identification of intragenic mutations in the von Hippel-Lindau disease tumour suppressor gene and correlation with disease phenotype. Hum Mol Genet 1994;3:1303–1308.PubMedCrossRefGoogle Scholar
  111. 111.
    Hoffman MA, Ohh M, Yang H, et al. von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. Hum Mol Genet 2001;10:1019–1027.PubMedCrossRefGoogle Scholar
  112. 112.
    Steinbach F, Novick AC, Zincke H, et al. Treatment of renal cell carcinoma in von Hippel-Lindau disease: a multicenter study. J Urol 1995;153:1812–1816.PubMedCrossRefGoogle Scholar
  113. 113.
    Pavlovich CP, Walther MM, Eyler Ra, et al. Renal tumors in the Birt-Hogg-Dube syndrome. Am J Surg Pathol 2002;26:1542–1552.PubMedCrossRefGoogle Scholar
  114. 114.
    Nickerson ML, Warren MB, Toro JR, et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell 2002;2:157–164.PubMedCrossRefGoogle Scholar
  115. 115.
    Zbar B, Glenn G, Lubensky I, et al. Hereditary papillary renal cell carcinoma: clinical studies in 10 families [see comments]. J Urol 1995;153:907–912.PubMedCrossRefGoogle Scholar
  116. 116.
    Schmidt L, Duh FM, Chen F, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 1997;16:68–73.PubMedCrossRefGoogle Scholar
  117. 117.
    Di Renzo MF, Olivero M, Katsaros D, et al. Overexpression of the Met/HGF receptor in ovarian cancer. Int J Cancer 1994;58:658–662.PubMedCrossRefGoogle Scholar
  118. 118.
    Ferracini R, Di Renzo MF, Scotlandi K, et al. The Met/HGF receptor is overexpressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene 1995;10:739–749.PubMedGoogle Scholar
  119. 119.
    Toro JR, Nickerson ML, Wei MH, et al. Mutations in the fuma-rate hydrratase gene cause hereditary leiomyomatosis and renal cell carncer in families in North America. Am J Hum Genet 2003;73:95–106.PubMedCrossRefGoogle Scholar
  120. 120.
    Coppes MJ, Haber DA, Grundy PE. Genetic events in the development of Wilms’ tumor. N Engl J Med 1994;331:586–590.PubMedCrossRefGoogle Scholar
  121. 121.
    Weksberg R, Squire JA. Molecular biology of Beckwith-Wiedemann syndrome. Med Pediatr Oncol 1996;27:462–469.PubMedCrossRefGoogle Scholar
  122. 122.
    Ruteshouser EC, Huff V. Familial Wilms’ tumor. Am J Med Genet 2004;129C:29–34.CrossRefPubMedGoogle Scholar
  123. 123.
    Clericuzio CL, Johnson C. Screening for Wilms’ tumor. Am J Med Genet 2004;129C:29–34.CrossRefGoogle Scholar
  124. 124.
    Lynch HT, Smyrk T, Kern SE, et al. Familial pancreatic cancer: a review. Semin Oncol 1996;23:251–275.PubMedGoogle Scholar
  125. 125.
    Rieder H, Bartsch DK. Familial pancreatic cancer. Fam Cancer 2004;3:69–74.PubMedCrossRefGoogle Scholar
  126. 126.
    Whitcomb DC, Gorry MC, Preston RA, et al. Hereditary pancreatitis is caused by a mutation in the cationic tripsinogen gene. Nat Genet 1996;14:141–145.PubMedCrossRefGoogle Scholar
  127. 127.
    Witt H, Luck W, Hennies HE, et al. Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat Genet 2000;25:213–216.PubMedCrossRefGoogle Scholar
  128. 128.
    Kattwinkel J, Lapey A, Di Sant’Agnese PA, Edwards WA. Hereditary pancreatitis: three new kindreds and a critical review of the literature. Pediatrics 1973;51:55–69.PubMedGoogle Scholar
  129. 129.
    Caldas C, Hahn SA, da Costa LT, et al. Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet 1994;8:27–32.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • John E. Phay
    • 1
  • Jeffrey F. Moley
    • 2
    • 3
    • 4
  1. 1.Divisions of Surgical Oncology, Department of SurgeryVanderbuilt University Medical CenterNashvilleUSA
  2. 2.Division of General Surgery, Department of SurgeryWashington University School of MedicineSt. LouisUSA
  3. 3.Cancer and Endocrine Surgery SectionSt. LouisUSA
  4. 4.Siteman Cancer CenterWashington University School of MedicineSt. LouisUSA

Personalised recommendations