Surgery pp 1747-1757 | Cite as

Principles of Organ Preservation

  • Brian Lima
  • J. E. Tuttle-Newhall


Organ preservation refers to the maintenance of ex vivo organ viability and restoration of normal organ function when physiologic blood flow is reestablished.1 This paradigm defines the basis for current clinical and research models of organ transplantation. If an organ does not regain normal function rapidly after clinical implantation surgery and reperfusion, either delayed graft function (DGF) or primary nonfunction (PNF) has occurred. Delayed graft function is defined as impaired function that eventually returns to normal. Primary nonfunction indicates complete failure of the organ to restore function or the inability of the transplanted organ to sustain life.


Reperfusion Injury Kupffer Cell Brain Death Ischemia Reperfusion Injury Warm Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clavien PA, Harvey RC, Strasberg SM. Preservation and reperfvision injuries in liver allografts. Transplantation 1992;53:957–978.PubMedCrossRefGoogle Scholar
  2. 2.
    Southard J, Belzer F. Organ preservation. Annu Rev Med 1995;46:235–247.PubMedCrossRefGoogle Scholar
  3. 3.
    Wahlberg JA, Lover R, Landegaard L, Southard JH, Belzer FO. 72-hour preservation of the canine pancreas. Transplant Proc 1987;43:5–8.Google Scholar
  4. 4.
    Southard J. Improving early graft function. Transplant Proc 1997;29:3510–3511.PubMedCrossRefGoogle Scholar
  5. 5.
    United Network of Organ Sharing. UNOS 1996 Annual Report. Washington, DC: Department of Health and Human Services; 1996.Google Scholar
  6. 6.
    Pratschke J, Wilhelm MJ, Kuska M, et al. Brain death and its influence on donor organ quality and outcome after transplantation. Transplantation 1999;67:343–348.PubMedCrossRefGoogle Scholar
  7. 7.
    Nagano H, Tilney N. Chronic allograft failure: the clinical problem. Am J Med Sci 1997;313:305–309.PubMedCrossRefGoogle Scholar
  8. 8.
    Herijgers P, Leunens V, Tjandra-Maga TB, Mubagwa K, Flameng W. Changes in organ perfusion after brain death in the rat and its relation to circulating catecholamines. Transplantation 1996;62:330–335.PubMedCrossRefGoogle Scholar
  9. 9.
    Novitzky D. Donor management: state of the art. Transplant Proc 1997;29:3773–3775.PubMedCrossRefGoogle Scholar
  10. 10.
    Depret J, Teboul JL, Benoit G, Mercat A, Richard C. Global energetic failure in brain-dead patients. Transplantation 1995;60:966–971.PubMedCrossRefGoogle Scholar
  11. 11.
    Novitzky D. Detrimental effects of brain death on the potential organ donor. Transplant Proc 1997;29:3770–3772.PubMedCrossRefGoogle Scholar
  12. 12.
    Gramm HJ, Meinhold H, Bickel U, et al. Acute endocrine failure after brain death? Transplantation 1992;54:851–857.PubMedCrossRefGoogle Scholar
  13. 13.
    Novitzky D, Cooper DK, Morrell D, Isaacs S. Change from aerobic to anaerobic metabolism after brain death, and reversal following triiodothyronine therapy. Transplantation 1988;45:32–36.PubMedGoogle Scholar
  14. 14.
    Takada M, Nadeau KC, Hancock WW, et al. Effects of explosive brain death on cytokine activation of peripheral organs in the rat. Transplantation 1998;65:1533–1542.PubMedCrossRefGoogle Scholar
  15. 15.
    Schneeberger H, Aydemir S, Illner WD, Land W. Nonspecific primary ischemia/reperfusion mediated injury in combination with secondary specific acute rejection-mediated injury of human kidney allografts contributes mainly to development of chronic transplant failure. Transplant Proc 1997;29:948–949.PubMedCrossRefGoogle Scholar
  16. 16.
    Belzer FO, Southard JH. Principles of solid-organ preservation by cold storage. Transplantation 1988;45:673–676.PubMedCrossRefGoogle Scholar
  17. 17.
    Boudjema K, Lindell SL, Southard JH, Belzer FO. The effects of fasting on the quality of liver preservation by simple cold storage. Transplantation 1990;50:943–948.PubMedGoogle Scholar
  18. 18.
    Kamiike W, Burdelski M, Steinhoff G, Ringe B, Lauchart W, Pichlmayr R. Adenine nucleotide metabolism and its relation to organ viability in human liver transplantation. Transplantation 1988;45:138–143.PubMedCrossRefGoogle Scholar
  19. 19.
    Jaeschke H. Preservation injury: mechanisms, prevention and consequences. J Hepatol 1996;25:774–780.PubMedCrossRefGoogle Scholar
  20. 20.
    Bond JM, Herman B, Lemasters JJ. Protection by acidotic pH against anoxia/reoxygenation injury to rat neonatal cardiac myocytes. Biochem Biophysiol Res Commun 1991;179:798–803.CrossRefGoogle Scholar
  21. 21.
    Bond JM, Chacon E, Herman B, Lemasters JJ. Intracellular pH and Ca2+ homeostasis in the pH paradox of reperfusion injury to neonatal rat cardiac myocytes. Am J Physiol 1993;265:C129–C137.PubMedGoogle Scholar
  22. 22.
    Levy MN, Berne RM. Physiology. St. Louis, MO: Mosby; 1988;26–27.Google Scholar
  23. 23.
    Raison J. The influence of temperature-induced phase changes on the kinetics of respiratory and other membrane associated enzyme systems. Bioenergetics 1973;4:285–290.CrossRefGoogle Scholar
  24. 24.
    Adkinson D, Hoellwarth ME, Benoit JN, Parks DA, McCord JM, Granger DN. Role of free radicals in ischemia reperfusion injury to the liver. Acta Physiol Scan Suppl 1986;548:101–107.Google Scholar
  25. 25.
    Engerson TD, McKelvey TG, Rhyne DB, Boggio EB, Synder SJ, Jones HP. Conversion of xanthine dehydrogenase to oxidase in ischemic rat tissue. J Clin Invest 1987;79:1564–1570.PubMedCrossRefGoogle Scholar
  26. 26.
    de Groot H, Littaurer A. Reoxygenation injury in isolated hepatocytes: cell death precedes conversion of xanthine dehydrogenase to xanthine oxidase. Biochem Biophysiol Res Commun 1988;155:278–282.CrossRefGoogle Scholar
  27. 27.
    Jaeschke H. Reactive oxygen and ischemia/reperfusion injury of the liver. Chem Biol Interact 1991;79:115–136.PubMedCrossRefGoogle Scholar
  28. 28.
    Collins GM, Bravo-Shugarman MB, Terasaki PI. Kidney preservation for transplantation: initial perfusion and 30 h ice storage. Lancet 1969;2:1219–1225.PubMedCrossRefGoogle Scholar
  29. 29.
    Opelz G, Teraski PI. Advantage of cold storage over machine perfusion for preservation of cadaver kidneys. Transplantation 1982;33:64–68.PubMedGoogle Scholar
  30. 30.
    Southard JH, van Gulik TM, Ametani MS, et al. Important components of the UW solution. Transplantation 1990;49:251–257.PubMedCrossRefGoogle Scholar
  31. 31.
    Jeevanandam V, Auteri JS, Marboe CC, et al. Extending the limits of donor heart preservation: a trial with UW Solution. Transplant Proc 1991;23:697–698.PubMedGoogle Scholar
  32. 32.
    Kawahara K, Ikari H, Hisano H, et al. Twenty four hour canine lung preservation using UW solution. Transplantation 1991;51:584–587.PubMedCrossRefGoogle Scholar
  33. 33.
    Zucker PF, Bloom AD, Strasser S, et al. Successful cold storage preservation of canine pancreas with UW-1 solution prior to islet isolation. Transplantation 1988;168–170.Google Scholar
  34. 34.
    Montalti R, Nardo B, Capocasale E, et al. Kidney transplantation from elderly donors: a prospective randomized study comparing Celsior and UW solutions. Transplant Proc 2005;37:2454–2455.PubMedCrossRefGoogle Scholar
  35. 35.
    Pedotti P, Cardillo M, Rigotti P, et al. A comparative prospective study of two available solutions for kidney and liver preservation [erratum in Transplantation 2004;78:489]. Transplantation 2004;77:1540–1545.PubMedCrossRefGoogle Scholar
  36. 36.
    Ploeg RJ, Boudjema K, Marsh D, et al. The importance of a colloid in canine pancreas preservation. Transplantation 1992;53:735–741.PubMedCrossRefGoogle Scholar
  37. 37.
    Moriyasu K, McKeown PP, Novitzky D, Snow TR. Preservation of competent rabbit lung function after 30 h of storage with a low-potassium dextran solution. J Heart Lung Transplant 1995;14:75–79.PubMedGoogle Scholar
  38. 38.
    Marshall VC, Biguzas M, Jablonski P, et al. Rat kidney preservation with UW solution. Transplant Proc 1988;21:3783–3788.Google Scholar
  39. 39.
    Clavien PA. Sinusoidal endothelial cell injury during hepatic preservation and reperfusion. Hepatology 1998;28:281–285.PubMedCrossRefGoogle Scholar
  40. 40.
    Gao W, Washington MK, Bentley RC, Clavien PA. Antiangiogenic agents protect liver sinusoidal lining cells from cold preservation injury in rat liver transplantation. Gastroenterology 1997;113:1692–1700.PubMedCrossRefGoogle Scholar
  41. 41.
    Folkman M. Clinical application of research on angiogenesis. N Engl J Med 1995;333:1757–1763.PubMedCrossRefGoogle Scholar
  42. 42.
    Calmus Y, Cynober L, Dousset B, et al. Evidence for the detrimental role of proteolysis during liver preservation in humans. Gastroenterology 1995;108:1510–1516.PubMedCrossRefGoogle Scholar
  43. 43.
    Upadhya GA, Harvey PRC, Howard TK, et al. Evidence for a role for matrix metalloproteinases in preservation injury of the liver in humans and in rats. Hepatology 1997;26:922–928.PubMedCrossRefGoogle Scholar
  44. 44.
    McKeown CMB, Edwards V, Phillips MJ, et al. Sinusoidal cell lining damage: the critical injury in cold preservation of liver allografts in the rat. Transplantation 1988;46:178–191.PubMedGoogle Scholar
  45. 45.
    Matsumoto S, Kuroda Y. Perfluorocarbon for organ preservation before transplantation. Transplantation 2002;74:1804–1809.PubMedCrossRefGoogle Scholar
  46. 46.
    McLaren AJ, Friend PJ. Trends in organ preservation. Transplant Int 2003;16:701–708.CrossRefGoogle Scholar
  47. 47.
    Caldwell-Kenkel JC, Currin RT, Tanaka Y, Thurman RG, Lemasters JJ. Kupffer cell activation and endothelial cell damage after storage of rat livers: effects of reperfusion. Hepatology 1991;13:83–95.PubMedGoogle Scholar
  48. 48.
    Lindert KA, Caldwell-Kenkel JC, Nukina S, Lemasters JJ, Thurman RG. Activation of Kupffer cells on reperfusion following hypoxia: particle phagocytosis in a low-flow, reflow model. Am J Physiol 1992;262:G345–G350.PubMedGoogle Scholar
  49. 49.
    Imamura H, Sutto F, Brault A, Huet PM. Role of Kupffer cells in cold ischemia/reperfusion injury of rat liver. Gastroenterology 1995;109:189–197.PubMedCrossRefGoogle Scholar
  50. 50.
    Lemasters JJ, Thurman RG. Reperfusion injury after liver preservation for transplantation. Annu Rev Pharmacol Toxicol 1997;37:327–338.PubMedCrossRefGoogle Scholar
  51. 51.
    Yadav SS, Howell DN, Gao W, Steeber DA, Harland RC, Clavien PA. l-Selectin and ICAM-1 mediate reperfusion injury and neutrophil adhesion in the warm ischemic mouse liver. Am J Physiol 1998;275:G1341–G1352.PubMedGoogle Scholar
  52. 52.
    Grinyo J. Reperfusion injury. Transplant Proc 1997;29:59–62.PubMedCrossRefGoogle Scholar
  53. 53.
    Zimmerman GA, Prescott SM, Mclntyre TM. Endothelial cell interactions with granulocytes: tethering and signaling molecules. Immunol Today 1992;13:93–100.PubMedCrossRefGoogle Scholar
  54. 54.
    Essani NA, Fisher MA, Farhood A, Manning AM, Smith CW, Jaeschke H. Cytokine-induced upregulation of hepatic intercellular adhesion molecule-1 (ICAM-1) mRNA expression and its role in the pathophysiology of murine endotoxin shock and acute liver failure. Hepatology 1995;21:1632–1639.PubMedGoogle Scholar
  55. 55.
    Bell FP, Manning AM, Jaeschke H. Activation of nuclear factor-kB and expression of intra-cellular molecule-1 mRNA during hepatic ischemia and reperfusion. Hepatology 1995;22:381A.Google Scholar
  56. 56.
    Camargo CA Jr, Madden JF, Gao W, Selvan RS, Clavien PA. Interleukin-6 protects liver against warm ischemia/reperfusion injury and promotes hepatocyte proliferation in the rodent. Hepatology 1997;26:1513–1520.PubMedCrossRefGoogle Scholar
  57. 57.
    Jaeschke H, Farhood A, Bautista AP, Spolarics Z, Spitzer JJ. Complement activates Kupffer cells and neutrophils during reperfusion after hepatic ischemia. Am J Physiol 1993;264:801–809.Google Scholar
  58. 58.
    Mueller A, Platz KP, Haak M, et al. The release of cytokines, adhesion molecules, and extra-cellular matrix parameters during and after reperfusion in human liver transplant. Transplantation 1997;62:1118–1126.CrossRefGoogle Scholar
  59. 59.
    Clemens MG, Bauer M, Pannen BH, Bauer I, Zhang JX. Remodeling of hepatic microvascular responsiveness after ischemia/reperfusion. Shock 1997;8:80–85.PubMedCrossRefGoogle Scholar
  60. 60.
    Zhang JX, Jones DV, Clemens MG. Effect of activation on neutrophil-induced hepatic microvascular injury in isolated rat liver. Shock 1994;1:273–278.PubMedCrossRefGoogle Scholar
  61. 61.
    Cywes R, Packham MA, Tietze L, et al. Role of platelets in hepatic allograft preservation injury in the rat. Hepatology 1993;18:635–647.PubMedCrossRefGoogle Scholar
  62. 62.
    Wang CY, Mathews WR, Guido DM, et al. Inhibition of nitric oxide synthesis aggravates reperfusion injury after hepatic ischemia and endotoxemia. Shock 1995;4:282–288.PubMedCrossRefGoogle Scholar
  63. 63.
    Bauer M, Zhang JX, Bauer I, Clemens MG. Endothelin-1 as a regulator of hepatic microcirculation: sublobular distribution of effects and impact on hepatocellular secretory function. Shock 1994;1:457–465.PubMedCrossRefGoogle Scholar
  64. 64.
    Kuo PC, Drachenberg CI, de la Torre A, et al. Apoptosis and hepatic allograft reperfusion injury. Clinical Transplantation 1998;12:219–223.PubMedGoogle Scholar
  65. 65.
    Krams SM, Martinez OM. Apoptosis as a mechanism of tissue injury in liver allograft rejection. Semin Liver Dis 1998;18:153–167.PubMedCrossRefGoogle Scholar
  66. 66.
    Manjo GIJ. Apoptosis, oncosis, and necrosis. Am J Pathol 1995;146:3–15.Google Scholar
  67. 67.
    Gao W, Bentley RC, Madden JF, Clavien PA. Apoptosis of sinusoidal endothelial cells is a critical mechanism of preservation injury in rat liver transplantation. Hepatology 1998;27:1652–1660.PubMedCrossRefGoogle Scholar
  68. 68.
    Sedivy R, Gollackner B, Casati B, et al. Apoptotic hepatocytes in rejection and vascular occlusion in liver allograft specimens. Histopathology 1998;32:503–507.PubMedGoogle Scholar
  69. 69.
    Boonstra JG, Wever PC, Laterveer JC, et al. Apoptosis of acinar cells in pancreas allograft rejection. Transplantation 1997;64:1211–1213.PubMedCrossRefGoogle Scholar
  70. 70.
    Shaddy RE. Apoptosis in heart transplantation. Coronary Artery Dis 1997;8:617–621.CrossRefGoogle Scholar
  71. 71.
    Natori S, Selzner M, Valentino K, et al. Apoptosis of sinusoidal endothelial cells occurs during liver preservation injury by a capase dependent mechanism. Transplantation 1999;68:89–96.PubMedCrossRefGoogle Scholar
  72. 72.
    Sindram D, Kohli V, Madden JF, Clavien PA. Calpain inhibition prevents sinusoidal endothelial cell apoptosis in the cold ischemic rat liver. Transplantation 1999;68:136–140.PubMedCrossRefGoogle Scholar
  73. 73.
    Schumer M, Colombel MC, Swaczuk IS, et al. Morphological, biochemical, and molecular evidence of apoptosis during the reperfusion phase after brief periods of ischemia. Am J Pathol 1992;140:831–838.PubMedGoogle Scholar
  74. 74.
    Kohli V, Madden JF, Bentley RC, Clavien PA. Calpain mediates ischemic injury of the liver through modulation of apoptosis and necrosis. Gastroenterology 1999;116:168–178.PubMedCrossRefGoogle Scholar
  75. 75.
    Clavien PA, Camargo CA Jr, Gorczynski R, et al. Acute reactant cytokines and neutrophil adhesion after warm ischemia in cirrhotic and noncirrhotic human livers. Hepatology 1996;23:1456–1463.PubMedCrossRefGoogle Scholar
  76. 76.
    Lindell SL, Hansen T, Rankin M, Danielewicz R, Belzer FO, Southard JH. Donor nutritional status—a determinant of liver preservation injury. Transplantation 1996;61:239–247.PubMedCrossRefGoogle Scholar
  77. 77.
    Yokoyama I, Todo S, Miyata T, Selby R, Tzakis AG, Starzl TE. Endotoxemia and human liver transplantation. Transplant Proc 1989;21:3833–3841.PubMedGoogle Scholar
  78. 78.
    Liu P, Vonderfecht SL, Fisher MA, McGuire GM, Jaeschke H. Priming of phagocytes for reactive oxygen production during hepatic ischemia and reperfusion increases the susceptibility for endotoxin induced liver injury. Circulatory Shock 1994;43:9–17.PubMedGoogle Scholar
  79. 79.
    McGuire GM, Liu P, Jaeschke H. Neutrophil induced lung damage after hepatic ischemia and endotoxemia. Free Radical Biol Med 1996;20:189–197.CrossRefGoogle Scholar
  80. 80.
    Yamashita N, Nishida M, Hoshida S, et al. Induction of manganese superoxide dismutase in rat cardiac myocytes increases tolerance to hypoxia 24 h after pre-conditioning. J Clin Invest 1994;94:2193–2196.PubMedCrossRefGoogle Scholar
  81. 81.
    Adam R, Arnault I, Bao YM, Salvucci M, Sebagh M, Bismuth H. Effect of ischemic preconditioning on hepatic tolerance to cold ischemia in the rat. Transplant Int 1998;11:S168–S170.Google Scholar
  82. 82.
    Liu Z, Hsu H, Goeddel D, Karin M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NFKB activation prevents apoptosis. Cell 1996;87:565–576.PubMedCrossRefGoogle Scholar
  83. 83.
    Vassalli G, Fleury S, Li J, et al. Gene transfer of cytoprotective and immunomodulatory molecules for prevention of cardiac allograft rejection. Eur J Cardiothorac Surg 2003;24:794–806.PubMedCrossRefGoogle Scholar
  84. 84.
    Novitzky D. Donor management: state of the art. Transplant Proc 1997;29:3774.Google Scholar
  85. 85.
    Pita S, Valdez F, Alonzo A, et al. The role of cold ischemia on graft survival in recipients of renal transplants. Transplant Proc 1997;29:3596–3697.PubMedCrossRefGoogle Scholar
  86. 86.
    Stratta R. Donor age, organ import, and cold ischemia: effect on early outcomes after simultaneous kidney pancreas transplantation. Transplant Proc 1997;29:3291–3292.PubMedCrossRefGoogle Scholar
  87. 87.
    Klar E, Angelescu M, Zapletal C, et al. Definition of cold ischemia time without reduction of graft quality in clinical liver transplantation. Transplant Proc 1998;30:3683–3685.PubMedCrossRefGoogle Scholar
  88. 88.
    Serrick C, Giaid A, Reis A, Shennib H. Prolonged ischemia is associated with more pronounced rejection in the lung allograft. Ann Thorac Surg 1997;63:202–208.PubMedCrossRefGoogle Scholar
  89. 89.
    Binns ORA, Delima N, Buchanan S, et al. Both blood and crystalloid-based extracellular solutions are superior to intracellular solutions for lung preservation. J Thorac Cardiovasc Surg 1996;112:1515–1526.PubMedCrossRefGoogle Scholar
  90. 90.
    Schmid C, Heemann U, Tilney NL. Factors contributing to the development of chronic rejection in heterotopic rat heart transplantation. Transplantation 1997;64:222–228.PubMedCrossRefGoogle Scholar
  91. 91.
    Balaz P, Matia I, Jackanin S, et al. Preservation injury of jejunal grafts and its modulation by custodiol and university of Wisconsin perfusion solutions in wistar rats. Eur Surg Res 2004;36:192–197.PubMedCrossRefGoogle Scholar
  92. 92.
    Cicalese L, Sileri P, Green M, Abu-Elmagd K, Kocoshis S, Reyes J. Bacterial translocation in clinical intestinal transplantation. Transplantation 2001;71:1414–1417.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Brian Lima
    • 1
  • J. E. Tuttle-Newhall
    • 2
  1. 1.Department of Cardiothoracic SurgeryDuke UniversityDurhamUSA
  2. 2.Department of SurgeryDuke UniversityDurhamUSA

Personalised recommendations