Surgery pp 1705-1736 | Cite as

Immunology of Transplantation

  • Allan D. Kirk
  • Eric A. Elster


Tissues transferred between genetically nonidentical individuals are destroyed through a process known broadly as rejection. It has been apparent throughout most of medical history that these tissues could provide relief from disease if they were not rejected. Thus, the field of transplantation has grown in tandem with the understanding of the biology of rejection and, to the extent that rejection is an immune-mediated process, of the immune system in general. This close relationship between immunological science and clinical transplantation has fueled remarkable progress in our understanding of immune function and of the fundamental nature of our existence as individuals. The components of the immune system that have been defined in this context are now widely recognized not only for their importance in graft rejection but also for their roles in infection control, shock, tumor growth, autoimmune disease, and the systemic response to trauma. As such, the understanding of immunology that has been born of the study of transplantation has become key to the thorough understanding of the biology of modern medicine and surgery.


Acute Rejection Allograft Rejection Renal Allograft Mycophenolate Mofetil Chronic Rejection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carrel A. La technique operatoire des anastomoses vasculaires et la transplantation des visceres. Lyon Med 1902;98:859.Google Scholar
  2. 2.
    Carrel A. Results of the transplantation of blood vessels, organs and limbs. JAMA 1908;51:1662.Google Scholar
  3. 3.
    Converse JM, Casson PR. The historical background of transplantation. In: Rapaport F, Dausset J, eds. Human Transplantation. New York: Grune and Stratton; 1968.Google Scholar
  4. 4.
    Terasaki PI, ed. History of Transplantation: Thirty-Five Recollections. Los Angeles: UCLA Tissue Typing Laboratory; 1991.Google Scholar
  5. 5.
    Medawar PB. The behaviour and fate of skin autografts and skin homografts in rabbits. J Anat 1944;78:176–199.PubMedGoogle Scholar
  6. 6.
    Medawar PB. A second study of the behaviour and fate of skin homografts in rabbits. J Anat 1945;79:157–176.PubMedGoogle Scholar
  7. 7.
    Medawar PB. Immunity to homologous graft skin, I: the suppression of cell division in grafts transplanted to immunized animals. Br J Exp Pathol 1946;27:9.Google Scholar
  8. 8.
    Owen RD. Immunogenetic consequences of vascular anastomoses between bovine twins. Science 1945;102:400–401.PubMedCrossRefGoogle Scholar
  9. 9.
    Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature 1953;172:603–606.PubMedCrossRefGoogle Scholar
  10. 10.
    Mitchison NA. Passive transfer of transplantation immunity. Proc R Soc Lond B Biol Sci 1954;142:72.PubMedCrossRefGoogle Scholar
  11. 11.
    Gorer PA. The antigenic basis of tumour transplantation. J Pathol Bacteriol 1938;47:231–252.CrossRefGoogle Scholar
  12. 12.
    Gorer PA, Lyman S, Snell GD. Studies on the genetic and antigenic basis of tumour transplantation: linkage between a histocompatibility gene and “fused” in mice. Proc Soc Lond B Biol Sci 1948;135:499.CrossRefGoogle Scholar
  13. 13.
    Snell GD. Methods for the study of histocompatibility genes. J Genet 1948–1949;49:87–108.PubMedCrossRefGoogle Scholar
  14. 14.
    Amos DB, Gorer PA, Mikulska ZB. The antigenic structure and genetic behavior of a transplanted leukosis. Br J Cancer 1955;9:209.PubMedGoogle Scholar
  15. 15.
    Dausset J, Nenna A, Présence d’une leuco-agglutinine dans le sérum d’un cas d’agranulocytose chronique [Presence of leukoagglutinin in the serum of a case of chronic agranulocytosis]. Compt Rendus Soc Biol (Paris) 1952;146:1539.Google Scholar
  16. 16.
    Dausset J. Iso-leuco-anticorps. Acta Haematol 1958;20:156–166.PubMedCrossRefGoogle Scholar
  17. 17.
    Bach F, Hirschhorn K. Lymphocyte interaction: a potential histocompatibility test in vitro. Science 1964;143:813–814.PubMedCrossRefGoogle Scholar
  18. 18.
    Terasaki PI, McClelland JD. Microdroplet assay of human serum cytotoxins. Nature 1964;204:998–1000.PubMedCrossRefGoogle Scholar
  19. 19.
    Bjorkman PJ, Saper MA, Samraoui B, et al. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 1987;329:506–511.PubMedCrossRefGoogle Scholar
  20. 20.
    Bjorkman PJ, Saper MA, Samraoui B, et al. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigen. Nature 1987;329:512–518.PubMedCrossRefGoogle Scholar
  21. 21.
    Brown JH, Jardetzky T, Saper MA, et al. A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules. Nature 1988;332:845–850.PubMedCrossRefGoogle Scholar
  22. 22.
    Brown JH, Jardetzky T, Gorga JC, et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 1993;364:33–39.PubMedCrossRefGoogle Scholar
  23. 23.
    Hozumi N, Tonegawa S. Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. Proc Natl Acad Sci U S A 1976;73:3628–3632.PubMedCrossRefGoogle Scholar
  24. 24.
    Zinkernagel RM, Doherty PC. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 1974;248:701–702.PubMedCrossRefGoogle Scholar
  25. 25.
    Doherty PC, Zinkernagel RM. T cell-mediated immunopathology in viral infections. Transplant Rev 1974;19:89–120.PubMedGoogle Scholar
  26. 26.
    Bretscher P, Cohn M. A theory of self-non-self discrimination. Science 1970;169:1042–1049.PubMedCrossRefGoogle Scholar
  27. 27.
    Lafferty KJ, Cunningham AJ. A new analysis of allogeneic interactions. Aust J Exp Biol Med Sci 1975;53:27–42.PubMedCrossRefGoogle Scholar
  28. 28.
    June CH, Bluestone JA, Nadler LM, Thompson CB. The B7 and CD28 receptor families. Immunol Today 1994;15:321–331.PubMedCrossRefGoogle Scholar
  29. 29.
    Ridge JP, Fuchs EJ, Matzinger P. Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science 1996;271:1723–1726.PubMedCrossRefGoogle Scholar
  30. 30.
    Murray JE, Merrill JP, Harrison JH. Renal homotransplantation in identical twins. Surg Forum 1955;6:432.Google Scholar
  31. 31.
    Hitchings GH, Elion GB, Falco EA, et al. Antagonists of nucleic acid derivatives, I: the Lactobacillus casei model. J Biol Chem 1950;183:1.Google Scholar
  32. 32.
    Hitchings GH, Elion GB. Chemical suppression of the immune response. Pharmacol Rev 1963;15:365.PubMedGoogle Scholar
  33. 33.
    Calne RY, Murray JE. Inhibition of rejection of renal homografts in dogs by Burroughs-Wellcome 57–322. Surg Forum 1961;12:118–120.PubMedGoogle Scholar
  34. 34.
    Borel JF, Feurer C, Gubler HU. Biological effects of cyclosporine A: a new antilymphatic agent. Actions Agents 1976;6:468–475.CrossRefGoogle Scholar
  35. 35.
    Borel JF. Comparative study of in vitro and in vivo drug effects on cell-mediated cytotoxicity. Immunology 1976;31:631–641.PubMedGoogle Scholar
  36. 36.
    Calne RY, White DJ, Rolles K, et al. Prolonged survival of pig orthotopic heart grafts treated with cyclosporin A. Lancet 1978;1:1183–1185.PubMedCrossRefGoogle Scholar
  37. 37.
    Calne RY, White DJ, Thiru S, et al. Cyclosporin A in patients receiving renal allografts from cadaver donors. Lancet 1978;2:1323–1387.PubMedCrossRefGoogle Scholar
  38. 38.
    Dempsey PW, Allison MED, Akkaraju S, et al. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 1996;271:348–350.PubMedCrossRefGoogle Scholar
  39. 39.
    Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science 1996;272:50–53.PubMedCrossRefGoogle Scholar
  40. 40.
    Wright SD, Ramos RA, Tobias PS, et al. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990;249:1431–1433.PubMedCrossRefGoogle Scholar
  41. 41.
    Baldwon WM, Pruitt SK, Brauer RB, et al. Complement in organ transplantation. Transplantation 1995;59:797–808.Google Scholar
  42. 42.
    Hart DNJ. Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 1997;90:3245–3287.PubMedGoogle Scholar
  43. 43.
    Akira S, Takeda K. Toll-like receptor signaling. Nat Rev Immunol 2004;4:499–511.PubMedCrossRefGoogle Scholar
  44. 44.
    Koo, DDH, Roberts, ISD, et al. C4d deposition in early renal allograft protocol biopsies. Transplantation 2004;78:398–403.PubMedCrossRefGoogle Scholar
  45. 45.
    Ahmed R, Gray D. Immunological memory and protective immunity: understanding their relation. Science 1996;272:54–60.PubMedCrossRefGoogle Scholar
  46. 46.
    Fearon DT. Seeking wisdom in innate immunity. Nature 1997;388:323–24.PubMedCrossRefGoogle Scholar
  47. 47.
    Davis MM, Bjorkman PJ. T cell antigen receptor genes and T cell recognition. Nature 1988;334:395–402.PubMedCrossRefGoogle Scholar
  48. 48.
    Cooper MD. B lymphocytes: normal development and function. N Engl J Med 1987;317:1452–1457.PubMedGoogle Scholar
  49. 49.
    Gill JI, Gulley ML. Immunoglobulin and T cell receptor gene rearrangement. Hematol Oncol Clin North Am 1994;8:751–770.PubMedGoogle Scholar
  50. 50.
    Kirk AD, Ibrahim S, Dawson DV, et al. Characterization of T cells expressing the γ/δ antigen receptor in human renal allografts. Hum Immunol 1993;36:11–19.PubMedCrossRefGoogle Scholar
  51. 51.
    Kappler JW, Marrack P. T cell tolerance by clonal elimination in the thymus. Cell 1987;49:273–280.PubMedCrossRefGoogle Scholar
  52. 52.
    Bevan MJ. In thymic selection, peptide diversity gives and takes away. Immunity 1997;7:175–178.PubMedCrossRefGoogle Scholar
  53. 53.
    Fowlkes BJ, Ramsdell F. T cell tolerance. Curr Opin Immunol 1993;5:873–879.PubMedCrossRefGoogle Scholar
  54. 54.
    Itoh N, Yonehara S, Ishii A, et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 1991;66:233–243.PubMedCrossRefGoogle Scholar
  55. 55.
    Griffith TS, Brunner T, Fletcher SM, et al. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 1995;270:1189–1192.PubMedCrossRefGoogle Scholar
  56. 56.
    Wilson LA, Garcia KC. T cell receptor structure and TCR complexes. Curr Opin Struct Biol 1997;7:839–848.PubMedCrossRefGoogle Scholar
  57. 57.
    Rothenberg EV. How T cells count. Science 1996;273:78–79.PubMedCrossRefGoogle Scholar
  58. 58.
    Viola A, Lanzavecchia A. T cell activation determined by T cell receptor number and tunable thresholds. Science 1996;273:104–106.PubMedCrossRefGoogle Scholar
  59. 59.
    Kumagai N, Benedict SH, Mills GB, et al. Requirements for the simultaneous presence of phorbol esters and calcium ionophores in the expression of human T lymphocyte proliferation-related genes. J Immunol 1987;139:1393–1399.PubMedGoogle Scholar
  60. 60.
    Saizawa K, Rojo J, Janeway CA Jr. Evidence for a physical association of CD4 and the CD3: alpha:beta T cell receptor. Nature 1987;328:260–263.PubMedCrossRefGoogle Scholar
  61. 61.
    Leahy DJ, Axel R, Hendrickson WA. Crystal structure of a soluble form of the human T cell coreceptor CD8 at 2.6 Å resolution. Cell 1992;68:1145–1162.PubMedCrossRefGoogle Scholar
  62. 62.
    Germain RN. MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 1994;76:287–299.PubMedCrossRefGoogle Scholar
  63. 63.
    Monaco JJ. Structure and function of genes in the MHC class II region. Curr Opin Immunol 1993;5:17–20.PubMedCrossRefGoogle Scholar
  64. 64.
    Ridge JP, Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 1998;393:474–478.PubMedCrossRefGoogle Scholar
  65. 65.
    Lanzavecchia A. License to kill. Nature 1998;393:413–414.PubMedCrossRefGoogle Scholar
  66. 66.
    Plas DR. Johnson R, Pingel JT, et al. Direct regulation of ZAP-70 by SHP-1 in T cell antigen receptor signaling. Science 1996;272:1173–1176.PubMedCrossRefGoogle Scholar
  67. 67.
    Marengere LEM, Waterhouse P, Duncan GS, et al. Regulation of T cell receptor signaling by tyrosine phosphatase SYP associated with CTLA-4. Science 1996;272:1170–1173.PubMedCrossRefGoogle Scholar
  68. 68.
    Crabtree GR. Contingent genetic regulatory events in T lymphocyte activation. Science 1989;243:355–361.PubMedCrossRefGoogle Scholar
  69. 69.
    Ullman KS, Northrop JP, Verweij CJ, Crabtree GR. Transmission of signals from the T lymphocyte antigen receptor to the genes responsible for cell proliferation and immune function: the missing link. Annu Rev Immunol 1990;8:421–452.PubMedCrossRefGoogle Scholar
  70. 70.
    Siegel JN, June CH. Signal transduction in T cell activation and tolerance. In: Gupta S, Griscelli C, eds. New Concepts in Immunodeficiency Diseases. New York: Wiley; 1993;85–129.Google Scholar
  71. 71.
    Karthryn Wood and Shimon Sakaguchi. Regulatory T cells in transplant tolerance. Nat Rev Immunol 2003;3:199–210.CrossRefGoogle Scholar
  72. 72.
    Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002;3:135–142.PubMedCrossRefGoogle Scholar
  73. 73.
    Baecher-Allan at al. CD4+CD25+ highly regulatory cells in human peripheral blood. J Immunol 2001;167:1245–1253.PubMedGoogle Scholar
  74. 74.
    Berke G. The CTL’s kiss of death. Cell 1995;81:9–12.PubMedCrossRefGoogle Scholar
  75. 75.
    Zouali M. B cell superantigens: implications for selection of the human antibody repertoire. Immunol Today 1995;16:399–405.PubMedCrossRefGoogle Scholar
  76. 76.
    Jung S, Rajewsky K, Radbruch A. Shutdown of class switch recombination by deletion of a switch region control element. Science 1993;259:984–987.PubMedCrossRefGoogle Scholar
  77. 77.
    Griffiths GM, Berek C, Kaartinen M, Milstein C. Somatic mutation and the maturation of immune response to 2-phenyloxazo-lone. Nature 1984;312:271–275.PubMedCrossRefGoogle Scholar
  78. 78.
    Cambier JC, Pleiman CM, Clark MR. Signal transduction by the B cell antigen receptor and its coreceptors. Annu Rev Immunol 1994;12:457–486.PubMedCrossRefGoogle Scholar
  79. 79.
    Tedder TF, Zhou LJ, Engel P. The CD19/CD21 signal transduction complex of B lymphocytes. Immunol Today 1994;15:437–442.PubMedCrossRefGoogle Scholar
  80. 80.
    Lederman S, Yellin MJ, Inghirami G, et al. Molecular interactions mediating T-B lymphocyte collaboration in human lymphoid follicles: roles of the T cell-B cell activating molecule (5c8 antigen) and CD40 in contact dependent help. J Immunol 1992;149:3817–3826.PubMedGoogle Scholar
  81. 81.
    Takeuchi Y, Porter CD, Strahan KM, et al. Sensitization of cells and retroviruses to human serum by (a1-3) galactosyl transferase. Nature 1996;379:85–88.PubMedCrossRefGoogle Scholar
  82. 82.
    Arai KI, Lee F, Miyajima A, et al. Cytokines: coordinators of immune and inflammatory responses. Annu Rev Biochem 1990;59:783–836.PubMedCrossRefGoogle Scholar
  83. 83.
    Waldmann T, Tagaya Y, Bamford R. Interleukin-2, interleukin-15, and their receptors. Int Rev Immunol 1998;16:205–226.PubMedCrossRefGoogle Scholar
  84. 84.
    Feldman M, Londei M, Haworth C. T cells and lymphokines. Br Med Bull 1989;45:361–370.Google Scholar
  85. 85.
    Leonard WJ, Depper JM, Robb RJ, et al. Characterization of the human receptor for T cell growth factor. Proc Natl Acad Sci USA 1983;8:6957–6961.CrossRefGoogle Scholar
  86. 86.
    Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone, I: definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986;136:2348–2357.PubMedGoogle Scholar
  87. 87.
    Mosmann TR. Cytokines: is there biological meaning? Curr Opin Immunol 1991;3:311–314.PubMedCrossRefGoogle Scholar
  88. 88.
    Sugamura K, Asao H, Kondo M, et al. The common gamma-chain for multiple cytokine receptors. Adv Immunol 1995;59:225–277.PubMedCrossRefGoogle Scholar
  89. 89.
    Aaronson DS, Horvath CM. A road map for those who don’t know JAK-STAT. Science 2002;296:1653–1655.PubMedCrossRefGoogle Scholar
  90. 90.
    Kelso A. Th1 and Th2 subsets: paradigms lost? Immunol Today 1995;16:374–380.PubMedCrossRefGoogle Scholar
  91. 91.
    Krams SM, Falco DA, Villaneuva JC, et al. Cytokine and T cell receptor gene expression at the site of allograft rejection. Transplantation 1992;53:151–156.PubMedCrossRefGoogle Scholar
  92. 92.
    Kirk AD, Bollinger RR, Finn OJ. Rapid, comprehensive analysis of human cytokine mRNA and its application to the study of acute renal allograft rejection. Hum Immunol 1995;43:113–128.PubMedCrossRefGoogle Scholar
  93. 93.
    Allison JP, Krummel MF. The yin and yang of T cell costimula-tion. Science 1995;270:932–933.PubMedCrossRefGoogle Scholar
  94. 94.
    Chambers CA, Allison JP. Co-stimulation in T cell responses. Curr Opin Immunol 1997;9:396–404.PubMedCrossRefGoogle Scholar
  95. 95.
    Larsen CP, Pearson TC. The CD40 pathway in allograft rejection, acceptance, and tolerance. Curr Opin Immunol 1997;9:641–647.PubMedCrossRefGoogle Scholar
  96. 96.
    Harlan DM, Kirk AD. Anti-CD 154 therapy to prevent graft rejection. Graft 1998;1:63–70.Google Scholar
  97. 97.
    Bennett SRM, Carbone FR, Karamalis F, et al. Help for cytotoxic T cell responses is mediated by CD40 signalling. Nature 1998;393:478–480.PubMedCrossRefGoogle Scholar
  98. 98.
    Schoenberger SP, Toes REM, van der Voort EIH, et al. T cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 1998;393:480–483.PubMedCrossRefGoogle Scholar
  99. 99.
    Henn V, Slupsky JR, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998;391:591–594.PubMedCrossRefGoogle Scholar
  100. 100.
    Czapiga M, Kirk AD, Lekstrom-Himes J. Platelets deliver costimulatory signals to antigen-presenting cells: a potential bridge between injury and immune activation. Exp Hematol 2004;32:135–139.PubMedCrossRefGoogle Scholar
  101. 101.
    Blair PJ, Riley JL, Levine BL, et al. CTLA-4 ligation delivers a unique signal to resting human CD4 T cells that inhibits interleukin-2 secretion but allows Bcl-XL induction. J Immunol 1998;160:12–15.PubMedGoogle Scholar
  102. 102.
    Waterhouse P, Penninger JM, Timms E, et al. Lymphoprolifera-tive disorders with early lethality in mice deficient in CTLA-4. Science 1995;270:985–988.PubMedCrossRefGoogle Scholar
  103. 103.
    Walunas TL, Lenschow DJ, Bakker CY, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994;1:405–413.PubMedCrossRefGoogle Scholar
  104. 104.
    Linsley PS, Greene JL, Brady W, et al. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1994;1:793–801.PubMedCrossRefGoogle Scholar
  105. 105.
    Pennisi E. Teetering on the brink of danger. Science 1996;271:1665–1667.PubMedCrossRefGoogle Scholar
  106. 106.
    Bingaman AW, Ha J, et al. Vigorous allograft rejection in the absence of danger. J Immunol 2000;164:3065–3071.PubMedGoogle Scholar
  107. 107.
    Okazaki T, Iwai Y, Honjo T. New regulatory co-receptors: inducible co-stimulator and PD-1. Curr Opin Immunol 2002;14:779–82.PubMedCrossRefGoogle Scholar
  108. 108.
    Campbell RD, Trowsdale J. Map of the major histocompatibility complex. Immunol Today 1993;14:349–352.PubMedCrossRefGoogle Scholar
  109. 109.
    Lotteau V, Teyton L, Borroghs D, Charron D. A novel HLA class II molecule (DRalpha-DQbeta) created by mismatched isotype pairing. Nature 1987;329:339–341.PubMedCrossRefGoogle Scholar
  110. 110.
    Parham P, Ohta T. Population biology of antigen presentation by MHC class I molecules. Science 1996;272:67–74.PubMedCrossRefGoogle Scholar
  111. 111.
    Nowak MA, Bangham CRM. Population dynamics of immune responses to persistent viruses. Science 1996;272:74–79.PubMedCrossRefGoogle Scholar
  112. 112.
    Salter RD, Benjamin RJ, Wesley PK, et al. A binding site for the T cell co-receptor CD8 on the a3 domain of HLA-A2. Nature 1990;345:41–46.PubMedCrossRefGoogle Scholar
  113. 113.
    Doyle C, Strominger JL. Interaction between CD4 and class II MHC molecules mediates cell adhesion. Nature 1987;330:256–259.PubMedCrossRefGoogle Scholar
  114. 114.
    Williams DB, Barber BH, Flavell RA, et al. Role of b2-microglo-bin in the intracellular transport and surface expression of murine class I histocompatibility molecules. J Immunol 1989;142:2796–2806.PubMedGoogle Scholar
  115. 115.
    Teyton L, O’Sullivan D, Dickson PW, et al. Invariant chain distinguishes between the exogenous and endogenous antigen presenting pathways. Nature 1988;348:39–44.CrossRefGoogle Scholar
  116. 116.
    Adams AB, Pearson TC, Larsen CP. Heterologous immunity: an overlooked barrier to tolerance. Immunol Rev 2003;196:147.PubMedCrossRefGoogle Scholar
  117. 117.
    Halloran PF, Madrenas J. Regulation of MHC transcription. Transplantation 1990;50:725–738.PubMedCrossRefGoogle Scholar
  118. 118.
    Gerritsen ME, Bloor CM. Endothelial cell gene expression in response to injury. FASEB 1993;7:523–533.Google Scholar
  119. 119.
    Marsh SGE, Bodmer JG. HLA class II nucleotide sequences, 1992. Immunogenetics 1993;37:79–94.PubMedCrossRefGoogle Scholar
  120. 120.
    Zemmour J, Parham P. HLA class I nucleotide sequences, 1992. Immunogenetics 1993;37:239–250.PubMedCrossRefGoogle Scholar
  121. 121.
    Bidwell J. DNA-RFLP analysis and genotyping of HLA-DR and DQ antigens. Immunol Today 1998;9:18–23.CrossRefGoogle Scholar
  122. 122.
    Nevinny-Stickel C, Bettinotti MP, Andreas A, et al. Nonradioactive HLA class II typing using polymerase chain reaction and digoxigenin-11-29-39-didesoxy-uridinetriphosphate labeled oligonucleotide probes. Hum Immunol 1991;31:7–13.PubMedCrossRefGoogle Scholar
  123. 123.
    Nevinny-Stickel C, Hinzpter M, Andreas A, et al. Nonradioactive oligotyping for HLA-DRl-DRwlO using polymerase chain reaction, digoxigenin-labeled oligonucleotides and chemilumi-nescence detection. Eur J Immunogenet 1991;18:323–332.PubMedCrossRefGoogle Scholar
  124. 124.
    Olerup O, Zetterquist H. HLA DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological typing in clinical practice including donor-recipient matching in cadaveric transplantations. Tissue Antigens 1992;39:225–235.PubMedCrossRefGoogle Scholar
  125. 125.
    Markus BH, Duquesnoy RJ, Gordon RD, et al. Histocompatibility and liver transplantation. Does HLA exert a dualistic effect? Transplantation (Baltimore) 1988;46:372–377.PubMedGoogle Scholar
  126. 126.
    Steinhoff G. HLA/ABO matching. In Neuberger J, Adams D, eds. Immunology of Liver Transplantation. London: Edward Arnold; 1993:261–266.Google Scholar
  127. 127.
    Terasaki PI, Cecka JM, Gjertson DW, Takemoto S. High survival rates of kidney transplants from spousal and living unrelated donors. N Engl J Med 1995;333:333–336.PubMedCrossRefGoogle Scholar
  128. 128.
    Terasaki PI, Cecka JM, Gjertson DW, Cho YW. Spousal and Other Living Renal Donor Transplants. Los Angeles: UCLA Tissue Typing Laboratory, Clinical Transplants; 1997.Google Scholar
  129. 129.
    Gloor JM, DeGoey SR, et al. Overcoming a positive crossmatch in living-donor kidney transplantation. AJT 3:1017, 2003:1017–1023.Google Scholar
  130. 130.
    Takahashi K, Saito K, et al. Excellent long-term outcome of ABO-incompatible living donor kidney transplantation in Japan. Am J Transplant 2004;4:1089–1096.PubMedCrossRefGoogle Scholar
  131. 131.
    Burdick JF. An anatomy of rejection. Transplant Rev 1991;5:81–90.Google Scholar
  132. 132.
    Kirk AD, Ibrahim MA, Bollinger RR, et al. Renal allograft infiltrating lymphocytes: a prospective analysis of in vitro growth characteristics and clinical relevance. Transplantation 1992;53:329–338.PubMedCrossRefGoogle Scholar
  133. 133.
    Fuggle SV, Koo DDH. Cell adhesion molecules in clinical renal transplantation. Transplantation 1998;65:763–769.PubMedCrossRefGoogle Scholar
  134. 134.
    Henn V, Slupsky JR, Grafe M, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998;391:591–594.PubMedCrossRefGoogle Scholar
  135. 135.
    Takada M, Chandraker A, Nadeau KC, et al. The role of the B7 costimulatory pathway in experimental cold ischemia/reperfu-sion injury. J Clin Invest 1997;100:1199–1203.PubMedCrossRefGoogle Scholar
  136. 136.
    Dallman MJ, Clark GJ. Cytokines and their receptors in transplantation. Curr Opin Immunol 1991;3:729–734.PubMedCrossRefGoogle Scholar
  137. 137.
    Strehlau J, Pavlakis M, Lipman M, et al. Quantitative detection of immune activation transcripts as a diagnostic tool in kidney transplantation. Proc Natl Acad Sci U S A 1997;94:695–700.PubMedCrossRefGoogle Scholar
  138. 138.
    Levitz SM, Mathews HL, Murphy JW. Direct antimicrobial activity of T cells. Immunol Today 1995;16:387–391.PubMedCrossRefGoogle Scholar
  139. 139.
    Baldwin WM III, Pruitt SK, Sanfilippo F, et al. Alloanti-bodies: basic and clinical concepts. Transplant Rev 1991;5:100–119.Google Scholar
  140. 140.
    Saadi S, Piatt JL. Transient perturbation of endothelial integrity induced by natural antibodies and complement. J Exp Med 1995;181:21–31.PubMedCrossRefGoogle Scholar
  141. 141.
    Bach FH, Winkler H, Ferran C, et al. Delayed xenograft rejection. Immunol Today 1996;17:379–384.PubMedCrossRefGoogle Scholar
  142. 142.
    Gebel HM, Lebeck LK. Crossmatch procedures used in organ transplantation. Clin Lab Med 1991;11:603–620.PubMedGoogle Scholar
  143. 143.
    Talbot D. The flow cytometric crossmatch in perspective. Transplant Immunol 1993;1:155–162.CrossRefGoogle Scholar
  144. 144.
    Le Bas-Bernardet S, Hourmant M. Identification of the antibodies involved in B-cell crossmatch positivity in renal transplantation. Transplantation 2003;75:477–482.PubMedCrossRefGoogle Scholar
  145. 145.
    Noreen HJ, McKinley DM, et al. Positive remote crossmatch: impact on short-term and long-term outcome in cadaver renal transplantation. Transplantation 2003;75:501–505.PubMedCrossRefGoogle Scholar
  146. 146.
    Colvin RB. The pathogenesis of vascular rejection. Transplant Proc 1991;23:2052–2055.PubMedGoogle Scholar
  147. 147.
    Paul LC. Chronic renal transplant loss. Kidney Int 1995;47:1491–1499.PubMedCrossRefGoogle Scholar
  148. 148.
    Almond PS, Matas A, Gillingham KJ, et al. Risk factors for chronic rejection in renal allograft recipients. Transplantation 1993;55:752–757.PubMedCrossRefGoogle Scholar
  149. 149.
    Gourishankar S, Halloran PF. Late deterioration of organ transplants: a problem in injury and homeostasis. Curr Opin Immunol 2002;14:576–583.PubMedCrossRefGoogle Scholar
  150. 150.
    Ahsan N, Johnson C, et al. Randomized trial of tacrolimus plus mycophenolate mofetil or azathioprine versus cyclosporine oral solution (modified) plus mycophenolate mofetil after cadaveric kidney transplantation: results at 2 years. Transplantation. 2001;72:245–250.PubMedCrossRefGoogle Scholar
  151. 151.
    Jensick SC. Tacrolimus in kidney transplantation: 3-year survival results of the US multicenter, randomized, comparative trial. FK506 Kidney Transplant Study Group. Transplant Proc 1998;30:1216–1218.CrossRefGoogle Scholar
  152. 152.
    Mathew TH. A blinded, long-term, randomized multicenter study of mycophenolate mofetil in cadaveric renal transplantation: results at 3 years. Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. Transplantation 1998;65:1450–1454.PubMedCrossRefGoogle Scholar
  153. 153.
    Gaber A. Results of the double-blind, randomized, multicenter, phase in clinical trial of thymoglobulin versus ATGAM in the treatment of acute graft rejection episodes after renal transplantation. Clin Transplant 1998;66:29–37.Google Scholar
  154. 154.
    Kahan BD. Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomized multicentre study. Lancet 2000;356:194–202.PubMedCrossRefGoogle Scholar
  155. 155.
    Vincenti F. Interleukin-2-receptor blockade with daclizimab to prevent acute rejection in renal transplantation. N Engl J Med 1998;338:161–165.PubMedCrossRefGoogle Scholar
  156. 156.
    Hardinger KL, Schnitzler MA, et al. Five-year follow up of thymoglobulin versus ATGAM induction in adult renal transplantation. Transplantation 2004;78:136–141.PubMedCrossRefGoogle Scholar
  157. 157.
    Auphan N, DiDonato JA, Rosette C, et al. Immunosuppression by glucocorticoids: inhibition of NF-kB activity through induction of IkB synthesis. Science 1995;270:286–290.PubMedCrossRefGoogle Scholar
  158. 158.
    Scheinman RI, Cogswell PC, Lofquist AK, et al. Role of transcriptional activation of IkBoc in mediation of immunosuppression by glucocorticoids. Science 1995;283:283–286.CrossRefGoogle Scholar
  159. 159.
    Plaz KP, Sollinger HW, Hullet DA, et al. RS-61443, a new, potent immunosuppressive agent. Transplantation 1991;51:27–31.Google Scholar
  160. 160.
    Sollinger HW, Deierhoi MH, Belzer FO, et al. RS-61443: a phase I clinical trial and pilot rescue study. Transplantation 1992;53:428–432.PubMedCrossRefGoogle Scholar
  161. 161.
    Sollinger HW. US Renal Transplant Mycophenolate Mofetil Study Group. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. Transplantation 1995;60:225–232.PubMedCrossRefGoogle Scholar
  162. 162.
    Kahan BD. Role of cyclosporine: present and future. Transplant Proc 1994;26:3082–3087.PubMedGoogle Scholar
  163. 163.
    Khanna A, Sharma VK, Suthanthiran M. Immunoregulatory and fibrogenic activities of cyclosporine: a unifying hypothesis based on transforming growth factor-b expression. Transplant Proc 1996;28:2015–2019.PubMedGoogle Scholar
  164. 164.
    Kirk AD, Jacobson LM, Heisey DM, et al. Post-transplant diastolic hypertension: associations with intragraft TGF-P, endo-thelin and renin transcription. Transplantation 1997;64:1716–1720.PubMedCrossRefGoogle Scholar
  165. 165.
    June CH, Ledbetter JA, Gillespie MM, et al. T cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin-2 gene expression. Mol Cell Biol 1987;7:4472–4481.PubMedGoogle Scholar
  166. 166.
    Hojo M, Morimoto T, Maluccio M, et al. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature 1999;397:530–534.PubMedCrossRefGoogle Scholar
  167. 167.
    Kino T, Hatanaka H, Miyata S, et al. FK-506, a novel immunosuppressant isolated from streptomyces, II: immunosuppressive effect of FK-506 in vitro. J Antibiot 1987;40:1256–1265.PubMedGoogle Scholar
  168. 168.
    Fruman DA, Klee CB, Bierer BE, Burakoff SJ. Calcineurin phosphatase activity in T lymphocytes is inhibited by FK506 and cyclosporin A. Proc Natl Acad Sci U S A 1992;89:3686–3690.PubMedCrossRefGoogle Scholar
  169. 169.
    Starzl TE, Fung JJ, Venkataramanan, et al. FK-506 for liver, kidney, and pancreas transplantation. Lancet 1989;334:1000–1004.CrossRefGoogle Scholar
  170. 170.
    Gaber AO, First MR, Tesi RJ, et al. Results of the double-blind, randomized, multicenter, phase III clinical trial of thymoglobulin versus ATGAM in the treatment of acute graft rejection episodes after renal transplantation. Transplantation 1998;66:29–37.PubMedCrossRefGoogle Scholar
  171. 171.
    Merion RM, Howell T, Bromberg JS. Partial T cell activation and energy induction by polyclonal antithymocyte globulin. Transplantation 1998;65:1481–1489.PubMedCrossRefGoogle Scholar
  172. 172.
    Swanson SJ, Hale DA, Mannon RB, et al. Kidney transplantation with rabbit antithymocyte globulin induction and sirolimus monotherapy. Lancet 2002;360:1662.PubMedCrossRefGoogle Scholar
  173. 173.
    Starzl TE, Murase N, et al. Tolerogenic immunosuppression for organ transplantation. Lancet 2003;361:1502–1510.PubMedCrossRefGoogle Scholar
  174. 174.
    Brennan DC, Flavin K, Lowell JA, et al. A randomized, double-blinded comparison of Thymoglobulin versus Atgam for induction immunosuppressive therapy in adult renal transplant recipients. Transplantation 1999;67:1011–1018.PubMedCrossRefGoogle Scholar
  175. 175.
    Wilde MI, Goa KL. Muromonab CD3: a reappraisal of its pharmacology and use as prophylaxis of solid organ transplant rejection. Drugs 1996;51:865–894.PubMedCrossRefGoogle Scholar
  176. 176.
    Delmonico FL, Cosimi AB. Monoclonal antibody treatment of human allograft recipients. Surg Obst Gynecol 1988;166:89–98.Google Scholar
  177. 177.
    Kupfer A, Mosmann TR, Kupfer H, et al. Polarized expression of cytokines in cell conjugates of helper T cells and splenic B cells. Proc Natl Acad Sci U S A 1991;88:775–779.PubMedCrossRefGoogle Scholar
  178. 178.
    Shield CF III, Norman DJ. Immunological monitoring during and after OKT3 therapy. Am J Kidney Dis 1988;11:120–124.PubMedGoogle Scholar
  179. 179.
    Ortho Multicenter Transplant Study Group. A randomized clinical trial of OKT3 monoclonal antibody for acute rejection of cadaveric renal transplants. N Engl J Med 1985;313:337–342.Google Scholar
  180. 180.
    Light JA, Khawand N, Aquino A, et al. Quadruple immunosuppression: comparison of OKT3 and Minnesota antilymphocyte globulin. Am J Kidney Dis 1989;14:10–13.PubMedGoogle Scholar
  181. 181.
    Soulillou JP, Le Mauff B, Olive D, et al. Prevention of rejection of kidney transplants by a monoclonal antibody directed against interleukin 2. Lancet 1987;1:1339–1342.PubMedCrossRefGoogle Scholar
  182. 182.
    Nashan B, Moore B, Amlot P, et al. Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. Lancet 1997;350:1193–1198.PubMedCrossRefGoogle Scholar
  183. 183.
    Flechner M, Goldfarb D, Modlin C, et al. Kidney transplantation without calcineurin inhibitor drugs: A prospective, randomized trial of sirolimus versus cyclosporine. Transplantation 2002;74:1070–1076.PubMedCrossRefGoogle Scholar
  184. 184.
    Segal SN, Baker H, Vezina C, et al. Rapamycin (AY-22,989), a new antifungal antibiotic, II: fermentation, isolation and characterization. J Antibiot (Tokyo) 1975;28:727–732.Google Scholar
  185. 185.
    Martel RR, Klicius J, Galet S. Inhibition of the immune response by rapamycin, a new antifungal antibiotic. Can J Physiol Pharmacol 1977;55:48–51.PubMedGoogle Scholar
  186. 186.
    Baker H, Sidorowicz A, Sehgal SN, Vezina C. Rapamycin (AY-22,989), a new antifungal antibiotic, III: In vitro and in vivo evaluation. J Antibiot 1978;31:539–545.PubMedGoogle Scholar
  187. 187.
    Molnar-Kimber KL. Mechanism of action of rapamycin (sirolimus, rapamune). Transplant Proc 1996;26:964–969.Google Scholar
  188. 188.
    Dumont FJ, Melino MR, Staruch MJ, et al. The immunosuppressive macrolides FK-506 and rapamycin act as reciprocal antagonists in murine T cells. J Immunol 1990;144:1418–1424.PubMedGoogle Scholar
  189. 189.
    Dumont FJ, Staruch MJ, Koprak SL, et al. Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J Immunol 1990;144:251–258.PubMedGoogle Scholar
  190. 190.
    Kuo CJ, Chung J, Fiorentino DF, et al. Rapamycin selectively inhibits interleukin 2 activation of p70 S6 kinase. Nature 1992;358:70–73.PubMedCrossRefGoogle Scholar
  191. 191.
    Muthukkumar S, Ramesh TM, Bondada S. Rapamycin, a potent immunosuppressive drug, causes programmed cell death in B lymphoma cells. Transplantation 1995;60:264–270.PubMedCrossRefGoogle Scholar
  192. 192.
    Bjorn Nashan. Review of the proliferation inhibitor everolimus. Exper Opin Invest Drug 2002;11:1845–1857.CrossRefGoogle Scholar
  193. 193.
    McAlister VC, Gao Z, et al. Sirolimus-tacrolimus combination immunosuppression. Lancet 2000;355:376–377.PubMedCrossRefGoogle Scholar
  194. 194.
    Morris RE. Rapamycins: antifungal, antitumor, antiproliferative and immunosuppressive macrolides. Transplant Rev 1992;6:39–87.Google Scholar
  195. 195.
    Calne RY, Friend P, Moffatt S, et al. Prope tolerance, perioperative campath 1H, and low-dose cyclosporin monotherapy in renal allograft recipients. Lancet 1998;351:1701.PubMedCrossRefGoogle Scholar
  196. 196.
    Kirk AD, Hale DA, Mannon RB, et al. Results from a human renal allograft tolerance trial evaluating the humanized CD52-specific monoclonal antibody alemtuzumab (CAMPATH-1H). Transplantation 2003;76:120.PubMedCrossRefGoogle Scholar
  197. 197.
    Knechtle SJ, Pirsch JD, Fechner H, et al. Campath-1H induction plus rapamycin monotherapy for renal transplantation: results of a pilot study. Am J Transplant 2003;3:722.PubMedCrossRefGoogle Scholar
  198. 198.
    Kaufman DB. 15-Deoxyspergualin in experimental transplant models: a review. Transplant Proc 1996;28:868–870.PubMedGoogle Scholar
  199. 199.
    Ramos EL, Nadler SG, Grasela DM, Kelly SL. Deoxyspergualin: mechanism of action and pharmacokinetics. Transplant Proc 1996;28:873–875.PubMedGoogle Scholar
  200. 200.
    Kirk A. Results from a human tolerance trial using alemtuzumab (campath-lH) with deoxyspergualin (DSG). Am J Transplant 2003;3(S5):S310.Google Scholar
  201. 201.
    Brinkmann V, Cyster JG, Hla T. FTY720: sphingosine 1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function. Am J Transplant 2004;4:1019.PubMedCrossRefGoogle Scholar
  202. 202.
    Becker YT, Becker BN, et al. Rituximab as treatment for refractory kidney transplant rejection. Am J Transplant 2004;4:996.PubMedCrossRefGoogle Scholar
  203. 203.
    Samuelsson A, Towers TL, Ravetch JV. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 2001;291:484.PubMedCrossRefGoogle Scholar
  204. 204.
    Bleeker WK, Teeling JL, Hack CE. Accelerated autoantibody clearance by intravenous immunoglobulin therapy: studies in experimental models to determine the magnitude and time course of the effect. Blood 2001;98:3136–3142.PubMedCrossRefGoogle Scholar
  205. 205.
    Takemoto SK, Zeevi A, et al. National Conference to Assess Antibody-Mediated Rejection in Solid Organ Transplantation. Am J Transplant 2004;4:1033–1041.PubMedCrossRefGoogle Scholar
  206. 206.
    Kirk AD. Transplant tolerance: a look at the non-human primate literature in the view of modern tolerance theories. Crit Rev Immunol 1999;19:349–388.PubMedGoogle Scholar
  207. 207.
    Kirk AD, Knechtle SJ, Sollinger H, Vincenti FG, Stecher S, Nadeau K. Preliminary results of the use of humanized anti-CD 154 in human renal allotransplantation. Am J Transplant 2001;1:S191.Google Scholar
  208. 208.
    Calne R, Moffatt SD, Friend PJ, et al. Campath IH allows low-dose cyclosporine monotherapy in 31 cadaveric renal allograft recipients. Transplantation 1999;68:1613–1616.PubMedCrossRefGoogle Scholar
  209. 209.
    Kirk A. Results from a human tolerance trial using alemtuzumab (campath-IH) with deoxyspergualin (DSG). Am J Transplant 2003;3(S5):S310.Google Scholar
  210. 210.
    Spitzer TR, Delmonico F, Tolkoff-Rubin N, et al. Combined histocompatibility leukocyte antigen-matched donor bone marrow and renal transplantation for multiple myeloma with end stage renal disease: the induction of allograft tolerance through mixed lymphohematopoietic chimerism. Transplantation 1999;68:480.PubMedCrossRefGoogle Scholar
  211. 211.
    Strober S, Benike C, Krishnaswamy S, Engleman EG, Grumet FC. Clinical transplantation tolerance 12 years after prospective withdrawal of immunosuppressive drugs: studies of chimerism and anti-donor reactivity. Transplantation 2000;69:1549.PubMedCrossRefGoogle Scholar
  212. 212.
    Millan MT, Shizuru JA, Hoffmann P, et al. Mixed chimerism and immunosuppressive drug withdrawal after HLA-mismatched kidney and hematopoietic progenitor transplantation. Transplantation 2002;73:1386.PubMedCrossRefGoogle Scholar
  213. 213.
    Kirk AD, Harlan DM, Armstrong NN, et al. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc Natl Acad Sci U S A 1997;94:8789.PubMedCrossRefGoogle Scholar
  214. 214.
    Kirk AD, Burkly LC, Batty DS, et al. Treatment with humanized monoclonal antibody against CD 154 prevents acute renal allograft rejection in nonhuman primates. Nat Med 1999;5:686.PubMedCrossRefGoogle Scholar
  215. 215.
    Elster EA, Xu H, Tadaki DK, et al. Treatment with the humanized CD154-specific monoclonal antibody, hu5C8, prevents acute rejection of primary skin allografts in nonhuman primates. Transplantation 2001;72:1473.PubMedCrossRefGoogle Scholar
  216. 216.
    Pearson TC, Trambley J, Odom K, et al. Anti-CD40 therapy extends renal allograft survival in rhesus macaques. Transplantation 2002;74:933.PubMedCrossRefGoogle Scholar
  217. 217.
    Montgomery SP, Xu H, Tadaki DK, et al. Combination induction therapy with monoclonal antibodies specific for CD80, CD86, and CD 154 in nonhuman primate renal transplantation. Transplantation 2002;74:1365.PubMedCrossRefGoogle Scholar
  218. 218.
    Kirk AD, Tadaki DK, Celniker A, et al. Induction therapy with monoclonal antibodies specific for CD80 and CD86 delays the onset of acute renal allograft rejection in non-human primates. Transplantation 2001;72:377–384.PubMedCrossRefGoogle Scholar
  219. 219.
    Knechtle SJ, Fechner JH Jr, Dong Y, et al. Primate renal transplants using immunotoxin. Surgery 1998;124:438.PubMedGoogle Scholar
  220. 220.
    Hutchings A, Wu J, Asiedu C, et al. The immune decision toward allograft tolerance in non-human primates requires early inhibition of innate immunity and induction of immune regulation. Transpl Immunol 2003;11:335.PubMedCrossRefGoogle Scholar
  221. 221.
    Kawai T, Poncelet A, Sachs DH, et al. Long-term outcome and alloantibody production in a non-myeloablative regimen for induction of renal allograft tolerance. Transplantation 1999;68:1767.PubMedCrossRefGoogle Scholar
  222. 222.
    Kawai T, Abrahamian G, Sogawa H, et al. Costimulatory blockade for induction of mixed chimerism and renal allograft tolerance in nonhuman primates. Transplant Proc 2001;33:221.PubMedCrossRefGoogle Scholar
  223. 223.
    Pearl JP, Parris J, Hale DA, et al. Immunocompetent T-cells with a memory-like phenotype are the dominant cell type following antibody-mediated T-cell depletion. Am J Transplant 2005;5:465–474.PubMedGoogle Scholar
  224. 224.
    Knechtle SJ, Vargo D, Fechner J, et al. FN18-CRM9 immunotoxin promotes tolerance in primate renal allografts. Transplantation 1997;63:1–6.PubMedCrossRefGoogle Scholar
  225. 225.
    Sykes M, Sachs DH. Mixed allogeneic chimerism as an approach to transplant tolerance. Immunol Today 1998;9:23–27.CrossRefGoogle Scholar
  226. 226.
    Sharabi Y, Sachs DH. Mixed chimerism and permanent specific transplantation tolerance induced by a nonlethal preparative regimen. J Exp Med 1989;169:493–502.PubMedCrossRefGoogle Scholar
  227. 227.
    Kaufman CL, Ildstad ST. Induction of donor-specific tolerance by transplantation of bone marrow. Ther Immunol 1994;1:101–111.PubMedGoogle Scholar
  228. 228.
    Odorico JS, O’Connor T, Campos L, et al. Examination of the mechanisms responsible for tolerance induction after intrathymic inoculation of allogeneic bone marrow. Ann Surg 1993;218:525–531.PubMedCrossRefGoogle Scholar
  229. 229.
    Qin S, Cobbold SP, Pope H, et al. Infectious transplant tolerance. Science 1993;259:974–977.PubMedCrossRefGoogle Scholar
  230. 230.
    Starzl TE, Demetris AJ, Murase N, et al. Cell migration, chimerism and graft acceptance. Lancet 1992;339:1579–1582.PubMedCrossRefGoogle Scholar
  231. 231.
    Larsen CP, Elwood ET, Alexander DZ, et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 1996;381:434–438.PubMedCrossRefGoogle Scholar
  232. 232.
    Kirk AD, Harlan DM, Armstrong NN, et al. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc Natl Acad Sci U S A 1997;94:8789–8794.PubMedCrossRefGoogle Scholar
  233. 233.
    Auchincloss H Jr, Sachs DH. Xenogeneic transplantation. Annu Rev Immunol 1998;16:433–470.PubMedCrossRefGoogle Scholar
  234. 234.
    Sandrin MS, Vaughan HA, et al. Anti-pig IgM antibodies in human serum react predominantly with gal(al-3)gal epitopes. Proc Natl Acad Sci U S A 1993;90:11391–11395.PubMedCrossRefGoogle Scholar
  235. 235.
    Cooper DKC, Good AH, et al. Identification of alpha-galactosyl and other carbohydrate epitopes that are bound by human anti-pig antibodies: relevance to discordant xenografting in man. Transpl Immunol 1993;1:198–205.PubMedCrossRefGoogle Scholar
  236. 236.
    Prilliman K, Lawlor D, Ellexson M. Characterization of baboon class I major histocompatibility molecules. Transplantation 1996;61:989–996.PubMedCrossRefGoogle Scholar
  237. 237.
    Kirk AD, Li RA, Kinch MS, et al. The human antiporcine cellular repertoire. In vitro studies of acquired and innate cellular responsiveness. Transplantation 1993;55:924–931.PubMedCrossRefGoogle Scholar
  238. 238.
    Tadaki D, Saini A, Craighead N, et al. Costimulatory pathways are active in xenogeneic immune responses [abstract]. Transplantation 1998;65:87.CrossRefGoogle Scholar
  239. 239.
    Reemtsma K, McCracken BH, et al. Renal heterotransplantation in man. Ann Surg 1964;160:384.PubMedCrossRefGoogle Scholar
  240. 240.
    Starzl TE, Marchioro TL, et al. Renal heterotransplantation from baboon to man: experience with six cases. Transplantation 1964;2:752–759.PubMedCrossRefGoogle Scholar
  241. 241.
    Bailey LL, Nehlsen-Cannarella SL, et al. Baboon-to-human cardiac xenotransplantation in a neonate. JAMA 1985;254:3321–3329.PubMedCrossRefGoogle Scholar
  242. 242.
    Piatt JL, Fischel RJ, et al. Immunopathology of hyperacute xenograft rejection in a swine-to-primate model. Transplantation 1991;52:214–220.CrossRefGoogle Scholar
  243. 243.
    Goodman DJ, von Albertini M, et al. Direct activation of porcine endothelial cells by human natural killer cells. Transplantation 1996;61:763–771.PubMedCrossRefGoogle Scholar
  244. 244.
    McCurry KR, Kooyman DL, et al. Human complement regulatory proteins protect swine-to-primate cardiac xenografts from humoral injury. Nat Med 1995;1:423–427.PubMedCrossRefGoogle Scholar
  245. 245.
    Sandrin MS, Fodor WL, et al. Enzymatic remodeling of the carbohydrate surface of a xenogeneic cell substantially reduces human antibody binding and complement-mediated cytolysis. Nat Med 1996;1:1261–1267.CrossRefGoogle Scholar
  246. 246.
    Lai L, Kolber-Simonds D, et al. Production of α-1,3-galactosyl-transferase knockout pigs by nuclear transfer cloning. Science 2002:295:1089–1092.PubMedCrossRefGoogle Scholar
  247. 247.
    Cozzi E, Bhatti FNK, Schmoeckel M, et al. Long-term survival of nonhuman primates receiving life-supporting transgenic porcine kidney xenografts. Transplantation 2000;70:12–21.Google Scholar
  248. 248.
    Bhatti FNK, Schmoeckel M, Zaidi A, et al. Three-month survival of HDAFF transgenic pig hearts transplanted into primates. Transplant Proc 1999;31:958.PubMedCrossRefGoogle Scholar
  249. 249.
    Vial CM, Ostlie DJ, Bhatti FNK, et al. Life supporting function for over one month of a transgenic porcine heart in a baboon. J Heart Lung Transplant 2000;19:224–229.PubMedCrossRefGoogle Scholar
  250. 250.
    Burke F, Naylor MS, et al. The cytokine wall chart. Immunol Today 1993;14:165.PubMedCrossRefGoogle Scholar
  251. 251.
    Kirk AD, Sollinger HW. Transplant immunology and immunosuppression. In: Schwartz S, ed. Principles of Surgery, 7th Ed. New York; McGraw-Hill, 1998.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Allan D. Kirk
    • 1
  • Eric A. Elster
    • 1
    • 2
  1. 1.Transplantation BranchNational Institutes of HealthBethesdaUSA
  2. 2.Department of SurgeryUniformed Services UniversityBethesdaUSA

Personalised recommendations