Skip to main content

Substrate Metabolism

  • Chapter
Surgery

Abstract

The initial hours following surgical or traumatic injury are associated metabolically with reduced total body energy expenditure and increased urinary nitrogen wasting. This initial phase of injury also demonstrates an augmented release of neuroendocrine hormones, including catecholamines and Cortisol. On adequate resuscitation and stabilization of the injured patient, a reprioritization of substrate utilization occurs to preserve vital organ function and for the repair of injured tissue.1 This phase of recovery is also characterized by augmented metabolic rates and oxygen consumption, enhanced enzymatic pathways for readily oxidizable substrates such as glucose, and stimulation of immune system functions that participate in the restoration of homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith MK, Lowry SF. The hypercatabolic state. In: Shils ME, et al., eds. Modern Nutrition in Health and Disease, 9th ed. Baltimore: Williams & Wilkins, 1999:1555–1568.

    Google Scholar 

  2. Cahill GF. Starvation in man. N Engl J Med 1970;282:668–675.

    PubMed  CAS  Google Scholar 

  3. Brodsky IG. Hormone, cytokine, and nutrient interactions. In: Shils ME, et al., eds. Modern Nutrition in Health and Disease, 9th ed. Baltimore: Williams & Wilkins, 1999:699–724.

    Google Scholar 

  4. Bessey PQ, Lowe KA. Early hormonal changes affect the catabolic response to trauma. Ann Surg 1993;218:476–491.

    Article  PubMed  CAS  Google Scholar 

  5. Long CL. Metabolic response to injury and illness: estimation of energy and protein needs from indirect calorimetry and nitrogen balance. J Parenter Enteral Nutr 1979;3:452–456.

    Article  CAS  Google Scholar 

  6. Nordenstrom J, Carpentier YA, Askanazi J, et al. Free fatty acid mobilization and oxidation during total parenteral nutrition in trauma and infection. Ann Surg 1983;198:725–735.

    Article  PubMed  CAS  Google Scholar 

  7. Peterson J, Bihain BE. Fatty acid control of lipoprotein lipase: a link between energy metabolism and lipid transport. Proc Natl Acad Sci USA 1990;87:909–913.

    Article  PubMed  CAS  Google Scholar 

  8. Rossle C. Medium chain triglycerides induce alterations in carnitine metabolism. Am J Physiol 1990;258:E944–E947.

    PubMed  CAS  Google Scholar 

  9. Sailer D, Muller M. Medium chain triglycerides in parenteral nutrition. J Parenter Enteral Nutr 1981;5:115–119.

    Article  CAS  Google Scholar 

  10. Wiener M, Rothkopf MM, Rothkopf G, et al. Fat metabolism in injury and stress. Crit Care Clin 1987;3:1–25.

    Google Scholar 

  11. Long CL, Schiller WR, Geiger JW, et al. Gluconeogenic response during glucose infusions in patients following skeletal trauma or sepsis. J Parenter Enteral Nutr 1978;22:619–625.

    Article  Google Scholar 

  12. Elwyn DH, Kinney JM, Jeevanandam M, et al. Influence of increasing carbohydrate intake on glucose kinetics in injured patients. Ann Surg 1979;190:117–127.

    Article  PubMed  CAS  Google Scholar 

  13. Long CL, Nelson KM, Akin JM, et al. A physiologic basis for the provision of fuel mixtures in normal and stressed patients. J Trauma 1990;30:1077–1086.

    Article  PubMed  CAS  Google Scholar 

  14. Eigler N, Sacca L, Sherwin RS. Synergistic interactions of physiologic increments of glucagon, epinephrine, and Cortisol in the dog: a model for stress-induced hyperglycemia. J Clin Invest 1979;63:114–118.

    Article  PubMed  CAS  Google Scholar 

  15. Chu CA, Sindelar DK, et al. Comparison of the direct and indirect effects of epinephrine on hepatic glucose production. J Clin Invest 1997;99:1044–1048.

    Article  PubMed  CAS  Google Scholar 

  16. Levin RJ. Carbohydrates. In: Shils ME, et al., eds. Modern Nutrition in Health and Disease, 9th ed. Baltimore: Williams & Wilkins, 1999:49–65.

    Google Scholar 

  17. Bergstrom J, Furst P, Noree LO, Vinnars E. Intracellular free amino acid concentration in human muscle tissue. J Appl Physiol 1974;36:693–696.

    PubMed  CAS  Google Scholar 

  18. Hartmann F, Plauth M. Intestinal glutamine metabolism. Metabolism 1989;38:S18–S24.

    Article  Google Scholar 

  19. Souba WW. Cytokine control of nutrition and metabolism in critical illness. Curr Probl Surg 1994;31:577–652.

    Article  PubMed  CAS  Google Scholar 

  20. Van der Hulst RRWJ, von Meyenfeldt MF, Deutz NEP, Soeters PB. Glutamine extraction by the gut is reduced in patients with depleted gastrointestinal cancer. Ann Surg 1997;225:112–121.

    Article  PubMed  Google Scholar 

  21. Byrne TA, Morrissey TB, Nattakom TV, Ziegler TR, Wilmore DW. Growth hormone, glutamine and a modified diet enhance nutrient absorption in patients with severe short bowel syndrome. J Parenter Enteral Nutr 1995;19:296–302.

    Article  CAS  Google Scholar 

  22. Byrne TA, Persinger RL, Young LS, Ziegler TR, Wilmore DW. A new treatment for patients with short-bowel syndrome. Ann Surg 1995;222:243–255.

    Article  PubMed  CAS  Google Scholar 

  23. Braxton CC, Coyle SM, van der Poll T, Roth M, Calvano SE, Lowry SF. Influence of glutamine-supplemented TPN on in vitro and in vivo responses to endotoxin. Surg Forum 1995;46:21–23.

    Google Scholar 

  24. Long CL, Nelson KM, DiRienzo DB, et al. Glutamine supplementation of enteral nutrition: impact on whole body protein kinetics and glucose metabolisms in critically ill patients. J Parenter Enteral Nutr 1995;19:470–476.

    Article  CAS  Google Scholar 

  25. Barbul A. Arginine: biochemistry, physiology, and therapeutic implications. J Parenter Enteral Nutr 1986;10:227–238.

    Article  CAS  Google Scholar 

  26. Brittenden J, Heys SD, Miller I, et al. Dietary supplementation with L-arginine in patients with breast cancer (>4cm) receiving multimodality treatment: report of a feasibility study. Br J Cancer 1994;69:918–921.

    PubMed  CAS  Google Scholar 

  27. Brittenden J, Heys SD, Ross J, Park KGM, Eremin O. Nutritional pharmacology: effects of L-arginine on host defenses, response to trauma and tumour growth. Clin Sci 1994;86:123–132.

    PubMed  CAS  Google Scholar 

  28. Kirk SJ, Barbul A. Role of arginine in trauma, sepsis, and immunity. J Parenter Enteral Nutr 1990;24:S226–S229.

    Article  Google Scholar 

  29. Beaumier L, Castillo L, Ajami AM, Young VR. Urea cycle intermediate kinetics and nitrate excretion at normal and therapeutic intakes of arginine in humans. Endocrinol Metab 1995;32:E884–E896.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lin, E., Lowry, S.F. (2008). Substrate Metabolism. In: Norton, J.A., et al. Surgery. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68113-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68113-9_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-30800-5

  • Online ISBN: 978-0-387-68113-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics