Surgery pp 563-576 | Cite as

Multiple Organ Dysfunction Syndrome

  • Donald E. Fry


Death following severe injury or infection assumed a different clinical presentation beginning with the evolution of the intensive care unit (ICU) in acute care hospitals. An improved understanding of hypovolemic shock and techniques of resuscitation during the 1960s led to survival of patients with severe injuries beyond the initial 24 to 48 h. The evolution of ventilator support in combination with other organ support measures in the ICU permitted longer survival of the critically ill patient and the emergence of a new clinical syndrome—multiple organ dysfunction syndrome (MODS).1


Septic Shock Severe Sepsis Multiple Organ Dysfunction Syndrome Tissue Factor Pathway Inhibitor Drotrecogin Alfa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    American College of Chest Physicians/ Society of Critical Care Medicine Consensus Conference. Definition for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 1992;20:864.CrossRefGoogle Scholar
  2. 2.
    Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet 1967;2:319–323.PubMedCrossRefGoogle Scholar
  3. 3.
    Skillman JJ, Bushnell LS, Goldman H, Silen W. Respiratory failure, hypotension, sepsis, and jaundice. Am J Surg 1969;117:523–530.PubMedCrossRefGoogle Scholar
  4. 4.
    Tilney NL, Bailey GL, Morgan AP. Sequential system failure after rupture of abdominal aortic aneurysms: an unsolved problem in postoperative care. Ann Surg 1973;178:117–122.PubMedCrossRefGoogle Scholar
  5. 5.
    Eiseman B, Beart R, Norton L. Multiple organ failure. Surg Gynecol Obstet 1977;144:323–326.PubMedGoogle Scholar
  6. 6.
    Polk HC Jr, Shields CL. Remote organ failure: a valid sign of occult intra-abdominal infection. Surgery (St. Louis) 1977;81:310–313.PubMedGoogle Scholar
  7. 7.
    Baue AE. Multiple, progressive, or sequential systems failure. Arch Surg 1975;110:779–781.PubMedGoogle Scholar
  8. 8.
    Fry DE, Pearlstein L, Fulton RL, Polk HC Jr. Multiple system organ failure: the role of uncontrolled infection. Arch Surg 1980;115:136–140.PubMedGoogle Scholar
  9. 9.
    Fry DE, Garrison RN, Heitch RC, et al. Determinants of death in patients with intraabdominal abscess. Surgery (St. Louis) 1980;89:517–523.Google Scholar
  10. 10.
    Fry DE, Garrison RN, Polk HC Jr. Clinical implications in Bacteroides bacteremia. Surg Gynecol Obstet 1979;149:189–192.PubMedGoogle Scholar
  11. 11.
    Fry DE, Garrison RN, Williams HC. Patterns of morbidity and mortality in splenectomy for trauma. Am Surg 1980;46:28–32.PubMedGoogle Scholar
  12. 12.
    Deutschman CS, Konstantinides FN, Tsai M, et al. Physiology and metabolism in isolated viral septicemia: further evidence of an organism-independent, host-dependent response. Arch Surg 1987;122:21–25.PubMedGoogle Scholar
  13. 13.
    Siegel JH, Cerra FB, Coleman B, et al. Physiologic and metabolic correlations in human sepsis. Surgery (St. Louis) 1979;86:163–193.PubMedGoogle Scholar
  14. 14.
    Goris RJ, Beokhorst PA, Nuytinck KS. Multiple organ failure: generalized autodestructive inflammation. Arch Surg 1985;120:1109–1115.PubMedGoogle Scholar
  15. 15.
    Fry DE. Sepsis syndrome. Am Surg 2000;66:126–132.PubMedGoogle Scholar
  16. 16.
    Luster AD. Chemokines: chemotactic cytokines that mediate inflammation. N Engl J Med 1998;338:436–445.PubMedCrossRefGoogle Scholar
  17. 17.
    Baggiolini M. Chemokines in pathology and medicine. J Intern Med 2001;250:91–104.PubMedCrossRefGoogle Scholar
  18. 18.
    Olson TS, Ley K. Chemokines and chemokine receptors in leukocyte trafficking. Am J Physiol Regul Integr Comp Physiol 2002;283:R7–R28.PubMedGoogle Scholar
  19. 19.
    Dianqing WU. Signaling mechanisms for regulation of chemotaxis. Cell Res 2005;15:52–56.CrossRefGoogle Scholar
  20. 20.
    Klebanoff SJ, Vedes MA, Harlan JM, et al. Stimulation of neutrophils by tumor necrosis factor. J Immunol 1986;136:4220–4225.PubMedGoogle Scholar
  21. 21.
    Fry DE, Pearlstein L, Fulton RL, Polk HC Jr. Multiple system organ failure. Arch Surg 1980;115:136–140.PubMedGoogle Scholar
  22. 22.
    Knaus WA, Draper EA, Wagner DP, et al. Prognosis in acute organ-system failure. Ann Surg 1985;202:685–693.PubMedCrossRefGoogle Scholar
  23. 23.
    Goris RJA, te Bockhorst TPA, Nuytinck JKS, Gimbrere JSF. Multiple organ failure. Arch Surg 1985;120:1109–1110.PubMedGoogle Scholar
  24. 24.
    Marshall JC, Christou NV, Horn R, Meakins JL. The microbiology of multiple organ failure. Arch Surg 1988;123:309–315.PubMedGoogle Scholar
  25. 25.
    Vincent JL. Organ dysfunction as an outcome measure: the SOFA score. Sepsis 1997;1:53–54.CrossRefGoogle Scholar
  26. 26.
    Bohnen JM, Marshall JC, Fry DE, et al. Clinical and scientific importance of source control in abdominal infections: summary of a symposium. Can J Surg 1999;42:122–126.PubMedGoogle Scholar
  27. 27.
    Mosdell DM, Morris DM, Voltura A, et al. Antibiotic treatment for surgical peritonitis. Ann Surg 1991;214:543–549.PubMedCrossRefGoogle Scholar
  28. 28.
    Nathens AB, Rotstein OD, Marshall JC. Tertiary peritonitis: clinical features of a complex nosocomial infection. World J Surg 1998;22:158–163.PubMedCrossRefGoogle Scholar
  29. 29.
    Rackow EC, Falk JL, Fein LA, et al. Fluid resuscitation in circulatory shock: a comparison of the cardiorespiratory effects of albumin, hetastarch, and saline solutions in patients with hypovolemic and septic shock. Crit Care Med 1983;11:839–850.PubMedCrossRefGoogle Scholar
  30. 30.
    Newman M, Demling RH. Colloid vs. crystalloid during septic shock. Int Crit Care Dig 1990;9:3–8.Google Scholar
  31. 31.
    Wheeler AP, Bernard GR. Current concepts: treating patients with severe sepsis. N Engl J Med 1999;340:207–214.PubMedCrossRefGoogle Scholar
  32. 32.
    Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001;345:1368–1377.PubMedCrossRefGoogle Scholar
  33. 33.
    Dellinger RP, Carlet JM, Masur H, et al. Surviving sepsis campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 2004;32:858–873.PubMedCrossRefGoogle Scholar
  34. 34.
    Denton MD, Chertow GM, Brady HR. “Renal dose” dopamine for the treatment of acute renal failure: scientific rationale, experimental studies and clinical trials. Kidney Int 1996;50:4–14.PubMedCrossRefGoogle Scholar
  35. 35.
    Meadows D, Edwards JD, Wilkins RG, Nightingale P. Reversal of intractable septic shock with norepinephrine therapy. Crit Care Med 1988;16:663–666.PubMedCrossRefGoogle Scholar
  36. 36.
    Holmes CL, Walley KR, Chittock DR, et al. The effects of vasopressin on hemodynamics and renal function in severe septic shock: a case series. Intensive Care Med 2001;27:1416–1421.PubMedCrossRefGoogle Scholar
  37. 37.
    Bone RC, Fisher CJ, Clemmer TP. A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med 1987;317:653–658.PubMedGoogle Scholar
  38. 38.
    The Veterans Administration Systemic Sepsis Cooperative Study Group: Effect of high-dose glucocorticoid therapy on mortality in patients with clinical signs of sepsis. N Engl J Med 1987;317:659–665.Google Scholar
  39. 39.
    Bollaert PE, Charpentier C, Levy B, et al. Reversal of late septic shock with supraphysiologic doses of hydrocortisone. Crit Care Med 1998;26:645–650.PubMedCrossRefGoogle Scholar
  40. 40.
    Briegel J, Forst H, Haller M, et al. Stress doses of hydrocortisone reverse hyperdynamic septic shock: a prospective, randomized double-blind, single-center trial. Crit Care Med 1999;27:723–732.PubMedCrossRefGoogle Scholar
  41. 41.
    Annane D, Sebille V, Charpentier C, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 2002;21:288:862–871.CrossRefGoogle Scholar
  42. 42.
    Amato MB, Barbas CS, Medeiros DM, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998;338:347–354.PubMedCrossRefGoogle Scholar
  43. 43.
    Stewart TE, Meade MO, Cook DJ, et al. Evaluation of a ventilation strategy to prevent barotraumas in patients at high risk for acute respiratory distress syndrome. Pressure and volume-limited ventilation strategy group. N Engl J Med 1998;338:355–361.PubMedCrossRefGoogle Scholar
  44. 44.
    Brochard L, Roudat-Thoraval F, Roupie E, et al. Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The multicenter trial group on tidal volume reduction in ARDS. Am J Respir Crit Care Med 1998;158:1831–1838.PubMedGoogle Scholar
  45. 45.
    Brower RG, Fessler HE. Mechanical ventilation in acute lung injury and acute respiratory distress syndrome. Clin Chest Med 2000;21:491–510.PubMedCrossRefGoogle Scholar
  46. 46.
    The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000;342:1301–1308.CrossRefGoogle Scholar
  47. 47.
    Bidani A, Tzouanakis AE, Cardenas VJ, et al. Permissive hypercapnia in acute respiratory failure. JAMA 1994;272:957–962.PubMedCrossRefGoogle Scholar
  48. 48.
    Pesenti A, Marcolin R, Prato P, et al. Mean airway pressure vs. positive end-expiratory pressure during mechanical ventilation. Crit Care Med 1985;13:34–37.PubMedCrossRefGoogle Scholar
  49. 49.
    Drakulovic M, Torres A, Bauer T, et al. Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomized trial. Lancet 1999;354:1851–1858.PubMedCrossRefGoogle Scholar
  50. 50.
    Brook AD, Ahrens TS, Schaiff R, et al. Effect of a nursing-implemented sedation protocol on the duration of mechanical ventilation. Crit Care Med 1999;27:2609–2615.PubMedCrossRefGoogle Scholar
  51. 51.
    Manthous CA, Chatila W. Prolonged weakness after withdrawal of atracurium. Am J Respir Crit Care Med 1994;150:1441–1443.PubMedGoogle Scholar
  52. 52.
    Gattinoni L, Tognoni G, Pesenti A, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 2001;345:568–573.PubMedCrossRefGoogle Scholar
  53. 53.
    Mehta RL, McDonald B, Gabbai FB, et al. A randomized clinical trial of continuous versus intermittent dialysis for acute renal failure. Kidney Int 2001;60:1154–1163.PubMedCrossRefGoogle Scholar
  54. 54.
    Kellum J, Angus DC, Johnson JP, et al. Continuous versus intermittent renal replacement therapy: a meta-analysis. Intensive Care Med 2002;28:29–37.PubMedCrossRefGoogle Scholar
  55. 55.
    Cooper DJ, Walley KR, Wiggs BR, Russell JA. Bicarbonate does not improve hemodynamics in critically ill patients who have lactic acidosis: a prospective, controlled clinical study. Ann Intern Med 1990;112:492–498.PubMedGoogle Scholar
  56. 56.
    Morgera S, Haase M, Rocktaschel J, et al. Intermittent high-permeability hemofiltration modulates inflammatory response in septic patients with multiorgan failure. Nephron Clin Pract 2003;94:c75–c80.PubMedCrossRefGoogle Scholar
  57. 57.
    Bengsch S, Boos KS, Nagel D, et al. Extracorporeal plasma treatment for the removal of endotoxin in patients with sepsis: clinical results of a pilot study. Shock 2005;23:494–500.PubMedGoogle Scholar
  58. 58.
    Reinhart K, Meier-Hellmann A, Beale R, et al. Open randomized phase II trial of an extracorporeal endotoxin adsorber in suspected gram-negative sepsis. Crit Care Med 2004;32:1662–1668.PubMedCrossRefGoogle Scholar
  59. 59.
    Vincent JL, Laterre PF, Cohen J, et al. A pilot-controlled study of a polymixin B-immobilized hemoperfusion cartridge in patients with severe sepsis secondary to intra-abdominal infection. Shock 2005;23:400–405.PubMedCrossRefGoogle Scholar
  60. 60.
    Heyland DK, Novak F, Drover JW, et al. Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. JAMA 2001;286:944–953.PubMedCrossRefGoogle Scholar
  61. 61.
    van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in the surgical intensive care unit. N Engl J Med 2001;345:1359–1367.PubMedCrossRefGoogle Scholar
  62. 62.
    Cook D, Guyatt G, Marshall J, et al. A comparison of sucralfate and ranitidine for the prevention of upper gastrointestinal bleeding in patients requiring mechanical ventilation. Canadian Critical Care Trials Group. N Engl J Med 1998;338:791–797.PubMedCrossRefGoogle Scholar
  63. 63.
    McNaught CE, Woodcock NP, Anderson AD, MacFie J. A prospective randomized trial of probiotics in critically ill patients. Clin Nutr 2005;24:211–219.PubMedCrossRefGoogle Scholar
  64. 64.
    Kinasewitz GT, Yan SB, Basson B, et al. Universal changes in biomarkers of coagulation and inflammation occur in patients with severe sepsis, regardless of causative micro-organism. Crit Care 2004;8:R82–R90.PubMedCrossRefGoogle Scholar
  65. 65.
    Samama MM, Cohen AT, Darmon JY, et al. A comparison of enoxaparin with placebo for the prevention of venous thromboembolism in acutely ill medical patients. Prophylaxis in medical patients with enoxaparin study group. N Engl J Med 1999;341:793–800.PubMedCrossRefGoogle Scholar
  66. 66.
    Ziegler EJ, McCutchan JA, Fierer J, et al. Treatment of gramnegative bacteremia and shock with human antiserum to a mutant Escherichia coli. N Engl J Med 1982;307:1225.PubMedGoogle Scholar
  67. 67.
    Ziegler EJ, Fischer CJ, Sprung CL Jr, et al. Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin: a randomized, double-blind, placebo-controlled trial. N Engl J Med 1991;324:429.PubMedGoogle Scholar
  68. 68.
    McCloskey RV, Straube RC, Sanders C, et al. Treatment of septic shock with human monoclonal antibody HA-1A. A randomized, double-blind, placebo-controlled trial. CHESS Trial Study Group. Ann Intern Med 1994;121:1–5.PubMedGoogle Scholar
  69. 69.
    Greenman RL, Schein RMH, Martin MA, et al. A controlled clinical trial of E5 murine monoclonal IgM antibody to endotoxin in the treatment of gram-negative sepsis. JAMA 1991;266:1097.PubMedCrossRefGoogle Scholar
  70. 70.
    Bone RC, Balk RA, Fein AM, et al. A second large controlled study of E5, a monoclonal antibody to endotoxin: results of a prospective, multicenter, randomized, controlled trial. The E5 Sepsis Study Group. Crit Care Med 1995;23:994–1006.PubMedCrossRefGoogle Scholar
  71. 71.
    Angus DC, Birmingham MC, Balk RA, et al. E5 murine monoclonal antiendotoxin antibody in gram-negative sepsis: a randomized controlled trial. E5 study investigators. JAMA 2000;283:1723–1730.PubMedCrossRefGoogle Scholar
  72. 72.
    Albertson TE, Panacek EA, MacArthur RD, et al. Multicenter evaluation of a human monoclonal antibody to Enterobactehaceae common antigen in patients with gram-negative sepsis. Crit Care Med 2003;31:419–427.PubMedCrossRefGoogle Scholar
  73. 73.
    Levin M, Quint PA, Goldstein B, et al. Recombinant bactericidal/permeability-increasing protein (rBPI 21) as adjunctive treatment for children with severe meningococcal sepsis: a randomized trial. rBPI 21 meningococcal sepsis study group. Lancet 2000;356:961–967.PubMedCrossRefGoogle Scholar
  74. 74.
    Reinhart K, Gluck T, Ligtenberg J, et al. CD 14 receptor occupancy in severe sepsis: results of a phase I clinical trial with a recombinant chimeric CD 14 antibody. Crit Care Med 2004;32:1223–1224.CrossRefGoogle Scholar
  75. 75.
    Warren BL, Eid A, Singer P, et al. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA 2001;286:1869–1878.PubMedCrossRefGoogle Scholar
  76. 76.
    Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001;344:699–709.PubMedCrossRefGoogle Scholar
  77. 77.
    Abraham E, Laterre PF, Garg R, et al. Drotrecogin alfa(activated) for adults with severe sepsis and a low risk of death. N Engl J Med 2005;353:1332–1341.PubMedCrossRefGoogle Scholar
  78. 78.
    Fein AM, Bernard GR, Criner GJ, et al. Treatment of severe systemic inflammatory response syndromes and sepsis with a novel bradykinin antagonist, deltibant (CP-0127). Results of a randomized, double-blind, placebo-controlled trial. CP-1027 SIRS and Sepsis Study Group. JAMA 1997;277:482–487.PubMedCrossRefGoogle Scholar
  79. 79.
    Abraham E, Reinhart K, Opal S, et al. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. JAMA 2003;290:238–247.PubMedCrossRefGoogle Scholar
  80. 80.
    Lopez A, Lorente JA Steingrub J, et al. Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 2004;32:21–30.PubMedCrossRefGoogle Scholar
  81. 81.
    Dhainaut JF, Tenaillon A, Hemmer M, et al. Confirmatory platelet-activating factor receptor antagonist trial in patients with severe gram-negative bacterial sepsis: a phase HI, randomized, double-blind, placebo controlled, multicenter trial. BN 52021 Sepsis Investigator Group. Crit Care Med 1998;26:1963–1971.PubMedCrossRefGoogle Scholar
  82. 82.
    Poeze M, Froon AH, Ramsay G, et al. Decreased organ failure in patients with severe SIRS and septic shock treated with the platelet-activating factor antagonist TCV-309: a prospective, multicenter, double-blind, randomized phase II trial. TCV-309 septic shock study group. Shock 2000;14:421–428.PubMedCrossRefGoogle Scholar
  83. 83.
    Opal S, Laterre PF, Abraham E, et al. Recombinant human platelet-activating factor acetylhydrolase for treatment of severe sepsis: results of a phase HI, multicenter, randomized, double-blind, placebo-controlled, clinical trial. Crit Care Med 2004;32:332–341.PubMedCrossRefGoogle Scholar
  84. 84.
    Abraham E, Wunderink R, Silverman H, et al. Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome. A randomized, controlled, double-blind, multicenter clinical trial. JAMA 1995;273:934–941.PubMedCrossRefGoogle Scholar
  85. 85.
    Reinhart K, Wiegard-Lohnert C, Grimminger F, et al. Assessment of the safety and efficacy of the monoclonal anti-tumor necrosis factor antibody-fragment, MAK 195F, in patients with sepsis and septic shock: a multicenter, randomized, placebo-controlled, dose-ranging study. Crit Care Med 1996;24:733–742.PubMedCrossRefGoogle Scholar
  86. 86.
    Cohen J, Carlet J. Intersept: an international, multicenter, placebo-controlled trial of monoclonal antibody to human tumor necrosis factor-alpha in patients with sepsis. International Sepsis Trial Study Group. Crit Care Med 1996;24:1431–1440.PubMedCrossRefGoogle Scholar
  87. 87.
    Fisher CJ Jr, Agosti JM, Opal SM, et al. Treatment of septic shock with the tumor necrosis factor receptor: Fc fusion protein. The soluble TNF Receptor Sepsis Study Group. N Engl J Med 1996;334:1697–1702.PubMedCrossRefGoogle Scholar
  88. 88.
    Abraham E, Glauser MP, Butler T, et al. p55 tumor necrosis factor receptor fusion protein in the treatment of patients with severe sepsis and septic shock. A randomized controlled multi-center trial. Ro 45-2081 study group. JAMA 1997;277:1531–1538.PubMedCrossRefGoogle Scholar
  89. 89.
    Abraham E, Anzueto A, Gutierrez G, et al. Double-blind randomized controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock. NORA-SEPT Group. Lancet 1998;351:929–933.PubMedGoogle Scholar
  90. 90.
    Abraham E, Laterre PF, Garbino J, et al. Lenercept (p55 tumor necrosis factor receptor fusion protein) in severe sepsis and early septic shock: a randomized, double-blind, placebo-controlled, multicenter phase HI trial with 1,342 patients. Crit Care Med 2001;29:503–510.PubMedCrossRefGoogle Scholar
  91. 91.
    Reinhart K, Menges T, Gardlund B, et al. Randomized, placebo-controlled trial of the anti-tumor necrosis factor antibody fragment afelimomab in hyperinflammatory response during severe sepsis: the RAMSES study. Crit Care Med 2001;29:765–769.PubMedCrossRefGoogle Scholar
  92. 92.
    Panacek EA, Marshall JC, Albertson TE, et al. Efficacy and safety of the monoclonal anti-tumor necrosis factor antibody (ab′)2 fragment afelimomab in patients with severe sepsis and elevated interleukin-6 levels. Crit Care Med 2004;32:2173–2182.PubMedGoogle Scholar
  93. 93.
    Fisher CJ Jr, Dhainaut JF, Opal SM, et al. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhlL-lra Sepsis Syndrome Study Group. JAMA 1994;271:1836–1843.PubMedCrossRefGoogle Scholar
  94. 94.
    Opal SM, Fisher CJ Jr, Dhainaut JF, et al. Confirming interleukin-1 receptor antagonist trial in severe sepsis. A phase III, randomized, double-blind, placebo-controlled, multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigation Group. Crit Care Med 1997;25:1115–1124.PubMedCrossRefGoogle Scholar
  95. 95.
    Kumar A, Zanotti S, Bunnell G, et al. Interleukin-10 blunts the human inflammatory response to lipopolysaccharide without affecting the cardiovascular response. Crit Care Med 2005;33:331–340.PubMedCrossRefGoogle Scholar
  96. 96.
    Bone RC, Grodzin CJ, Bulk RA. Sepsis: a new hypothesis for pathogenesis of the disease process. Chest 1997;112:235–243.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Donald E. Fry
    • 1
  1. 1.Department of SurgeryNorthwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations