Skip to main content

Cell Structure, Function, and Genetics

  • Chapter
Surgery

Abstract

Life arose on Earth about 3.5 billion years ago from the spontaneous assembly of small organic molecules. Over millions of years, these simple molecules acquired the ability to interact and ultimately developed mechanisms of self-replication. These mechanisms became more elaborate as evolutionary forces brought their influence to bear. The first true “cells” arose when DNA, RNA, and proteins became contained within a boundary, the plasma membrane. These first unicellular organisms acquired the ability to interact. Multicellularity endowed these early organisms with the ability to organize into ever more complicated structures, ultimately giving rise to the explosion in biodiversity we see today. Cells, proteins, and genes are so interconnected that it would be impossible to consider only one level of organization. Thus, we begin our chapter with a discussion of the evolution of cell structure. We then consider the structure-function relationships between nucleic acids and proteins. We next describe cellular processes fundamental to cell survival, including gene regulation and cell proliferation. We also explore the process of cell death. We end our chapter by discussing multicellularity and cell communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts B, Bray D, Lewis J, Raff F, Roberts K, Watson JD. Molecular Biology of the Cell. New York: Garland Publishing, 1994.

    Google Scholar 

  2. Kleinsmith LJ, Kish VM. Principles of Cell Biology. New York: Harper Collins, 1988.

    Google Scholar 

  3. Agrawal S, Schaffer DV. In situ stem cell therapy: novel targets, familiar challenges. Trends Biotechnol 2005;23:78–83.

    Article  PubMed  CAS  Google Scholar 

  4. Watson JD, Hopkins NH, Roberts JW, Steitz JA, Weiner AM. Molecular Biology of the Gene. Menlo Park: Benjamin/Cummings, 1987.

    Google Scholar 

  5. Ugarkovic D, Plohl M. Variation in satellite DNA profiles—causes and effects. EMBO J 2002;21:5955–5959.

    Article  PubMed  CAS  Google Scholar 

  6. Peterson CL, Laniel MA. Histones and histone modifications. Curr Biol 2004;14:R546–51.

    Article  PubMed  CAS  Google Scholar 

  7. Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000;403:41–45.

    Article  PubMed  CAS  Google Scholar 

  8. Ren M, Leng Y, Jeong M, Leeds PR, Chuang DM. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem 2004;89:1358–1367.

    Article  PubMed  CAS  Google Scholar 

  9. Latchman DS. Basic Molecular and Cell Biology. London: Chapman and Hall, 1997.

    Google Scholar 

  10. Lodish H, Baltimore D, Berk A, Zipursky S, Matsudaira P, Darnell J. Molecular Cell Biology. New York: W. H. Freeman and Company, 1995.

    Google Scholar 

  11. Ross MH, Reith EJ. Histology: A Text and Atlas. New York: Lippincott, 1985.

    Google Scholar 

  12. Pike LJ. Lipid rafts: bringing order to chaos. J Lipid Res 2003;44:655–667.

    Article  PubMed  CAS  Google Scholar 

  13. He HT, Lellouch A, Marguet D. Lipid rafts and the initiation of T cell receptor signaling. Semin Immunol 2005;17:23–33.

    Article  PubMed  CAS  Google Scholar 

  14. Schmitz G, Orso E. CD14 signalling in lipid rafts: new ligands and co-receptors. Curr Opin Lipidol 2002;13:513–521.

    Article  PubMed  CAS  Google Scholar 

  15. Fox AH, Lam YW, Leung AK, et al. Paraspeckles: a novel nuclear domain. Curr Biol 2002;12:13–25.

    Article  PubMed  CAS  Google Scholar 

  16. Lafarga M, Berciano MT, Pena E, et al. Clastosome: a subtype of nuclear body enriched in 19S and 20S proteasomes, ubiquitin, and protein substrates of proteasome. Mol Biol Cell 2002;13:2771–2782.

    Article  PubMed  CAS  Google Scholar 

  17. Fuchs E, Cleveland, D. A structural scaffolding of intermediate filaments in health and disease. Science 1998;279:514–519.

    Article  PubMed  CAS  Google Scholar 

  18. Drewes G, Ebneth A, Mandelkow EM. MAPs, MARKs, and microtubule dynamics. Trends Biochem Sci 1998;23:307–311.

    Article  PubMed  CAS  Google Scholar 

  19. Hirokawa N. Kinesin and dynein superfamily of proteins and the mechanism of organelle transport. Science 1998;279:519–526.

    Article  PubMed  CAS  Google Scholar 

  20. Beckerle MC. Spatial control of actin filament assembly: lessons from Listeria. Cell 1998;95:741–748.

    Article  PubMed  CAS  Google Scholar 

  21. Hall A. Rho GTPases and the actin cytoskeleton. Science 1998;279:509–514.

    Article  PubMed  CAS  Google Scholar 

  22. Aktories K. Rho proteins: targets for bacterial toxins. Trends Microbiol 1997;5:282–288.

    Article  PubMed  CAS  Google Scholar 

  23. Mallik R, Gross SP. Molecular motors: strategies to get along. Curr Biol 2004;14:R971–R982.

    Article  PubMed  CAS  Google Scholar 

  24. Mountain V, Compton DA. Dissecting the role of molecular motors in the mitotic spindle. Anat Rec 2000;261:14–24.

    Article  PubMed  CAS  Google Scholar 

  25. Latchman DS. Gene Regulation: A Eucaryotic Perspective. London: Chapman and Hall, 1995.

    Google Scholar 

  26. Bauerle PA, Baltimore D. NF-κB: 10 years after. Cell 1996;87:13–20.

    Article  Google Scholar 

  27. Smith JM, Koopman PA. The ins and outs of transcriptional control: nucleocytoplasmic shuttling in development and disease. Trends Genet 2004;20:4–8.

    Article  PubMed  CAS  Google Scholar 

  28. Spiegelman BM, Heinrich R. Biological control through regulated transcriptional coactivators. Cell 2004;119:157–167.

    Article  PubMed  CAS  Google Scholar 

  29. Das PM, Singal R. DNA methylation and cancer. J Clin Oncol 2004;22:4632–4642.

    Article  PubMed  CAS  Google Scholar 

  30. Gebauer F, Hentze MW. Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 2004;5:827–835.

    Article  PubMed  CAS  Google Scholar 

  31. Richter JD, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 2005;433:477–480.

    Article  PubMed  CAS  Google Scholar 

  32. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004;18:1926–1945.

    Article  PubMed  CAS  Google Scholar 

  33. Tee AR, Blenis J. mTOR, translational control and human disease. Semin Cell Dev Biol 2005;16:29–37.

    Article  PubMed  CAS  Google Scholar 

  34. Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science. 2001:293(5532):1146–1150.

    Article  PubMed  CAS  Google Scholar 

  35. Bantounas I, Phylactou LA, Uney JB. RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J Mol Endocrinol 2004;33:545–557.

    Article  PubMed  CAS  Google Scholar 

  36. Silva J, Chang K, Hannon GJ, Rivas FV. RNA-interference-based functional genomics in mammalian cells: reverse genetics coming of age. Oncogene 2004;23:8401–8409.

    Article  PubMed  CAS  Google Scholar 

  37. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004;5:522–531.

    Article  PubMed  CAS  Google Scholar 

  38. Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene 2003;22:9030–9040.

    Article  PubMed  CAS  Google Scholar 

  39. Cryns V, Yuan J. Proteases to die for. Genes Dev 1998;12:1551–1570.

    Article  PubMed  CAS  Google Scholar 

  40. Nunez G, Benedict MA, Hu Y, Inohara N. Caspases: the proteases of the apoptotic pathway. Oncogene 1998;17:3237–3245.

    Article  PubMed  Google Scholar 

  41. Evan G, Littlewood T. A matter of life and cell death. Science 1998;281:1317–1321.

    Article  PubMed  CAS  Google Scholar 

  42. Raff M. Cell suicide for beginners. Nature 1998;396:119–122.

    Article  PubMed  CAS  Google Scholar 

  43. Thornberry NA, Lazebnik, Y. Caspases: enemies within. Science 1998;281:1312–1316.

    Article  PubMed  CAS  Google Scholar 

  44. Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 2004;5:897–907.

    Article  PubMed  CAS  Google Scholar 

  45. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell 2004;116:205–219.

    Article  PubMed  CAS  Google Scholar 

  46. Baker SJ, Reddy EP. Modulation of life and death by the TNF receptor superfamily. Oncogene 1998;17:3261–3270.

    Article  PubMed  Google Scholar 

  47. Chan SL, Yu VC. Proteins of the bcl-2 family in apoptosis signalling: from mechanistic insights to therapeutic opportunities. Clin Exp Pharmacol Physiol 2004;31:119–128.

    Article  PubMed  CAS  Google Scholar 

  48. Mathias S, Pena LA, Kolesnick RN. Signal transduction of stress via ceramide. Biochem J 1998;335:465–480.

    PubMed  CAS  Google Scholar 

  49. Balda MS, Matter K. Tight junctions. J Cell Sci 1998;111:541–547.

    PubMed  CAS  Google Scholar 

  50. Stone DK. Receptors: structure and function. Am J Med 1998;105:244–250.

    Article  PubMed  CAS  Google Scholar 

  51. Hakonarson H, Grunstein M. Regulation of second messengers associated with airway smooth muscle contraction and relaxation. Am J Respir Crit Care Med 1998;158:S115–S122.

    PubMed  CAS  Google Scholar 

  52. Weiss A, Schlessinger J. Switching receptors on or off by receptor dimerization. Cell 1998;94:277–280.

    Article  PubMed  CAS  Google Scholar 

  53. Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 1997;9:180–186.

    Article  PubMed  CAS  Google Scholar 

  54. Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 2004;30:193–204.

    Article  PubMed  Google Scholar 

  55. Hata A, Massague J, Shi Y. TGF-β signalling and cancer: structural and functional consequences of mutations in Smads. Mol Med Today 1998;4:257–262.

    Article  PubMed  CAS  Google Scholar 

  56. Gilbert SF. Developmental Biology. Sunderland, MA: Sinauer Associates, 1994.

    Google Scholar 

  57. Hynes RO. Integrins: versatility, modulation and signaling in cell adhesion. Cell 1992;69:11–19.

    Article  PubMed  CAS  Google Scholar 

  58. Clarke EA, Brugge JS. Integrins and signal transduction pathways: the road taken. Science 1995;268:233–239.

    Article  Google Scholar 

  59. Juliano R, Haskill S. Signal transduction from the extracellular matrix. J Cell Biol 1993;120:577–585.

    Article  PubMed  CAS  Google Scholar 

  60. Parsons JT. Integrin-mediated signaling: regulation by protein tyrosine kinases and small GTP-binding proteins. Curr Opin Cell Biol 1996;8:146–152.

    Article  PubMed  CAS  Google Scholar 

  61. Giancotti FG. Integrin signaling: specificity and control of cell survival and cell cycle progression. Curr Opin Cell Biol 1997;9:691–700.

    Article  PubMed  CAS  Google Scholar 

  62. Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 2000;49:157–162.

    Article  PubMed  CAS  Google Scholar 

  63. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 2001;292:1389–1394.

    Article  PubMed  CAS  Google Scholar 

  64. Doss MX, Koehler CI, Gissel C, Hescheler J, Sachinidis A. Embryonic stem cells: a promising tool for cell replacement therapy. J Cell Mol Med 2004;8:465–473.

    Article  PubMed  Google Scholar 

  65. Kim SU. Human neural stem cells genetically modified for brain repair in neurological disorders. Neuropathology 2004;24:159–171.

    Article  PubMed  Google Scholar 

  66. Blesch A, Tuszynski MH. Gene therapy and cell transplantation for Alzheimer’s disease and spinal cord injury. Yonsei Med J 2004;45(suppl):28–31.

    PubMed  Google Scholar 

  67. Zhou Q, Zhang SZ, Xu RX, Xu K. [Neural stem cell transplantation and postoperative management: report of 70 cases.]. Di Yi Jun Yi Da Xue Xue Bao 2004;24:1207–1209.

    PubMed  Google Scholar 

  68. Lee S, Bick-Forrester J, Makkar RR, Forrester JS. Stem-cell repair of infarcted myocardium: ready for clinical application? Am Heart Hosp J 2004;2:100–106.

    Article  PubMed  Google Scholar 

  69. Shumakov VI, Onishchenko NA, Rasulov MF, Krasheninnikov ME, Zaidenov VA. Mesenchymal bone marrow stem cells more effectively stimulate regeneration of deep burn wounds than embryonic fibroblasts. Bull Exp Biol Med 2003;136:192–195.

    Article  PubMed  CAS  Google Scholar 

  70. Haas S, Weidner N, Winkler J. Adult stem cell therapy in stroke. Curr Opin Neurol 2005;18:59–64.

    Article  PubMed  Google Scholar 

  71. Nygaard Jensen J, Jensen J. Cell therapy of diabetes. Adv Exp Med Biol 2004;552:16–38.

    PubMed  Google Scholar 

  72. Petrovsky N, Silva D, Schatz DA. Prospects for the prevention and reversal of type 1 diabetes mellitus. Drugs 2002;62:2617–2635.

    Article  PubMed  CAS  Google Scholar 

  73. Beger C, Cirulli V, Vajkoczy P, Halban PA, Menger MD. Vascularization of purified pancreatic islet-like cell aggregates (pseudoislets) after syngeneic transplantation. Diabetes 1998;47:559–565.

    Article  PubMed  CAS  Google Scholar 

  74. Mathews CK, Van Holde KE. Biochemistry. New York: Benjamin/Cummings, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Corbett, S.A., Foty, R.A. (2008). Cell Structure, Function, and Genetics. In: Norton, J.A., et al. Surgery. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68113-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68113-9_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-30800-5

  • Online ISBN: 978-0-387-68113-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics