Surgery pp 37-73 | Cite as

Cell Structure, Function, and Genetics

  • Siobhan A. Corbett
  • Ramsey A. Foty


Life arose on Earth about 3.5 billion years ago from the spontaneous assembly of small organic molecules. Over millions of years, these simple molecules acquired the ability to interact and ultimately developed mechanisms of self-replication. These mechanisms became more elaborate as evolutionary forces brought their influence to bear. The first true “cells” arose when DNA, RNA, and proteins became contained within a boundary, the plasma membrane. These first unicellular organisms acquired the ability to interact. Multicellularity endowed these early organisms with the ability to organize into ever more complicated structures, ultimately giving rise to the explosion in biodiversity we see today. Cells, proteins, and genes are so interconnected that it would be impossible to consider only one level of organization. Thus, we begin our chapter with a discussion of the evolution of cell structure. We then consider the structure-function relationships between nucleic acids and proteins. We next describe cellular processes fundamental to cell survival, including gene regulation and cell proliferation. We also explore the process of cell death. We end our chapter by discussing multicellularity and cell communication.


Actin Filament Actin Cytoskeleton Lipid Raft Nuclear Envelope Zinc Finger Motif 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberts B, Bray D, Lewis J, Raff F, Roberts K, Watson JD. Molecular Biology of the Cell. New York: Garland Publishing, 1994.Google Scholar
  2. 2.
    Kleinsmith LJ, Kish VM. Principles of Cell Biology. New York: Harper Collins, 1988.Google Scholar
  3. 3.
    Agrawal S, Schaffer DV. In situ stem cell therapy: novel targets, familiar challenges. Trends Biotechnol 2005;23:78–83.PubMedCrossRefGoogle Scholar
  4. 4.
    Watson JD, Hopkins NH, Roberts JW, Steitz JA, Weiner AM. Molecular Biology of the Gene. Menlo Park: Benjamin/Cummings, 1987.Google Scholar
  5. 5.
    Ugarkovic D, Plohl M. Variation in satellite DNA profiles—causes and effects. EMBO J 2002;21:5955–5959.PubMedCrossRefGoogle Scholar
  6. 6.
    Peterson CL, Laniel MA. Histones and histone modifications. Curr Biol 2004;14:R546–51.PubMedCrossRefGoogle Scholar
  7. 7.
    Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000;403:41–45.PubMedCrossRefGoogle Scholar
  8. 8.
    Ren M, Leng Y, Jeong M, Leeds PR, Chuang DM. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem 2004;89:1358–1367.PubMedCrossRefGoogle Scholar
  9. 9.
    Latchman DS. Basic Molecular and Cell Biology. London: Chapman and Hall, 1997.Google Scholar
  10. 10.
    Lodish H, Baltimore D, Berk A, Zipursky S, Matsudaira P, Darnell J. Molecular Cell Biology. New York: W. H. Freeman and Company, 1995.Google Scholar
  11. 11.
    Ross MH, Reith EJ. Histology: A Text and Atlas. New York: Lippincott, 1985.Google Scholar
  12. 12.
    Pike LJ. Lipid rafts: bringing order to chaos. J Lipid Res 2003;44:655–667.PubMedCrossRefGoogle Scholar
  13. 13.
    He HT, Lellouch A, Marguet D. Lipid rafts and the initiation of T cell receptor signaling. Semin Immunol 2005;17:23–33.PubMedCrossRefGoogle Scholar
  14. 14.
    Schmitz G, Orso E. CD14 signalling in lipid rafts: new ligands and co-receptors. Curr Opin Lipidol 2002;13:513–521.PubMedCrossRefGoogle Scholar
  15. 15.
    Fox AH, Lam YW, Leung AK, et al. Paraspeckles: a novel nuclear domain. Curr Biol 2002;12:13–25.PubMedCrossRefGoogle Scholar
  16. 16.
    Lafarga M, Berciano MT, Pena E, et al. Clastosome: a subtype of nuclear body enriched in 19S and 20S proteasomes, ubiquitin, and protein substrates of proteasome. Mol Biol Cell 2002;13:2771–2782.PubMedCrossRefGoogle Scholar
  17. 17.
    Fuchs E, Cleveland, D. A structural scaffolding of intermediate filaments in health and disease. Science 1998;279:514–519.PubMedCrossRefGoogle Scholar
  18. 18.
    Drewes G, Ebneth A, Mandelkow EM. MAPs, MARKs, and microtubule dynamics. Trends Biochem Sci 1998;23:307–311.PubMedCrossRefGoogle Scholar
  19. 19.
    Hirokawa N. Kinesin and dynein superfamily of proteins and the mechanism of organelle transport. Science 1998;279:519–526.PubMedCrossRefGoogle Scholar
  20. 20.
    Beckerle MC. Spatial control of actin filament assembly: lessons from Listeria. Cell 1998;95:741–748.PubMedCrossRefGoogle Scholar
  21. 21.
    Hall A. Rho GTPases and the actin cytoskeleton. Science 1998;279:509–514.PubMedCrossRefGoogle Scholar
  22. 22.
    Aktories K. Rho proteins: targets for bacterial toxins. Trends Microbiol 1997;5:282–288.PubMedCrossRefGoogle Scholar
  23. 23.
    Mallik R, Gross SP. Molecular motors: strategies to get along. Curr Biol 2004;14:R971–R982.PubMedCrossRefGoogle Scholar
  24. 24.
    Mountain V, Compton DA. Dissecting the role of molecular motors in the mitotic spindle. Anat Rec 2000;261:14–24.PubMedCrossRefGoogle Scholar
  25. 25.
    Latchman DS. Gene Regulation: A Eucaryotic Perspective. London: Chapman and Hall, 1995.Google Scholar
  26. 26.
    Bauerle PA, Baltimore D. NF-κB: 10 years after. Cell 1996;87:13–20.CrossRefGoogle Scholar
  27. 27.
    Smith JM, Koopman PA. The ins and outs of transcriptional control: nucleocytoplasmic shuttling in development and disease. Trends Genet 2004;20:4–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Spiegelman BM, Heinrich R. Biological control through regulated transcriptional coactivators. Cell 2004;119:157–167.PubMedCrossRefGoogle Scholar
  29. 29.
    Das PM, Singal R. DNA methylation and cancer. J Clin Oncol 2004;22:4632–4642.PubMedCrossRefGoogle Scholar
  30. 30.
    Gebauer F, Hentze MW. Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 2004;5:827–835.PubMedCrossRefGoogle Scholar
  31. 31.
    Richter JD, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 2005;433:477–480.PubMedCrossRefGoogle Scholar
  32. 32.
    Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004;18:1926–1945.PubMedCrossRefGoogle Scholar
  33. 33.
    Tee AR, Blenis J. mTOR, translational control and human disease. Semin Cell Dev Biol 2005;16:29–37.PubMedCrossRefGoogle Scholar
  34. 34.
    Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science. 2001:293(5532):1146–1150.PubMedCrossRefGoogle Scholar
  35. 35.
    Bantounas I, Phylactou LA, Uney JB. RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J Mol Endocrinol 2004;33:545–557.PubMedCrossRefGoogle Scholar
  36. 36.
    Silva J, Chang K, Hannon GJ, Rivas FV. RNA-interference-based functional genomics in mammalian cells: reverse genetics coming of age. Oncogene 2004;23:8401–8409.PubMedCrossRefGoogle Scholar
  37. 37.
    He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004;5:522–531.PubMedCrossRefGoogle Scholar
  38. 38.
    Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene 2003;22:9030–9040.PubMedCrossRefGoogle Scholar
  39. 39.
    Cryns V, Yuan J. Proteases to die for. Genes Dev 1998;12:1551–1570.PubMedCrossRefGoogle Scholar
  40. 40.
    Nunez G, Benedict MA, Hu Y, Inohara N. Caspases: the proteases of the apoptotic pathway. Oncogene 1998;17:3237–3245.PubMedCrossRefGoogle Scholar
  41. 41.
    Evan G, Littlewood T. A matter of life and cell death. Science 1998;281:1317–1321.PubMedCrossRefGoogle Scholar
  42. 42.
    Raff M. Cell suicide for beginners. Nature 1998;396:119–122.PubMedCrossRefGoogle Scholar
  43. 43.
    Thornberry NA, Lazebnik, Y. Caspases: enemies within. Science 1998;281:1312–1316.PubMedCrossRefGoogle Scholar
  44. 44.
    Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 2004;5:897–907.PubMedCrossRefGoogle Scholar
  45. 45.
    Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell 2004;116:205–219.PubMedCrossRefGoogle Scholar
  46. 46.
    Baker SJ, Reddy EP. Modulation of life and death by the TNF receptor superfamily. Oncogene 1998;17:3261–3270.PubMedCrossRefGoogle Scholar
  47. 47.
    Chan SL, Yu VC. Proteins of the bcl-2 family in apoptosis signalling: from mechanistic insights to therapeutic opportunities. Clin Exp Pharmacol Physiol 2004;31:119–128.PubMedCrossRefGoogle Scholar
  48. 48.
    Mathias S, Pena LA, Kolesnick RN. Signal transduction of stress via ceramide. Biochem J 1998;335:465–480.PubMedGoogle Scholar
  49. 49.
    Balda MS, Matter K. Tight junctions. J Cell Sci 1998;111:541–547.PubMedGoogle Scholar
  50. 50.
    Stone DK. Receptors: structure and function. Am J Med 1998;105:244–250.PubMedCrossRefGoogle Scholar
  51. 51.
    Hakonarson H, Grunstein M. Regulation of second messengers associated with airway smooth muscle contraction and relaxation. Am J Respir Crit Care Med 1998;158:S115–S122.PubMedGoogle Scholar
  52. 52.
    Weiss A, Schlessinger J. Switching receptors on or off by receptor dimerization. Cell 1998;94:277–280.PubMedCrossRefGoogle Scholar
  53. 53.
    Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 1997;9:180–186.PubMedCrossRefGoogle Scholar
  54. 54.
    Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 2004;30:193–204.PubMedCrossRefGoogle Scholar
  55. 55.
    Hata A, Massague J, Shi Y. TGF-β signalling and cancer: structural and functional consequences of mutations in Smads. Mol Med Today 1998;4:257–262.PubMedCrossRefGoogle Scholar
  56. 56.
    Gilbert SF. Developmental Biology. Sunderland, MA: Sinauer Associates, 1994.Google Scholar
  57. 57.
    Hynes RO. Integrins: versatility, modulation and signaling in cell adhesion. Cell 1992;69:11–19.PubMedCrossRefGoogle Scholar
  58. 58.
    Clarke EA, Brugge JS. Integrins and signal transduction pathways: the road taken. Science 1995;268:233–239.CrossRefGoogle Scholar
  59. 59.
    Juliano R, Haskill S. Signal transduction from the extracellular matrix. J Cell Biol 1993;120:577–585.PubMedCrossRefGoogle Scholar
  60. 60.
    Parsons JT. Integrin-mediated signaling: regulation by protein tyrosine kinases and small GTP-binding proteins. Curr Opin Cell Biol 1996;8:146–152.PubMedCrossRefGoogle Scholar
  61. 61.
    Giancotti FG. Integrin signaling: specificity and control of cell survival and cell cycle progression. Curr Opin Cell Biol 1997;9:691–700.PubMedCrossRefGoogle Scholar
  62. 62.
    Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 2000;49:157–162.PubMedCrossRefGoogle Scholar
  63. 63.
    Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 2001;292:1389–1394.PubMedCrossRefGoogle Scholar
  64. 64.
    Doss MX, Koehler CI, Gissel C, Hescheler J, Sachinidis A. Embryonic stem cells: a promising tool for cell replacement therapy. J Cell Mol Med 2004;8:465–473.PubMedCrossRefGoogle Scholar
  65. 65.
    Kim SU. Human neural stem cells genetically modified for brain repair in neurological disorders. Neuropathology 2004;24:159–171.PubMedCrossRefGoogle Scholar
  66. 66.
    Blesch A, Tuszynski MH. Gene therapy and cell transplantation for Alzheimer’s disease and spinal cord injury. Yonsei Med J 2004;45(suppl):28–31.PubMedGoogle Scholar
  67. 67.
    Zhou Q, Zhang SZ, Xu RX, Xu K. [Neural stem cell transplantation and postoperative management: report of 70 cases.]. Di Yi Jun Yi Da Xue Xue Bao 2004;24:1207–1209.PubMedGoogle Scholar
  68. 68.
    Lee S, Bick-Forrester J, Makkar RR, Forrester JS. Stem-cell repair of infarcted myocardium: ready for clinical application? Am Heart Hosp J 2004;2:100–106.PubMedCrossRefGoogle Scholar
  69. 69.
    Shumakov VI, Onishchenko NA, Rasulov MF, Krasheninnikov ME, Zaidenov VA. Mesenchymal bone marrow stem cells more effectively stimulate regeneration of deep burn wounds than embryonic fibroblasts. Bull Exp Biol Med 2003;136:192–195.PubMedCrossRefGoogle Scholar
  70. 70.
    Haas S, Weidner N, Winkler J. Adult stem cell therapy in stroke. Curr Opin Neurol 2005;18:59–64.PubMedCrossRefGoogle Scholar
  71. 71.
    Nygaard Jensen J, Jensen J. Cell therapy of diabetes. Adv Exp Med Biol 2004;552:16–38.PubMedGoogle Scholar
  72. 72.
    Petrovsky N, Silva D, Schatz DA. Prospects for the prevention and reversal of type 1 diabetes mellitus. Drugs 2002;62:2617–2635.PubMedCrossRefGoogle Scholar
  73. 73.
    Beger C, Cirulli V, Vajkoczy P, Halban PA, Menger MD. Vascularization of purified pancreatic islet-like cell aggregates (pseudoislets) after syngeneic transplantation. Diabetes 1998;47:559–565.PubMedCrossRefGoogle Scholar
  74. 74.
    Mathews CK, Van Holde KE. Biochemistry. New York: Benjamin/Cummings, 1990.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Siobhan A. Corbett
    • 1
  • Ramsey A. Foty
    • 1
  1. 1.Department of SurgeryUniversity of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical SchoolNew BrunswickUSA

Personalised recommendations