Advertisement

Surgery pp 353-379 | Cite as

Anesthesia

  • Joseph D. Tobias
  • Russell Wall

Abstract

There are five basic methods for the administration of anesthesia: local; monitored anesthesia care; peripheral nerve blockade; and neuraxial anesthesia, including spinal or epidural anesthesia; and general anesthesia. Peripheral nerve blockade and neuraxial anesthesia are frequently considered together under the title of regional anesthesia. Local anesthesia involves the infiltration of a surgical site with a local anesthetic agent to render the site insensitive to pain.

Keywords

Mean Arterial Pressure Anesthetic Agent Local Anesthetic Agent Difficult Airway Malignant Hyperthermia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    American Society of Anesthesiologists. New classification of physical status. Anesthesiology 1963;24:111.Google Scholar
  2. 2.
    Kaplan EB, Sheiner LB, Boeckmann AI, et al. The usefulness of preoperative laboratory screening. JAMA 1985;253:3576–3581.PubMedCrossRefGoogle Scholar
  3. 3.
    Burk CD, Miller L, Hander SD, Cohen AR. Preoperative history and coagulation screening in children undergoing tonsillectomy. Pediatrics 1992;89:691–695.PubMedGoogle Scholar
  4. 4.
    American College of Physicians. Guidelines for assessing and managing the perioperative risk from coronary artery disease associated with major noncardiac surgery. Ann Intern Med 1997;127:313–328.Google Scholar
  5. 5.
    Eagle K, Brundage B, Chaitman B, et al. Guidelines for perioperative cardiovascular evaluation of the noncardiac surgery. A report of the AHA/ACC Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures. Circulation 1996;93:1278–1317.PubMedGoogle Scholar
  6. 6.
    Selzman CH, Miler SA, Zimmerman MA, Harken AH. The case for beta-adrenergic blockade as prophylaxis against perioperative cardiovascular morbidity and mortality. Arch Surg 2001;136:286–290.PubMedCrossRefGoogle Scholar
  7. 7.
    Lindenhauer PK, Pekow P, Wang K, et al. Perioperative beta-blocker therapy and mortality after major noncardiac surgery. New Engl J Med 2005;353:349–361.CrossRefGoogle Scholar
  8. 8.
    Nishina K, Mikawa K, Uesugi T, et al. Efficacy of clonidine for prevention of perioperative myocardial ischemia: a critical appraisal and meta-analysis of the literature. Anesthesiology 2002;96:323–329.PubMedCrossRefGoogle Scholar
  9. 9.
    Go AS, Browner WS. Cardiac outcomes after regional or general anesthsia. Anesthesiology 1996;84:1–2.PubMedCrossRefGoogle Scholar
  10. 10.
    Bode RH Jr, Lewis KP, Zarich SW, et al. Cardiac outcome after peripheral vascular surgery: comparison of general and regional anesthesia. Anesthesiolgy 1996;84:3–13.CrossRefGoogle Scholar
  11. 11.
    Cook PT, Davies MJ, Cronin KD, et al. A prospective randomized trial comparing spinal anesthesia using hyperbaric cinchocaine with general anesthesia for lower limb surgery. Anaesth Intensive Care 1986;14:373–380.PubMedGoogle Scholar
  12. 12.
    Christopherson R, Beattie C, Frank SM, et al. Perioperative morbidity in patients randomized to epidural or general anesthesia for lower extremity vascular surgery. Perioperative Ischemia Randomized Anesthesia Trial Study Group. Anesthesiology 1993;79:422–434.PubMedCrossRefGoogle Scholar
  13. 13.
    Warner MA, Warner ME, Weber JG. Clinical significance of pulmonary aspiration during the perioperative period. Anesthesiology 1993;78:56–62.PubMedCrossRefGoogle Scholar
  14. 14.
    Kallar SK, Everett LL. Potential risk and preventive measure for pulmonary aspiration: new concepts in preoperative fasting guidelines. Anesth Analg 1993;77:171–182.PubMedCrossRefGoogle Scholar
  15. 15.
    Crawford M, Lerman J, Christensen S, et al. Effects of duration of fasting on gastric fluid pH and volume in healthy children. Anesth Analg 1990;71:400–403.PubMedCrossRefGoogle Scholar
  16. 16.
    Shevde K, Trivedi N. Effects of clear liquids on gastric volume and pH in healthy volunteers. Anesth Analg 1991;72:528–531.PubMedCrossRefGoogle Scholar
  17. 17.
    Phillips S, Hutchinson S, Davidson T. Preoperative drinking does not affect gastric contents. Br J Anaesth 1993;70:6–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Read MS, Vaughn RS. Allowing pre-operative patients to drink: effects on patients’ safety and comfort of unlimited oral water until 2 hours before anaesthesia. Acta Anaesthesiol Scand 1991;35:591–595.PubMedCrossRefGoogle Scholar
  19. 19.
    Goresky GV, Maltby JR. Fasting guidelines for elective surgical patients. Can J Anaesth 1990;37:493–495.PubMedGoogle Scholar
  20. 20.
    Strunin L. How long should patients fast before surgery? Time for new guidelines. Br J Anaesth 1993;70:1–2.PubMedCrossRefGoogle Scholar
  21. 21.
    Green CR, Pandit SK, Schork MA. Preoperative fasting time: is the traditional policy changing? Results of a national survey. Anesth Analg 1996;83:123–128.PubMedCrossRefGoogle Scholar
  22. 22.
    Tuman KJ, Roizen MF. Outcome assessment and pulmonary artery catheterization: why does the debate continue? Anesth Analg 1997;84:1–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Connors AF, Speroff T, Dawson NV, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. JAMA 1996;276:889–897.PubMedCrossRefGoogle Scholar
  24. 24.
    American Society of Anesthesiologists. Practice guidelines for pulmonary artery catheterization. Anesthesiology 1993;78:380–392.Google Scholar
  25. 25.
    American Society of Anesthesiologists. Practice guidelines for preoperative transesophageal echocardiography. Anesthesiology 1996;84:986–1006.CrossRefGoogle Scholar
  26. 26.
    Gan TJ, Glass PS, Windsor A, et al. Bispectral index monitoring allows faster emergence and improved recovery from propofol, alfentanil, and nitrous oxide anesthesia. BIS Utility Study Group. Anesthesiology 1997;87:808–815.PubMedCrossRefGoogle Scholar
  27. 27.
    Sandin RH, Enlund G, Samuelsson P, et al. Awareness during anaesthesia: a prospective case study. Lancet 2000;355:707–711.PubMedCrossRefGoogle Scholar
  28. 28.
    Ekman A, Lindholm ML, Lennmarken C, et al. Reduction in the incidence of awareness using BIS monitoring. Acta Anaesthesiol Scand 2004;48:20–26.PubMedCrossRefGoogle Scholar
  29. 29.
    Myles PS, Lelie K, McNeil J, et al. Bispectral index monitoring to prevent awareness during anaesthesia: the B-aware randomized control trial. Lancet 2004;363:1757–1763.PubMedCrossRefGoogle Scholar
  30. 30.
    Gan TJ, Glass PS, Windsor A, et al. Bispectral index monitoring allows faster emergence and improved recovery from propofol, alfentanil and nitrous oxide anesthesia. Anesthesiology 1997;87:808–815.PubMedCrossRefGoogle Scholar
  31. 31.
    Guignard B, Coste D, Menigaux C, et al. Reduced isoflurane consumption with bispectral index monitoring. Acta Anaesthesiol Scand 2001;45:308–314.PubMedCrossRefGoogle Scholar
  32. 32.
    Courtman SP, Wardurgh A, Petros AJ: Comparison of the bispectral index monitor with the COMFORT score in assessing level of sedation of critically ill children. Intensive Care Med 2003;29:2239–2246.PubMedCrossRefGoogle Scholar
  33. 33.
    Berkenbosch JW, Fichter CR, Tobias JD: The correlation of the bispectral index monitor with clinical sedation scores during mechanical ventilation in the pediatric intensive care unit. Anesth Analg 2002;94:506–511.PubMedCrossRefGoogle Scholar
  34. 34.
    Grindstaff R, Tobias JD. Applications of bispectral index monitoring in the pediatric intensive care unit. J Intensive Care Med 2004;19:111–116.PubMedCrossRefGoogle Scholar
  35. 35.
    American Society of Anesthesiologists. Practice guidelines for management of the difficult airway. Anesthesiology 1993;78:597–602.Google Scholar
  36. 36.
    Benumof JL. Management of the difficult airway. Anesthesiology 1991;75:1085–1110.CrossRefGoogle Scholar
  37. 37.
    Benumof JL. The LMA and the ASA difficult airway algorithm. Anesthesiology 1996;84:686–699.PubMedCrossRefGoogle Scholar
  38. 38.
    Wildsmith JA, Brown DT, Paul D, et al. Structure-activity relationships in differential nerve block at high and low frequency stimulation. Br J Anaesth 1989;63:444–452.PubMedCrossRefGoogle Scholar
  39. 39.
    Covino BG. Pharmacology of local anaesthetic agents. Br J Anaesth 1986;58:701–716.PubMedCrossRefGoogle Scholar
  40. 40.
    Wildsmith JA, Gissen AJ, Takman B, et al. Differential nerve blockade: esters versus amides and the influence of pK a. Br J Anaesth 1987;59:379–384.PubMedCrossRefGoogle Scholar
  41. 41.
    Butterworth JF, Strichartz GR: Molecular mechanisms of local anesthesia: a review. Anesthesiology 1990;72:711–734.PubMedGoogle Scholar
  42. 42.
    Johns RA, DiFazio CA, Longnecker DE. Lidocaine constricts or dilates rat arterioles in a dose-dependent manner. Anesthesiology 1985;62:141–144.PubMedCrossRefGoogle Scholar
  43. 43.
    Scott DB, McClure JH, Giasi RM, et al. Effects of concentration of local anesthetic drugs in extradural block. Br J Anaesth 1980;52:1033–1037.PubMedCrossRefGoogle Scholar
  44. 44.
    Crawford OB. Comparative evaluation in epidural anesthesia of lidocaine, mepivacaine, and L-67, a new local anesthetic agent. Anesthesiology 1964;25:321–329.PubMedCrossRefGoogle Scholar
  45. 45.
    Braid DP, Scott DB. The systemic absorption of local analgesic drugs. Br J Anaesth 1965;37:394–404.PubMedCrossRefGoogle Scholar
  46. 46.
    Swerdlow M, Jones R. The duration of action of bupiva-caine, prilocaine, and lignocaine. Br J Anaesth 1970;42:335–339.PubMedCrossRefGoogle Scholar
  47. 47.
    Bromage PR. A comparison of the hydrochloride salts of lignocaine and prilocaine for epidural analgesia. Br J Anaesth 1965;37:753–761.PubMedCrossRefGoogle Scholar
  48. 48.
    Sinclair CJ, Scott DB. Comparison of bupivacaine and etidocaine in extradural blockade. Br J Anaesth 1984;56:147–152.PubMedCrossRefGoogle Scholar
  49. 49.
    Eisenach JC, Dewan DM, Rose JC, et al. Epidural clonidine produces antinociception, but not hypotension, in sheep. Anesthesiology 1987;66:496–501.PubMedCrossRefGoogle Scholar
  50. 50.
    Tobias JD. Caudal epidural block: a review of test dosing and recognition of systemic injection in children. Anesth Analg 2001;93:1156–1161.PubMedCrossRefGoogle Scholar
  51. 51.
    Sheskey MC, Rocco AG, Bizzarri-Schmid M, et al. A dose-response study of bupivacaine for spinal anesthesia. Anesth Analg 1983;62:931–935.PubMedCrossRefGoogle Scholar
  52. 52.
    Bromage PR, Gretal M. Improved brachial plexus blockade with bupivacaine hydrochloride and carbonated lidocaine. Anesthesiology 1972;36:479–487.PubMedCrossRefGoogle Scholar
  53. 53.
    Tucker GT, Mather LE. Clinical pharmacokinetics of local anesthetics. Clin Pharmacokinet 1979;4:241–278.PubMedCrossRefGoogle Scholar
  54. 54.
    Scott DB. Toxic effects of local anaesthetic agents on the central nervous system. Br J Anaesth 1986;58:732–735.PubMedCrossRefGoogle Scholar
  55. 55.
    Wagman IH, Dejong RH, Prince DA. Effects of lidocaine on the central nervous system. Anesthesiology 1967;28:155–172.PubMedCrossRefGoogle Scholar
  56. 56.
    Englesson S. The influence of acid-base changes on central nervous system toxicity of local anesthetic agents. Acta Anaesthesiol Scand 1974;18:79–87.PubMedCrossRefGoogle Scholar
  57. 57.
    Moller RA, Covino BG. Cardiac electrophysiologic effects of lidocaine and bupivacaine. Anesth Analg 1988;67:107–114.PubMedCrossRefGoogle Scholar
  58. 58.
    Block A, Covino BG. Effect of local anesthetic agents on cardiac conduction and contractility. Reg Anesth 1982;6:55.Google Scholar
  59. 59.
    Pitkanen M, Feldman HS, Arthur GR, et al. Chronotropic and inotropic effects of ropivacaine, bupivacaine, and lidocaine in the spontaneously beating and electrically paced isolated, perfused rabbit heart. Reg Anesth 1992;17:183–192.PubMedGoogle Scholar
  60. 60.
    Ravindran RS, Bond VK, Tasch MD, et al. Prolonged neural blockade following regional analgesia with 2-chloroprocaine. Anesth Analg 1980;59:447–451.PubMedGoogle Scholar
  61. 61.
    Reisner LS, Hochman BN, Plumer MH. Persistent neurologic deficit and adhesive arachnoiditis following intrathecal 2-chloroprocaine injection. Anesth Analg 1980;59:452–454.PubMedCrossRefGoogle Scholar
  62. 62.
    Fibuch EE, Opper SE. Back pain following epidurally administered Nesacaine-MPF. Anesth Analg 1989;69:113–115.PubMedCrossRefGoogle Scholar
  63. 63.
    Concas A, Santoro G, Mascia MP, et al. The general anesthetic propofol enhances the function of alpha aminobutyric acid-coupled chloride channel in the rat cerebral cortex. J Neurochem 1990;55:2135.PubMedCrossRefGoogle Scholar
  64. 64.
    Ho IK, Harris RA. Mechanism of action of barbiturates. Annu Rev Pharmacol Toxicol 1981;21:83–111.PubMedCrossRefGoogle Scholar
  65. 65.
    Johnston GA, Willow M. GABA and barbiturate receptors. Trends Pharmacol Sci 1982;3:328–330.CrossRefGoogle Scholar
  66. 66.
    Olsen RW. Drug interactions at the GABA receptor-ionophore complex. Annu Rev Pharmacol Toxicol 1982;22:245–277.PubMedCrossRefGoogle Scholar
  67. 67.
    MacDonald JF, Miljkovic Z, Pennefather P. Use-dependent block of excitatory amino acid currents in cultured neurons by ketamine. J Neurophysiol 1987;58:251–266.PubMedGoogle Scholar
  68. 68.
    Mayer ML, Westbrook GL, Vyklicky L. Sites of antagonist action on N-methyl-D-aspartatic acid receptors studied using fluctuation analysis and a rapid perfusion technique. J Neurophysiol 1988;60:645–663.PubMedGoogle Scholar
  69. 69.
    Vincent JP, Cavey D, Kamenka JM, et al. Interaction of phencyclinidines with the muscarinic and opiate receptors in the central nervous system. Brain Res 1978;152:176–182.PubMedCrossRefGoogle Scholar
  70. 70.
    Michenfelder JD, Theye RA. Cerebral protection by thiopental during hypoxia. Anesthesiology 1973;39:510–517.PubMedCrossRefGoogle Scholar
  71. 71.
    Michenfelder JD, Milde JH, Sundt TM Jr. Cerebral protection by barbiturate anesthesia. Arch Neurol 1976;33:345–350.PubMedGoogle Scholar
  72. 72.
    Langsjo JW, Maksimow A, Salmi E, et al. S-Ketamine anesthesia increases cerebral blood flow in excess of the metabolic needs in humans. Anesthesiology 2005;103:258–268.PubMedCrossRefGoogle Scholar
  73. 73.
    Bourgoin A, Albanese J, Wereszcczynski N, et al. Safety of sedation with ketamine in severe head injury patients: comparison with sufentanil. Crit Care Med 2003;31:711–717.PubMedCrossRefGoogle Scholar
  74. 74.
    Mayberg TS, Lam AM, Matta BF. Ketamine does not increase cerebral blood flow velocity or intracranial pressure during isoflurane/nitrous oxide anesthesia in patients undergoing craniotomy. Anesth Analg 1995;81:84–89.PubMedCrossRefGoogle Scholar
  75. 75.
    Modica PA, Tempelhoff R, White PF. Pro and anticonvulsant effects of anesthetics. Part I. Anesth Analg 1990;70:303–315.PubMedGoogle Scholar
  76. 76.
    Modica PA, Tempelhoff R, White PF. Pro and anticonvulsant effects of anesthetics. Part II. Anesth Analg 1990;70:433–444.PubMedGoogle Scholar
  77. 77.
    Carson IW, Moore J, Balmer JR, et al. Laryngeal competence with ketamine and other drugs. Anesthesiology 1973;38:128–133.PubMedCrossRefGoogle Scholar
  78. 78.
    Bourke DL, Malit LA, Smith TC. Respiratory interactions of ketamine and morphine. Anesthesiology 1987;66:153–156.PubMedCrossRefGoogle Scholar
  79. 79.
    Hirshman CA, Downes H, Farbood A, Bergman NA. Ketamine block of bronchospasm in experimental canine asthma. Br J Anaesth 1979;51:713–718.PubMedCrossRefGoogle Scholar
  80. 80.
    Eames WO, Rooke GA, Sai-Chuen R, Bishop M. Comparison of the effects of etomidate, propofol, and thiopental on respiratory resistance after tracheal intubation. Anesthesiology 1996;84:1307–1311.PubMedCrossRefGoogle Scholar
  81. 81.
    Pizov R, Brown RH, Weiss YS, et al. Wheezing during induction of general anesthesia in patients with and without asthma. A randomized, blinded trial. Anesthesiology 1995;82:1111–1116.PubMedCrossRefGoogle Scholar
  82. 82.
    Chih-Chung L, Ming-Hwang S, Tan PPC, et al. Mechanisms underlying the inhibitory effect of propofol on the contraction of canine airway smooth muscle. Anesthesiology 1999;91:750–759.CrossRefGoogle Scholar
  83. 83.
    Pedersen CM, Thirstrup S, Nielsen-Kudsk JE. Smooth muscle relaxant effects of propofol and ketamine in isolated guinea-pig tracheas. Eur J Pharm 1993;238:75–80.CrossRefGoogle Scholar
  84. 84.
    Chamberlain JH, Sede RG, Chung DC. Effect of thiopentone on myocardial function. Br J Anaesth 1977;49:865–870.PubMedCrossRefGoogle Scholar
  85. 85.
    Claeys MA, Gepts E, Camu F. Hemodynamic changes during anaesthesia induced and maintained with propofol. Br J Anaesth 1988;60:3–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Cullen PM, Turtle M, Prys-Roberts C, et al. Effects of propofol anesthesia on baroreflex activity in humans. Anesth Analg 1987;66:1115–1120.PubMedGoogle Scholar
  87. 87.
    Tritapepe L, Voci P, Marino P, et al. Calcium chloride minimizes the hemodynamic effects of propofol in patients undergoing coronary artery bypass grafting. J Cardiothoras Vasc Anesth 1999;13:150–153.CrossRefGoogle Scholar
  88. 88.
    Sochala C, Van Deenen D, De Ville A, Govaerts MJM. Heart block following propofol in a child. Paediatr Anaes 1999;9:349–351.CrossRefGoogle Scholar
  89. 89.
    Egan TD, Brock-Utne JG. Asystole and anesthesia induction with a fentanyl, propofol, and succinylcholine sequence. Anesth Analg 1991;73:818–820.PubMedCrossRefGoogle Scholar
  90. 90.
    Gooding JM, Weng JT, Smith RA, et al. Cardiovascular and pulmonary response following etomidate induction of anesthesia in patients with demonstrated cardiac disease. Anesth Analg 1979;58:40–41.PubMedCrossRefGoogle Scholar
  91. 91.
    Tarnow J, Hess W, Kline W. Etomidate, althesin and thiopentone as induction agents for coronary artery surgery. Can Anaesth Soc J 1980;27:338–344.PubMedCrossRefGoogle Scholar
  92. 92.
    White PF, Way WL, Trevor AJ. Ketamine—its pharmacology and therapeutic uses. Anesthesiology 1982;56:119–136.PubMedGoogle Scholar
  93. 93.
    Wagner RL, White PF. Etomidate inhibits adrenocortical function in surgical patients. Anesthesiology 1984;61:647–651.PubMedCrossRefGoogle Scholar
  94. 94.
    Wagner RL, White PF, Kan PB, et al. Inhibition of adrenal steroidogenesis by the anesthetic etomidate. N Engl J Med 1984;310:1415–1421.PubMedGoogle Scholar
  95. 95.
    Wagner RL, White PF, Kan PB, et al. Inhibition of adrenal steroidogenesis by the anesthetic etomidate. New Engl J Med 1984;310:1415–1421.PubMedCrossRefGoogle Scholar
  96. 96.
    McCollum JS, Milligan KR, Dundee JW. The antiemetic action of propofol. Anaesthesia 1988;43:239–240.PubMedCrossRefGoogle Scholar
  97. 97.
    Borgeat A, Wilder-Smith O, Forni M, et al. Adjuvant propofol enables better control of nausea and emesis secondary to chemotherapy for breast cancer. Can J Anaesth 1994;41:1117–1119.PubMedGoogle Scholar
  98. 98.
    Harrison PG, Moore MR, Meissner TM. Porphyrogenicity of etomidate and ketamine as continuous infusions: screening in the DDC-primed rat model. Br J Anaesth 1985;57:420–423.PubMedCrossRefGoogle Scholar
  99. 99.
    Laxenaire MC, Mata-Bermejo E, Moneret-Vautrin DA, Gueant JL. Life-threatening anaphylactoid reactions to propofol. Anesthesiology 1992;77:275–280.PubMedCrossRefGoogle Scholar
  100. 100.
    Griffin J, Ray T, Gray B, et al. Pain on injection of propofol: a thiopental/propofol mixture versus a lidocaine/propofol mixture. Am J Pain Manage 2002;12:45–49.Google Scholar
  101. 101.
    Tobias JD. Prevention of pain associated with the administration of propofol in children: lidocaine versus ketamine. Am J Anesthesiol 1996;23:231–232.Google Scholar
  102. 102.
    Camps AS, Sanchez-Izquierdo Riera JA, Vazquez DT, et al. Midazolam and 2% propofol in long-term sedation of traumatized, critically ill patients: efficacy and safety comparison. Crit Care Med 2000;28:3612–3619.CrossRefGoogle Scholar
  103. 103.
    Barrientos-Vega R, Sanchez-Soria M, Morales-Garcia C, et al. Pharmacoeconomic assessment of propofol 2% used for prolonged sedation. Crit Care Med 2001;29:317–322.PubMedCrossRefGoogle Scholar
  104. 104.
    Smith I, White PF, Nathanson M, et al. Propofol: an update on its clinical use. Anesthesiology 1994;81:1005–1043.PubMedCrossRefGoogle Scholar
  105. 105.
    Crawford M, Pollock J, Anderson K, et al. Comparison of midazolam with propofol for sedation in outpatient bronchoscopy. Br J Anaesth 1993;70:419–422.PubMedCrossRefGoogle Scholar
  106. 106.
    Veber B, Gachot B, Bedos JP, et al. Severe sepsis after intravenous injection of contaminated propofol. Anesthesiology 1994;80:712–713.PubMedCrossRefGoogle Scholar
  107. 107.
    Bennett SN, McNeil MM, Bland LA, et al. Postoperative infections traced to contamination of an intravenous anesthetic, propofol. N Engl J Med 1995;333:147–154.PubMedCrossRefGoogle Scholar
  108. 108.
    Fine PG, Hare BD. The pathways and mechanisms of pain and analgesia: a review and clinical perspective. Hosp Formul 1985;20:972–985.Google Scholar
  109. 109.
    Bailey PL, Wilbrink J, Zwanikken P, et al. Anesthetic induction with fentanyl. Anesth Analg 1985;64:48–53.PubMedCrossRefGoogle Scholar
  110. 110.
    Keats AS. The effects of drugs on respiration in man. Annu Rev Pharmacol Toxicol 1985;25:41–65.PubMedCrossRefGoogle Scholar
  111. 111.
    Urthaler F, Isobe JH, James T. Direct and vagally mediated chronotropic effects of morphine studied by selective perfusion of the sinus node of awake dogs. Chest 1975;68:222–228.PubMedCrossRefGoogle Scholar
  112. 112.
    Zelis R, Mansour EJ, Capone RJ, et al. The cardiovascular effects of morphine. The peripheral capacitance and resistance vessels in human subjects. J Clin Invest 1974;54:1247–1258.PubMedCrossRefGoogle Scholar
  113. 113.
    Benthuysen JL, Ty Smith N, Sanford TJ, et al. Physiology of alfentanil-induced rigidity. Anesthesiology 1986;64:440–446.PubMedCrossRefGoogle Scholar
  114. 114.
    Costall B, Fortune DH, Naylor RJ. Involvement of mesolimbic and extrapyramidal nuclei in the motor depressant action of narcotic drugs. J Pharm Pharmacol 1978;30:566–572.PubMedGoogle Scholar
  115. 115.
    Radnay PA, Duncalf D, Novakovic M, et al. Common bile duct pressure changes after fentanyl, morphine, meperidine, butorphanol, and naloxone. Anesth Analg 1984;63:441–444.PubMedCrossRefGoogle Scholar
  116. 116.
    Flacke JW, Flacke WE, Bloor BC, et al. Histamine release by four narcotics: a double-blind study in humans. Anesth Analg 1987;66:723–730.PubMedCrossRefGoogle Scholar
  117. 117.
    Shafer SL, Varvel JR. Pharmacokinetics, pharmacodynamics and rational opioid selection. Anesthesiology 1991;74:53–63.PubMedCrossRefGoogle Scholar
  118. 118.
    Mather LE. Pharmacokinetic and pharmacodynamic profiles of opioid analgesics: a sameness amongst equals? Pain 1990;43:3–6.PubMedCrossRefGoogle Scholar
  119. 119.
    Burkle H, Dunbar S, Van Aken H: Remifentanil: a novel, short-acting, μ opioid. Anesth Analg 1996;83:646–651.PubMedCrossRefGoogle Scholar
  120. 120.
    Smith NT, Eger EJ II, Stoelting RK, et al. The cardiovascular and sympathomimetic responses to the addition of nitrous oxide to halothane in man. Anesthesiology 1970;32:410–421.PubMedCrossRefGoogle Scholar
  121. 121.
    Fink BR. Diffusion anoxia. Anesthesiology 1955;16:511–519.PubMedCrossRefGoogle Scholar
  122. 122.
    Deacon R, Lumb M, Perry J, et al. Selective inactivation of vitamin B12 in rats by nitrous oxide. Lancet 1978;2:1023–1024.PubMedCrossRefGoogle Scholar
  123. 123.
    Hadzic A, Glab K, Sanborn KV, et al. Severe neurologic deficit after nitrous oxide anesthesia. Anesthesiology 1995;83:863–866.PubMedCrossRefGoogle Scholar
  124. 124.
    Eger EI II, Saidman LJ. Hazards of nitrous oxide anesthesia in bowel obstruction and pneumothorax. Anesthesiology 1965;26:61–66.PubMedCrossRefGoogle Scholar
  125. 125.
    Eckenhoff R. Do specific or nonspecific interactions with proteins underlie inhalational anesthetic action? Mol Pharmacol 1998;54:610–615.PubMedGoogle Scholar
  126. 126.
    Subcommittee on the National Halothane Study of the Committee on Anesthesia. Possible association between halothane anesthesia and postoperative hepatic necrosis. JAMA 1966;197:775–788.CrossRefGoogle Scholar
  127. 127.
    Kenna JG, Jones RM. The organ toxicity of inhaled anesthetics. Anesth Analg 1995;81(suppl):S51–S66.PubMedCrossRefGoogle Scholar
  128. 128.
    Brown BR Jr, Gandolfi AJ. Adverse effects of volatile anesthetics. Br J Anaesth 1987;59:14–23.PubMedCrossRefGoogle Scholar
  129. 129.
    Pohl LR, Satoh H, Christ DD, et al. The immunologic and metabolic basis of drug hypersensitivities. Annu Rev Pharmacol 1988;28:367–387.Google Scholar
  130. 130.
    Wark HJ. Postoperative jaundice in children—the influence of halothane. Anaesthesia 1983;38:237–242.PubMedGoogle Scholar
  131. 131.
    Warner LO, Beach TP, Garvin JP, et al. Halothane and children: the first quarter century. Anesth Analg 1984;63:838–840.PubMedGoogle Scholar
  132. 132.
    Morio M, Fujii K, Satoh N, et al. Reaction of sevoflurane and its degradation products with soda lime. Toxicity of the byproducts. Anesthesiology 1992;77:1155–1164.PubMedCrossRefGoogle Scholar
  133. 133.
    Frink EJ Jr, Malan TP, Morgan SE, et al. Quantification of the degradation products of sevoflurane in two C02 absorbents during low-flow anesthesia in surgical patients. Anesthesiology 1992;77:1064–1069.PubMedCrossRefGoogle Scholar
  134. 134.
    Mazze RI. The safety of sevoflurane in humans. Anesthesiology 1992;77:1062–1063.PubMedCrossRefGoogle Scholar
  135. 135.
    Fang ZX, Eger EI II, Laster MJ, et al. Carbon monoxide production from degradation of desflurane, enflurane, isoflurane, halothane, and sevoflurane by soda lime and Baralyme®. Anesth Analg 1995;80:1187–1193.PubMedCrossRefGoogle Scholar
  136. 136.
    Baum J, Sachs G, Driesch C, et al. Carbon monoxide generation in carbon dioxide absorbents. Anesth Analg 1995;81:144–146.PubMedCrossRefGoogle Scholar
  137. 137.
    Eger EI II. New inhaled anesthetics. Anesthesiology 1994;80:906–922.PubMedCrossRefGoogle Scholar
  138. 138.
    Rosenberg H, Gronert GA. Intractable cardiac arrest in children given succinylcholine. Anesthesiology 1992;77:1054.PubMedCrossRefGoogle Scholar
  139. 139.
    Miller RD, Rupp SM, Fisher DM, et al. Clinical pharmacology of vecuronium and atracurium. Anesthesiology 1984;61:444–453.PubMedCrossRefGoogle Scholar
  140. 140.
    Brull SJ, Silverman DG. Intraoperative use of muscle relaxants. Anesth Clin North Am 1993;11:325–344.Google Scholar
  141. 141.
    Abouleish EI, Abboud TS, Bikhazi G, et al. Rapacuronium for modified rapid sequence induction in elective Cesarean section: neuromuscular blocking effects and safety compared with succinylcholine and placental transfer. Br J Anaesth 1999;83:862–867.PubMedGoogle Scholar
  142. 142.
    Tobias JD, Johnson JO, Sprague K, et al. Effects of rapacuronium on respiratory function during general anesthesia. Anesthesiology 2001;95:908–912.PubMedCrossRefGoogle Scholar
  143. 143.
    Jooste E, Zhang Y, Emala CW. Rapacuronium preferentially antagonizes the function of M2 versus M3 muscarinic receptors in guinea pig airway smooth muscle. Anesthesiology 2005;102:117–124.PubMedCrossRefGoogle Scholar
  144. 144.
    Rajchert DM, Pasquariello CA, Watcha MG, et al. Rapacuronium and the risk of bronchospasm in pediatric patients. Anesth Anagl 2002;94:488–493.CrossRefGoogle Scholar
  145. 145.
    Savarese JJ, Ali HH, Basta SJ, et al. The clinical neuromuscular pharmacology of mivacurium chloride: a short-acting nondepolarizing ester neuromuscular blocking drug. Anesthesiology 1988;68:723–732.PubMedCrossRefGoogle Scholar
  146. 146.
    Hughes R, Chappie DJ. The pharmacology of atracurium: a new competitive neuromuscular blocking agent. Br J Anaesth 1981;53:31–44.PubMedCrossRefGoogle Scholar
  147. 147.
    Kopman AF, Ng J, Zank LM, et al. Residual postoperative paralysis: pancuronium versus mivacurium; does it matter? Anesthesiology 1996;85:1253–1259.PubMedCrossRefGoogle Scholar
  148. 148.
    Savage DS, Sleigh T, Carlyle I. The emergence of ORG NC 45 from the pancuronium series. Br J Anaesth 1980;52(suppl 1):3S–9S.PubMedGoogle Scholar
  149. 149.
    Van den Broek L, Wierda JM, Smeulers NJ. Clinical pharmacology of rocuronium: study of the time course of action, dose requirement, reversibility, and pharmacokinetics. J Clin Anesth 1994;6:288–296.PubMedCrossRefGoogle Scholar
  150. 150.
    Larijani GE, Bartkowski RR, Azad SS, et al. Clinical pharmacology of pipecuronium bromide. Anesth Analg 1989;68:734–739.PubMedCrossRefGoogle Scholar
  151. 151.
    Kopman AF, Yee PS, Neuman GG. Correlation of the train-of-four fade ratio with clinical signs and symptoms of residual curarization in awake volunteers. Anesthesiology 1997;86:765–771.PubMedCrossRefGoogle Scholar
  152. 152.
    Austin KL, Stapleton JV, Mather LE. Multiple intramuscular injections: a major source of variability in analgesic response to meperidine. Pain 1980;8:47–62.PubMedCrossRefGoogle Scholar
  153. 153.
    American Society of Anesthesiologists. Practice guidelines for acute pain management in the perioperative setting. Anesthesiology 1995;82:1071–1081.CrossRefGoogle Scholar
  154. 154.
    Austin KL, Stapleton JV, Mather LE. Relationship between blood meperidine concentrations and analgesic response: a preliminary report. Anesthesiology 1980;53:460–466.PubMedCrossRefGoogle Scholar
  155. 155.
    Dahlstrom B, Tamsen A, Paalzow L, et al. Patient-controlled analgesic therapy. Part IV. Pharmacokinetics and analgesic plasma concentration of morphine. Clin Pharmacokinet 1982;7:266–279.PubMedCrossRefGoogle Scholar
  156. 156.
    Tamsen A, Hartvig P, Fagerlund C, et al. Patient-controlled analgesic therapy. Part II. Individual analgesic demand and analgesic plasma concentrations of pethidine in postoperative pain. Clin Pharmacokinet 1982;7:164–175.PubMedCrossRefGoogle Scholar
  157. 157.
    Tobias JD. Weak analgesics and nonsteroidal anti-inflammatory agents in the management of children with acute pain. Pediatr Clin North Am 2000;47:527–543.PubMedCrossRefGoogle Scholar
  158. 158.
    Liu S, Carpenter RL, Neal JM. Epidural anesthesia and analgesia—their role in postoperative outcome. Anesthesiology 1995;82:1474–1506.PubMedCrossRefGoogle Scholar
  159. 159.
    Breslow MJ, Parker SD, Fran SM, et al. Determinants of catecholamine and cortisol responses to lower extremity revascularization. Anesthesiology 1993;79:1202–1209.PubMedCrossRefGoogle Scholar
  160. 160.
    Kissin I. Preemptive analgesia—why its effect is not always obvious. Anesthesiology 1996;84:1015–1019.PubMedCrossRefGoogle Scholar
  161. 161.
    Salo M. Cytokines and attenuation of responses to surgery. Acta Anaesthesiol Scand 1996;40:141–142.PubMedCrossRefGoogle Scholar
  162. 162.
    Blomberg S, Emanuelsson H, Kvist H, et al. Effects of thoracic epidural anesthesia on coronary arteries and arterioles in patients with coronary artery disease. Anesthesiology 1990;73:840–847.PubMedCrossRefGoogle Scholar
  163. 163.
    Yeager MP, Glass DD, Neff RK, et al. Epidural anesthesia and analgesia in high-risk surgical patients. Anesthesiology 1987;66:729–736.PubMedCrossRefGoogle Scholar
  164. 164.
    Tuman KJ, McCarthy RJ, March RJ, et al. Effects on epidural anesthesia and analgesia on coagulation and outcome after major vascular surgery. Anesth Analg 1991;73:696–704.PubMedCrossRefGoogle Scholar
  165. 165.
    Sharrock N, Ranawat C, Urquhart B, et al. Factors influencing deep vein thrombosis following total hip arthroplasty under epidural anesthesia. Anesth Analg 1993;76:756–771.Google Scholar
  166. 166.
    Modig J, Maripuu E, Sahlstedt B. Thromboembolism following total hip replacement: a prospective investigation of 94 patients with emphasis on the efficacy of lumbar epidural anesthesia in prophylaxis. Reg Anesth 1986;11:72–79.Google Scholar
  167. 167.
    Scheinen B, Asantila R, Orko R. The effect of bupivacaine and morphine on pain and bowel function after colonic surgery. Acta Anaesthesiol Scand 1987;31:161–164.CrossRefGoogle Scholar
  168. 168.
    Pansard JL, Mankikian B, Bertrand M, et al. Effects of thoracic extradural block on diaphragmatic electrical activity and contractility after upper abdominal surgery. Anesthesiology 1993;78:63–71.PubMedCrossRefGoogle Scholar
  169. 169.
    Tonnesen E, Wahlgreen C. Influence of extradural and general anesthesia on natural killer cell activity and lymphocyte sub-populations in patients undergoing hysterectomy. Br J Anaesth 1988;60:500–507.PubMedCrossRefGoogle Scholar
  170. 170.
    Watcha MF, White PF. Postoperative nausea and vomiting—its etiology, treatment, and prevention. Anesthesiology 1992;77:162–184.PubMedCrossRefGoogle Scholar
  171. 171.
    Forrest JB, Cahalan MK, Rehder K, et al. Multicenter study of general anesthesia. II. Results. Anesthesiology 1990;72:262–268.PubMedCrossRefGoogle Scholar
  172. 172.
    Naguib M, el Bakry AK, Khoshim MH, et al. Prophylactic antiemetic therapy with ondansetron, tropisetron, granisetron, and metoclopramide in patients undergoing laparoscopic cholecystectomy: a randomized, double blind comparison with placebo. Can J Anaesth 1996;43:226–231.PubMedCrossRefGoogle Scholar
  173. 173.
    Davis PJ, McGowan FX Jr, Landsman I, et al. Effect of antiemetic therapy on recovery and hospital discharge time: a double-blind assessment of ondansetron, droperidol, and placebo in pediatric patients undergoing ambulatory surgery. Anesthesiology 1995;83:956–960.PubMedCrossRefGoogle Scholar
  174. 174.
    Pessah IN. Complex pharmacology of malignant hyperthermia. Anesthesiology 1996;84:1275–1279.PubMedCrossRefGoogle Scholar
  175. 175.
    Wedel DJ, Quinlan JG, Iazzio P. Clinical effects of intravenous dantrolene. Mayo Clin Proc 1995;70:241–246.PubMedGoogle Scholar
  176. 176.
    Larach MG. Standardization of the caffeine halo thane muscle contracture test. Anesth Analg 1989;69:511–515.PubMedCrossRefGoogle Scholar
  177. 177.
    Schwartz L, Rockoff MA, Koka BV. Masseter spasm with anesthesia: incidence and implications. Anesthesiology 1984;61:772–775.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Joseph D. Tobias
    • 1
    • 2
    • 3
    • 4
  • Russell Wall
    • 5
  1. 1.Department of AnesthesiologyUniversity of MissouriColumbiaUSA
  2. 2.Department of Pediatric Intensive CareUniversity of MissouriColumbiaUSA
  3. 3.Division of Pediatric AnesthesiologyUniversity of MissouriColumbiaUSA
  4. 4.Department of Pediatrics and AnesthesiologyUniversity of MissouriColumbiaUSA
  5. 5.Resident Education, Department of AnesthesiaGeorgetown UniversityWashington, DCUSA

Personalised recommendations