Skip to main content

Energy Transfer in the Practice of Surgery

  • Chapter
Surgery

Abstract

Energy is a fundamental tool of the modern surgeon. Transduction of energy can take many forms, including the oldest, which is basically manual energy transduction, to effect a change. Modem surgical instruments use electrons, photons, and sound waves to transfer energy to human tissue. Surgeons expect specific and repeatable results from these tools. An understanding of the basic underpinnings of energy transfer and its effects on biological tissue is necessary to adapt current technologies to specific surgical situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ciarallo A, De Carolis E. Pompeii: Life in a Roman Town. Milan: Electra, 1999.

    Google Scholar 

  2. Sigurdsson HEA. The eruption of Vesuvius in A.D. 79. Am J Archaeol 1982;86.

    Google Scholar 

  3. Wallace-Hadrill A. Houses and Society in Pompeii and Herculaneum. Princeton: Princeton University Press, 1994.

    Google Scholar 

  4. Cushing H. Electro-surgery as an aid to the removal of intracranial tumors. With a preliminary note on a new surgical-current generator by W.T. Bovie. Surg Gynecol Obstet 1928;47:751–784.

    Google Scholar 

  5. Curie J, Curie P. Bulletin de la Societe Mineralogique de France 1880;3:90.

    Google Scholar 

  6. Kelman CD Symposium: Phacoemulsification. History of emulsification and aspiration of senile cataracts. Trans Am Acad Ophthalmol Otolaryngol 1974,78(1):OP5–OP13.

    Google Scholar 

  7. Lantis JC II, Durville FM, Connolly R, Schwaitzberg SD. Comparison of coagulation modalities in surgery. J Laparoendosc Adv Surg Tech A 1998;8(6):381–394.

    Article  PubMed  Google Scholar 

  8. Link WJ, Incropera FP, Glover JL. A plasma scalpel: comparison of tissue damage and wound healing with electrosurgical and steel scalpels. Arch Surg 1976;111(4):392–397.

    PubMed  CAS  Google Scholar 

  9. Glover JL, Bendick PJ, Link WJ, Plunkett RJ. The plasma scalpel: a new thermal knife. Lasers Surg Med 1982;2(1):101–106.

    PubMed  CAS  Google Scholar 

  10. Go PM, Goodman GR, Bruhn EW, Hunter JG. The argon beam coagulator provides rapid hemostasis of experimental hepatic and splenic hemorrhage in anticoagulated dogs. J Trauma 1991;31(9):1294–1300.

    Article  PubMed  CAS  Google Scholar 

  11. Postema RR, Plaisier PW, ten Kate FJ, Terpstra OT. Haemostasis after partial hepatectomy using argon beam coagulation. Br J Surg 1993;80(12):1563–1565.

    Article  PubMed  CAS  Google Scholar 

  12. Rees M, Plant G, Wells J, Bygrave S. One hundred and fifty hepatic resections: evolution of technique towards bloodless surgery. Br J Surg 1996;83(11):1526–1529.

    Article  PubMed  CAS  Google Scholar 

  13. Dowling RD, Ochoa J, Yousem SA, Peitzman A, Udekwu AO. Argon beam coagulation is superior to conventional techniques in repair of experimental splenic injury. J Trauma 1991;31(5):717–720; discussion 720—721.

    Article  PubMed  CAS  Google Scholar 

  14. Dunham CM, Cornwell EE III, Militello P. The role of the argon beam coagulator in splenic salvage. Surg Gynecol Obstet 1991;173(3):179–182.

    PubMed  CAS  Google Scholar 

  15. Kwon AH, Inui H, Kamiyama Y. Successful laparoscopic haemostasis using an argon beam coagulator for blunt traumatic splenic injury. Eur J Surg 2001;167(4):316–318.

    Article  PubMed  CAS  Google Scholar 

  16. Stylianos S, Hoffman MA, Jacir NN, Harris BH. Sutureless hemisplenectomy. J Pediatr Surg 1991;26(1):87–89.

    Article  PubMed  CAS  Google Scholar 

  17. Palmer M, Miller CW, van Way CW 3rd, Orton EC. Venous gas embolism associated with argon-enhanced coagulation of the liver. J Invest Surg 1993;6(5):391–399.

    Article  PubMed  CAS  Google Scholar 

  18. Stojeba N, Mahoudeau G, Segura P, Meyer C, Steib A. Possible venous argon gas embolism complicating argon gas enhanced coagulation during liver surgery. Acta Anaesthesiol Scand 1999;43(8):866–867.

    Article  PubMed  CAS  Google Scholar 

  19. Veyckemans F, Michel I. Venous gas embolism from an argon coagulator. Anesthesiology 1996;85(2):443–444.

    Article  PubMed  CAS  Google Scholar 

  20. Fatal gas embolism caused by overpressurization during laparoscopic use of argon enhanced coagulation. Health Devices 1994;23(6):257–259.

    Google Scholar 

  21. Daniell J, Fisher B, Alexander W. Laparoscopic evaluation of the argon beam coagulator. Initial report. J Reprod Med 1993;38(2):121–125.

    PubMed  CAS  Google Scholar 

  22. Choi D, Lim HK, Kim MJ, et al. Overlapping ablation using a coaxial radiofrequency electrode and multiple cannulae system: experimental study in ex-vivo bovine liver. Korean J Radiol 2003;4(2):117–123.

    PubMed  Google Scholar 

  23. McGahan JP, Brock JM, Tesluk H, Gu WZ, Schneider P, Browning PD. Hepatic ablation with use of radio-frequency electrocautery in the animal model. J Vasc Intervent Radiol 1992;3(2):291–297.

    Article  CAS  Google Scholar 

  24. Gillams AR. The use of radiofrequency in cancer. Br J Cancer 2005;92(10):1825–1829.

    Article  PubMed  CAS  Google Scholar 

  25. Abdalla EK, Vauthey JN, Ellis LM, et al. Recurrence and outcomes following hepatic resection, radiofrequency ablation, and combined resection/ablation for colorectal liver metastases. Ann Surg 2004;239(6):818–825; discussion 825-827.

    Article  PubMed  Google Scholar 

  26. Lencioni R, Cioni D, Crocetti L, et al. Early-stage hepatocellular carcinoma in patients with cirrhosis: long-term results of percutaneous image-guided radiofrequency ablation. Radiology 2005;234(3):961–967.

    Article  PubMed  Google Scholar 

  27. Lencioni RA, Allgaier HP, Cioni D, et al. Small hepatocellular carcinoma in cirrhosis: randomized comparison of radio-frequency thermal ablation versus percutaneous ethanol injection. Radiology 2003;228(1):235–240.

    Article  PubMed  Google Scholar 

  28. Lee JM, Jin GY, Li CA, et al. Percutaneous radiofrequency thermal ablation of lung VX2 tumors in a rabbit model using a cooled tip-electrode: feasibility, safety, and effectiveness. Invest Radiol 2003;38(2):129–139.

    Article  PubMed  Google Scholar 

  29. Miao Y, Ni Y, Bosmans H, et al. Radiofrequency ablation for eradication of pulmonary tumor in rabbits. J Surg Res 2001;99(2):265–271.

    Article  PubMed  CAS  Google Scholar 

  30. Miao Y, Ni Y, Bosmans H, et al. Radiofrequency ablation for eradication of renal tumor in a rabbit model by using a cooled-tip electrode technique. Ann Surg Oncol 2001;8(8):651–657.

    Article  PubMed  CAS  Google Scholar 

  31. Miao Y, Ni Y, Mulier S, et al. Treatment of VX2 liver tumor in rabbits with “wet” electrode mediated radio-frequency ablation. Eur Radiol 2000;10(1):188–194.

    Article  PubMed  CAS  Google Scholar 

  32. Mulier S, Mulier P, Ni Y, et al. Complications of radiofrequency coagulation of liver tumours. Br J Surg 2002;89(10):1206–1222.

    Article  PubMed  CAS  Google Scholar 

  33. Chehrazi B, Collins WF Jr. A comparison of effects of bipolar and monopolar electrocoagulation in brain. J Neurosurg 1981;54(2):197–203.

    PubMed  CAS  Google Scholar 

  34. Caffee HH, Ward D. Bipolar coagulation in microvascular surgery. Plast Reconstr Surg 1986;78(3):374–377.

    Article  PubMed  CAS  Google Scholar 

  35. DeLong WB, Fox JL. Automatic cycling bipolar coagulator. Surg Neurol 1977;8(1):15–16.

    PubMed  CAS  Google Scholar 

  36. Dujovny M, Dujovny N, Gundamraj NR, Misra M. Bipolar coagulation in neurosurgery. Surg Neurol 1998;49(3):328–332.

    Article  PubMed  CAS  Google Scholar 

  37. Jacques S, Bullara LA, Pudenz RH. Microvascular bipolar coagulator. Technical note. J Neurosurg 1976;44(4):523–524.

    PubMed  CAS  Google Scholar 

  38. Sugita K, Tsugane R. Bipolar coagulator with automatic thermo-control. Technical note. J Neurosurg 1974;41(6):777–779.

    PubMed  CAS  Google Scholar 

  39. Bergdahl B, Vallfors B. Studies on coagulation and the development of an automatic computerized bipolar coagulator. Technical note. J Neurosurg 1991;75(1):148–151.

    Article  PubMed  CAS  Google Scholar 

  40. Carbonell AM, Joels CS, Kercher KW, Matthews BD, Sing RF, Heniford BT. A comparison of laparoscopic bipolar vessel sealing devices in the hemostasis of small-, medium-, and large-sized arteries. J Laparoendosc Adv Surg Tech A 2003;13(6):377–380.

    Article  PubMed  Google Scholar 

  41. Harold KL, Pollinger H, Matthews BD, Kercher KW, Sing RF, Heniford BT. Comparison of ultrasonic energy, bipolar thermal energy, and vascular clips for the hemostasis of small-, medium-, and large-sized arteries. Surg Endosc 2003;17(8):1228–1230.

    Article  PubMed  CAS  Google Scholar 

  42. Kennedy JS, Stranahan PL, Taylor KD, Chandler JG. High-burststrength, feedback-controlled bipolar vessel sealing. Surg Endosc 1998;12(6):876–878.

    Article  PubMed  CAS  Google Scholar 

  43. Landman J, Kerbl K, Rehman J, et al. Evaluation of a vessel sealing system, bipolar electrosurgery, harmonic scalpel, titanium clips, endoscopic gastrointestinal anastomosis vascular staples and sutures for arterial and venous ligation in a porcine model. J Urol 2003;169(2):697–700.

    Article  PubMed  Google Scholar 

  44. Presthus JB, Brooks PG, Kirchhof N. Vessel sealing using a pulsed bipolar system and open forceps. J Am Assoc Gynecol Laparosc 2003;10(4):528–533.

    Article  PubMed  Google Scholar 

  45. Brill A. Mapping the thermal gradient of a new radiofrequency bipolar vessel sealing device, EnSeal, using real-time thermography. J Am Assoc Gynecol Laparosc 2004;11(suppl 3):S7, S19.

    Article  Google Scholar 

  46. Heniford BT, Matthews BD, Sing RF, Backus C, Pratt B, Greene FL. Initial results with an electrothermal bipolar vessel sealer. Surg Endosc 2001;15(8):799–801.

    Article  PubMed  CAS  Google Scholar 

  47. Kiriakopoulos A, Dimitrios T, Dimitrios L. Use of a diathermy system in thyroid surgery. Arch Surg 2004;139(9):997–1000.

    Article  PubMed  Google Scholar 

  48. Matthews BD, Pratt BL, Backus CL, et al. Effectiveness of the ultrasonic coagulating shears, LigaSure vessel sealer, and surgical clip application in biliary surgery: a comparative analysis. Am Surg 2001;67(9):901–906.

    PubMed  CAS  Google Scholar 

  49. Schulze S, Krisitiansen VB, Fischer Hansen B, Rosenberg J. Sealing of cystic duct with bipolar electrocoagulation. Surg Endosc 2002;16(2):342–344.

    Article  PubMed  CAS  Google Scholar 

  50. Goldstein SL, Harold KL, Lentzner A, et al. Comparison of thermal spread after ureteral ligation with the Laparo-Sonic ultrasonic shears and the Ligasure system. J Laparoendosc Adv Surg Tech A 2002;12(1):61–63.

    Article  PubMed  Google Scholar 

  51. Di Carlo I, Barbagallo F, Toro A, Sofia M, Guastella T, Latteri F. Hepatic resections using a water-cooled, high-density, monopolar device: a new technology for safer surgery. J Gastrointest Surg 2004;8(5):596–600.

    Article  PubMed  Google Scholar 

  52. Sundaram CP, Rehman J, Venkatesh R, et al. Hemostatic laparoscopic partial nephrectomy assisted by a water-cooled, high-density, monopolar device without renal vascular control. Urology 2003;61(5):906–909.

    Article  PubMed  Google Scholar 

  53. Topp SA, McClurken M, Lipson D, et al. Saline-linked surface radiofrequency ablation: factors affecting steam popping and depth of injury in the pig liver. Ann Surg 2004;239(4):518–527.

    Article  PubMed  Google Scholar 

  54. Packer M, Fishkind WJ, Fine IH, Seibel BS, Hoffman RS. The physics of phaco: a review. J Cataract Refract Surg 2005;31(2):424–431.

    Article  PubMed  Google Scholar 

  55. Lee SJ, Park KH. Ultrasonic energy in endoscopic surgery. Yonsei Med J 1999;40(6):545–549.

    PubMed  CAS  Google Scholar 

  56. Sugo H, Matsumoto K, Kojima K, Fukasawa M, Beppu T. Role of ultrasonically activated scalpel in hepatic resection: a comparison with conventional blunt dissection. Hepatogastroenterology 2005;52(61):173–175.

    PubMed  Google Scholar 

  57. Takayama T, Makuuchi M, Kubota K, et al. Randomized comparison of ultrasonic vs clamp transection of the liver. Arch Surg 2001;136(8):922–928.

    Article  PubMed  CAS  Google Scholar 

  58. Schmidbauer S, Hallfeldt KK, Sitzmann G, Kantelhardt T, Trupka A. Experience with ultrasound scissors and blades (UltraCision) in open and laparoscopic liver resection. Ann Surg 2002;235(1):27–30.

    Article  PubMed  Google Scholar 

  59. Takao S, Shinchi H, Maemura K, Aikou T. Ultrasonically activated scalpel is an effective tool for cutting the pancreas in biliary-pancreatic surgery: experimental and clinical studies. J Hepatobiliary Pancreat Surg 2000;7(1):58–62.

    Article  PubMed  CAS  Google Scholar 

  60. Sugo H, Mikami Y, Matsumoto F, Tsumura H, Watanabe Y, Futagawa S. Comparison of ultrasonically activated scalpel versus conventional division for the pancreas in distal pancreatectomy. J Hepatobiliary Pancreat Surg 2001;8(4):349–352.

    Article  PubMed  CAS  Google Scholar 

  61. Janssen IM, Swank DJ, Boonstra O, Knipscheer BC, Klinkenbijl JH, van Goor H. Randomized clinical trial of ultrasonic versus electrocautery dissection of the gallbladder in laparoscopic cholecystectomy. Br J Surg 2003;90(7):799–803.

    Article  PubMed  CAS  Google Scholar 

  62. Sulieman M. An overview of the use of lasers in general dental practice: 1. Laser physics and tissue interactions. Dent Update 2005;32(4):228–230, 233–234, 236.

    PubMed  Google Scholar 

  63. Sulieman M. An overview of the use of lasers in general dental practice: 2. Laser wavelengths, soft and hard tissue clinical applications. Dent Update 2005;32(5):286–288, 291–294, 296.

    PubMed  Google Scholar 

  64. Knappe V, Frank F, Rohde E. Principles of lasers and biophotonic effects. Photomed Laser Surg 2004;22(5):411–417.

    Article  PubMed  Google Scholar 

  65. Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. J Natl Cancer Inst 1998;90(12):889–905.

    Article  PubMed  CAS  Google Scholar 

  66. Kessel D. Photodynamic therapy and neoplastic disease. Oncol Res 1992;4(6):219–225.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wall, J., Gertner, M.E. (2008). Energy Transfer in the Practice of Surgery. In: Norton, J.A., et al. Surgery. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68113-9_115

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68113-9_115

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-30800-5

  • Online ISBN: 978-0-387-68113-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics