Advertisement

Cardiovascular Disease and Hypertension in the Bariatric Surgery Patient

  • Daniel Edmundowicz

Abstract

Obesity increases an individual’s risk for cardiovascular disease by causing a variety of cardiac structural changes, hemodynamic alterations, and metabolic dyscrasias that lead to both myocardial and endothelial dysfunction. Obesity is associated with an increase in both total blood volume and cardiac output due to the increased metabolic demands of excessive fat accumulation. This increased workload leads to an increased left ventricular mass and hypertrophy, which predispose to a clinically significant imbalance between perfusion and metabolic demand known as the syndrome of obesity cardiomyopathy (1).

Keywords

Right Ventricular Arterioscler Thromb Vasc Biol Insulin Resistance Syndrome Bariatric Surgery Patient Congestive Heart Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benotti PN, Bistrain B, Benotti JR, Blackburn G, Forse RA. Heart disease and hypertension in severe obesity: the benefits of weight reduction. Am J Clin Nutr 1992;55:586S–590S.PubMedGoogle Scholar
  2. 2.
    Alpert MA. Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome. Am J Med Sci 2001;321(4):225–236.CrossRefPubMedGoogle Scholar
  3. 3.
    Alexander JK, Dennis EW, Smith WG, et al. Blood volume, cardiac output and distribution of systemic blood flow in extreme obesity. Cardiovasc Res Center Bull 1961;1:39–44.Google Scholar
  4. 4.
    DeDivitiis O, Fazio S, Pettitto M, et al. Obesity and cardiac function. Circulation 1981;64:477–482.CrossRefGoogle Scholar
  5. 5.
    Gillum RF, Mussolino ME, Madans JH. Body fat distribution and hypertension incidence in women and men. The NHANES I Epidemiologic Follow-up Study. Int J Obes Relat Metab Disord 1998;22:127–134.CrossRefPubMedGoogle Scholar
  6. 6.
    Hodgson JM, Wahlqvist ML, Balazs ND, Boxall JA. Coronary atherosclerosis in relation to body fatness and its distribution. Int J Obes Relat Metab Disord 1994;18:41–46.PubMedGoogle Scholar
  7. 7.
    Manson JE, Colditz GA, Stampfer MJ, et al. A prospective study of obesity and risk of coronary heart disease in women (see comments). N Engl J Med 1990;322:882–889.CrossRefPubMedGoogle Scholar
  8. 8.
    Schulte H, Cullen P, Assmann G. Obesity, mortality and cardiovascular disease in the Munster Heart Study (PROCAM). Atherosclerosis 1999;144:199–209.CrossRefPubMedGoogle Scholar
  9. 9.
    Clark LT, Karve MM, Rones KT, et al. Obesity: distribution of body fat and coronary heart disease in black women. Am J Cardiol 1994;73:895–896.CrossRefPubMedGoogle Scholar
  10. 10.
    Gaudet D, Vohl MC, Perron P, et al. Relationships of abdominal obesity and hyperinsulinemia to angiographically assessed coronary artery disease in men with known mutations in the LDL receptor gene. Circulation 1998;97:871–877.CrossRefPubMedGoogle Scholar
  11. 11.
    Benotti PN, Bistrian B, Benotti JR, et al. Heart disease and hypertension in severe obesity: the benefits of weight reduction. Am J Clin Nutr 1992;55:586S.PubMedGoogle Scholar
  12. 12.
    Clarke J, Benjamin N, Larkin S, et al. Interaction of neuropeptide Y and the sympathetic nervous system in vascular control in man. Circulation 1991;83:774–777.CrossRefPubMedGoogle Scholar
  13. 13.
    Reaven GM. Role of insulin resistance in human disease. Diabetes 1988;37:1595–1607.CrossRefPubMedGoogle Scholar
  14. 14.
    Kannel WB, McGee DL. Diabetes and cardiovascular disease: the Framingham Study. JAMA 1979;241:2035–2038.CrossRefPubMedGoogle Scholar
  15. 15.
    Haffner SM, Stern MP, Hazuda HP, Mitchell BD, Patterson JK. Cardiovascular risk factors in confirmed prediabetic individuals: does the clock for coronary heart disease start ticking before the onset of diabetes? JAMA 1990;263:2893–2898.CrossRefPubMedGoogle Scholar
  16. 16.
    Despres J-P, Lamarche B, Mauriege P, et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med 1996;334:952–957.CrossRefPubMedGoogle Scholar
  17. 17.
    Wilson PW, McGee DL, Kannel WB. Obesity, very low density lipoproteins, and glucose intolerance over fourteen years: the Framingham Study. Am J Epidemiol 1981;114:697–704.PubMedGoogle Scholar
  18. 18.
    Schmidt MI, Watson RL, Duncan BB, et al. Clustering of dyslipidemia, hyperuricemia, diabetes, and hypertension and its association with fasting insulin and central and overall obesity in a general population. Metabolism 1996;45:699–706.CrossRefPubMedGoogle Scholar
  19. 19.
    Wilson PWF, Kannel WB, Silbershatz H, D’Agostino RB. Clustering of metabolic factors and coronary heart disease. Arch Intern Med 1999;159:1104–1109.CrossRefPubMedGoogle Scholar
  20. 20.
    Meigs JB, D’Agostino RB, Wilson PWF, Cupples LA, Nathan DM, Singer DE. Risk variable clustering in the insulin resistance syndrome: the Framingham Offspring Study. Diabetes 1997;46:1594–1600.CrossRefPubMedGoogle Scholar
  21. 21.
    Meigs JB. Invited commentary: insulin resistance syndrome? Syndrome X? Multiple metabolic syndrome? A syndrome at all? Factor analysis reveals patterns in the fabric of correlated metabolic risk factors. Am J Epidemiol 2000;152:908–911.CrossRefPubMedGoogle Scholar
  22. 22.
    Ahima RS, Flier JS. Adipose tissue as an endocrine organ. Trends Endocrinol Metab 2000;11:327–332.CrossRefPubMedGoogle Scholar
  23. 23.
    Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol 1999;19:972–978.CrossRefPubMedGoogle Scholar
  24. 24.
    Samad F, Loskutoff DJ. Tissue distribution and regulation of plasminogen activator inhibitor-1 in obese mice. Mol Med 1996;2:568–582.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Samad F, Yamamoto K, Pandey M, Loskutoff DJ. Elevated expression of transforming growth factor-β in adipose tissue from obese mice. Mol Med 1997;3:37–48.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Zhang B, Graziano MP, Doebber TW, et al. Down-regulation of the expression of the obese gene by an antidiabetic thiazolidinedione in Zucker diabetic fatty rats and db/db mice. J Biol Chem 1996;271:9455–9459.CrossRefPubMedGoogle Scholar
  27. 27.
    Dusserre E, Moulin P, Vidal H. Differences in mRNA expression of the proteins secreted by the adipocytes in human subcutaneous and visceral adipose tissues. Biochim Biophys Acta 2000;1500:88–96.CrossRefPubMedGoogle Scholar
  28. 28.
    Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab 1998;83:847–850.PubMedGoogle Scholar
  29. 29.
    Eriksson P, Van Harmelen V, Hoffstedt J, et al. Regional variation in plasminogen activator inhibitor-1 expression in adipose tissue from obese individuals. Thromb Haemost 2000;83:545–548.PubMedGoogle Scholar
  30. 30.
    Giacchetti G, Faloia E, Mariniello B, et al. Overexpression of the renin-angiotensin system in human visceral adipose tissue in normal and overweight subjects. Am J Hypertens 2002;15:381–388.CrossRefPubMedGoogle Scholar
  31. 31.
    Dandona P, Weinstock R, Thusu K, Abdel-Rahman E, Aljada A, Wadden T. Tumor necrosis factor-α in sera of obese patients: fall with weight loss. J Clin Endocrinol Metab 1998;83:2907–2910.PubMedGoogle Scholar
  32. 32.
    Ziccardi P, Nappo F, Giugliano G, et al. Reduction of inflammatory cytokine concentrations and improvement of endothelial functions in obese women after weight loss over one year. Circulation 2002;105:804–809.CrossRefPubMedGoogle Scholar
  33. 33.
    Primrose JN, Davies JA, Prentice CR, Hughes R, Johnston D. Reduction in factor VII, fibrinogen and plasminogen activator inhibitor-1 activity after surgical treatment of morbid obesity. Thromb Haemost 1992;68:396–399.PubMedGoogle Scholar
  34. 34.
    Folsom AR, Qamhieh HT, Wing RR, et al. Impact of weight loss on plasminogen activator inhibitor (PAI-1), factor VII, and other hemostatic factors in moderately overweight adults. Arterioscler Thromb 1993;13:162–169.CrossRefPubMedGoogle Scholar
  35. 35.
    Itoh K, Imai K, Masuda T, et al. Relationship between changes in serum leptin levels and blood pressure after weight loss. Hypertens Res 2002;25:881–886.CrossRefPubMedGoogle Scholar
  36. 36.
    Feinstein R, Kanety H, Papa MZ, Lunenfeld B, Karasik A. Tumor necrosis factor-α suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. J Biol Chem 1993;268:26055–26058.PubMedGoogle Scholar
  37. 37.
    Libby P. Changing concepts of atherogenesis. J Intern Med 2000;247:349–358.CrossRefPubMedGoogle Scholar
  38. 38.
    Landry DB, Couper LL, Bryant SR, Lindner V. Activation of the NF-κB and IκB system in smooth muscle cells after rat arterial injury. Induction of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1. Am J Pathol 1997;151:1085–1095.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Iademarco MF, McQuillan JJ, Dean DC. Vascular cell adhesion molecule 1: contrasting transcriptional control mechanisms in muscle and endothelium. Proc Natl Acad Sci USA 1993;90:3943–3947.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Eck SL, Perkins ND, Carr DP, Nabel GJ. Inhibition of phorbol ester-induced cellular adhesion by competitive binding of NF-κB in vivo. Mol Cell Biol 1993;13:6530–6536.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Clesham GJ, Adam PJ, Proudfoot D, Flynn PD, Efstathiou S, Weissberg PL. High adenoviral loads stimulate NFκB-dependent gene expression in human vascular smooth muscle cells. Gene Ther 1998;5:174–180.CrossRefPubMedGoogle Scholar
  42. 42.
    Martin T, Cardarelli PM, Parry GC, Felts KA, Cobb RR. Cytokine induction of monocyte chemoattractant protein-1 gene expression in human endothelial cells depends on the cooperative action of NF-κB and AP-1. Eur J Immunol 1997;27:1091–1097.CrossRefPubMedGoogle Scholar
  43. 43.
    Peng HB, Rajavashisth TB, Libby P, Liao JK. Nitric oxide inhibits macrophage-colony stimulating factor gene transcription in vascular endothelial cells. J Biol Chem 1995; 270:17050–17055.CrossRefPubMedGoogle Scholar
  44. 44.
    Rajavashisth TB, Yamada H, Mishra NK. Transcriptional activation of the macrophage-colony stimulating factor gene by minimally modified LDL. Involvement of nuclear factor-κB. Arterioscler Thromb Vasc Biol 1995;15:1591–1598.CrossRefPubMedGoogle Scholar
  45. 45.
    Xie QW, Kashiwabara Y, Nathan C. Role of transcription factor NF-κB/Rel in induction of nitric oxide synthase. J Biol Chem 1994;269:4705–4708.PubMedGoogle Scholar
  46. 46.
    Goto M, Katayama KI, Shirakawa F, Tanaka I. Involvement of NF-κB p50/p65 heterodimer in activation of the human pro-interleukin-1β gene at two subregions of the upstream enhancer element. Cytokine 1999;11:16–28.CrossRefPubMedGoogle Scholar
  47. 47.
    Kawashima T, Murata K, Akira S, et al. STAT5 induces macrophage differentiation of M1 leukemia cells through activation of IL-6 production mediated by NF-κB p65. J Immunol 2001;167:3652–3660.CrossRefPubMedGoogle Scholar
  48. 48.
    Kelly KA, Hill MR, Youkhana K, Wanker F, Gimble JM. Dimethyl sulfoxide modulates NF-κB and cytokine activation in lipopolysaccharide-treated murine macrophages. Infect Immun 1994;62:3122–3128.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Frostegard J, Ulfgren AK, Nyberg P, et al. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophagestimulating cytokines. Atherosclerosis 1999;145:33–43.CrossRefPubMedGoogle Scholar
  50. 50.
    Mantzoros CS. The role of leptin in human obesity and disease: a review of current evidence. Ann Intern Med 1999;130:671–680.CrossRefPubMedGoogle Scholar
  51. 51.
    Considine RV, Sinha MK, Heiman ML, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese human. N Engl J Med 1996;334:292–295.CrossRefPubMedGoogle Scholar
  52. 52.
    Wallace AM, McMahon AD, Packard CJ, et al. Plasma leptin and the risk of cardiovascular disease in West of Scotland Coronary Prevention Study (WOSCOPS). Circulation 2001;104:3052–3056.CrossRefPubMedGoogle Scholar
  53. 53.
    Konstantinides S, Schafer K, Koschnick S, Loskutoff DJ. Leptin-dependent platelet aggregation and arterial thrombosis suggests a mechanism for atherothrombotic disease in obesity. J Clin Invest 2001;108:1533–1540.PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 1998;394:897–901.CrossRefPubMedGoogle Scholar
  55. 55.
    Shek EW, Brands MW, Hall JE. Chronic leptin infusion increases arterial pressure. Hypertension 1998;31:409–414.CrossRefPubMedGoogle Scholar
  56. 56.
    Correia ML, Morgan DA, Sivitz WI, Mark AL, Haynes WG. Leptin acts in the central nervous system to produce dosedependent changes in arterial pressure. Hypertension 2001; 37:936–942.CrossRefPubMedGoogle Scholar
  57. 57.
    O’Rourke L, Gronning LM, Yeaman SJ, Shepherd PR. Glucose-dependent regulation of cholesterol ester metabolism in macrophages by insulin and leptin. J Biol Chem 2002;277:42557–42562.CrossRefPubMedGoogle Scholar
  58. 58.
    Samad F, Loskutoff DJ. Tissue distribution and regulation of plasminogen activator inhibitor-1 in obese mice. Mol Med 1996;2:568–582.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Loskutoff DJ, Samad F. The adipocyte and hemostatic balance in obesity: studies of PAI-1. Arterioscler Thromb Vasc Biol 1998;18:1–6.CrossRefPubMedGoogle Scholar
  60. 60.
    Chu NV, Kong APS, Kimm DD, et al. Differential effects of metformin and troglitazone on cardiovascular risk factors in patients with type 2 diabetes. Diabetes Care 2002; 25:542–549.CrossRefPubMedGoogle Scholar
  61. 61.
    Lyon CJ, Hsueh WA. Effect of plasminogen activator inhibitor-1 in diabetes mellitus and cardiovascular disease. Am J Med 2003;115:62–68.CrossRefGoogle Scholar
  62. 62.
    Unger RH. Lipotoxic diseases. Annu Rev Med 2002;53:319–336.CrossRefPubMedGoogle Scholar
  63. 63.
    Reaven GM. Banting lecture 1988: Role of insulin resistance in human disease. Diabetes 1988;37:1595–1607.CrossRefPubMedGoogle Scholar
  64. 64.
    Haffner SM. Epidemiology of hypertension and insulin resistance syndrome. J Hypertens Suppl 1997;15:S25–30.CrossRefPubMedGoogle Scholar
  65. 65.
    Lopez-Candales A. Metabolic syndrome X: a comprehensive review of the pathophysiology and recommended therapy. J Med 2001;32:283–300.PubMedGoogle Scholar
  66. 66.
    Deedwania PC. The deadly quartet revisited. Am J Med 1998;105(1A):1S–3S.CrossRefGoogle Scholar
  67. 67.
    Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and Classification of Diabetes Mellitus, provisional report of a WHO consultation. Diabet Med 1998;15:539–553.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Daniel Edmundowicz
    • 1
  1. 1.Department of CardiologyUniversity of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations