Advertisement

Organic Nanotechnology Enabled Sensors

Nanotechnology, without any doubts, has already shown its impact on the development of organic sensors. Such sensors employ organic materials, in particular biomaterials, as components of nano devices and nanostructured sensitive layers.

In this book, the definition of an organic sensor is a device that has either, at least, an organic element in its building structure or it utilizes an organic element to sense either a target analyte and/or physical changes. Organic molecules of interest in the fabrication of such sensors consist of a myriad of natural and synthetic materials which include small organic molecules (such as lipids, neurotransmitters and carbohydrates), monomers (such as amino acids, nucleotides and phosphates), synthetic polymers (such as Teflon and polyaniline), biopolymers (such as DNA, RNA, proteins and polysaccharides), and other synthetic macromolecules (such as dendrimers).

Keywords

Surface Plasmon Resonance Porous Silicon Gold Surface Peptide Nucleic Acid Nicotinamide Adenine Dinucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. R. Eggins, Chemical Sensors and Biosensors (John Wiley & Sons, Ltd, Chichester, UK, 2002).Google Scholar
  2. 2.
    E. Gizeli and C. R. Lowe, Biomolecular Sensors (Taylor & Francis, London, UK, 2002).Google Scholar
  3. 3.
    A. P. F. Turner, I. Karube, and G. S. Wilson, Biosensors: Fundamentals & Applications (Oxford University Press, London, UK, 1987).Google Scholar
  4. 4.
    G. H. Schmid, Organic Chemistry (Mosby-Year Book, St. Louis, USA, 1996).Google Scholar
  5. 5.
    N. Nakajima and Y. Ikada, Bioconjugate Chemistry 6, 123-130 (1995).PubMedGoogle Scholar
  6. 6.
    G. W. J. Fleet, J. R. Knowles, and R. R. Porter, Biochemical Journal 128, 499-& (1972).PubMedGoogle Scholar
  7. 7.
    P. J. A. Weber and A. G. BeckSickinger, Journal of Peptide Research 49, 375-383 (1997).PubMedGoogle Scholar
  8. 8.
    R. E. Galardy, L. C. Craig, J. D. Jamieson, and M. P. Printz, Journal of Biological Chemistry 249, 3510-3518 (1974).PubMedGoogle Scholar
  9. 9.
    G. Dorman and G. D. Prestwich, Biochemistry 33, 5661-5673 (1994).PubMedGoogle Scholar
  10. 10.
    N. A. Peppas, P. Bures, W. Leobandung, and H. Ichikawa, European Journal of Pharmaceutics and Biopharmaceutics 50, 27-46 (2000).PubMedGoogle Scholar
  11. 11.
    B. C. Dave, B. Dunn, J. S. Valentine, and J. I. Zink, Analytical Chemistry 66, A1120-A1127 (1994).Google Scholar
  12. 12.
    J. Zhang, Z.-L. Wang, J. Liu, S. Chen, and G.-Y. Liu, Self-assembled nanostructures (Kluwer Academic/Plenum Publishing, New York, USA, 2003).Google Scholar
  13. 13.
    R. J. Jackman, J. L. Wilbur, and G. M. Whitesides, Science 269, 664-666 (1995).PubMedGoogle Scholar
  14. 14.
    R. Berger, E. Delamarche, H. P. Lang, C. Gerber, J. K. Gimzewski, E. Meyer, and H. J. Guntherodt, Science 276, 2021-2024 (1997).Google Scholar
  15. 15.
    K. Ariga, J. P. Hill, and Q. M. Ji, Physical Chemistry Chemical Physics 9, 2319-2340 (2007).PubMedGoogle Scholar
  16. 16.
    M. Shimomura and T. Sawadaishi, Current Opinion in Colloid & Interface Science 6, 11-16 (2001).Google Scholar
  17. 17.
    J. M. Lehn, Reports on Progress in Physics 67, 249-265 (2004).Google Scholar
  18. 18.
    J. M. Lehn, Angewandte Chemie-International Edition in English 29, 1304-1319 (1990).Google Scholar
  19. 19.
    T. Kunitake, Angewandte Chemie-International Edition in English 31, 709-726 (1992).Google Scholar
  20. 20.
    A. Ulman, An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-Assembly (Academic Press New York, USA, 1991).Google Scholar
  21. 21.
    G. Decher, Science 277, 1232-1237 (1997).Google Scholar
  22. 22.
    P. T. Hammond, Advanced Materials 16, 1271-1293 (2004).Google Scholar
  23. 23.
    J. M. Levasalmi and T. J. McCarthy, Macromolecules 30, 1752-1757 (1997).Google Scholar
  24. 24.
    X. Y. Liu and M. L. Bruening, Chemistry of Materials 16, 351-357 (2004).Google Scholar
  25. 25.
    J. J. Harris, J. L. Stair, and M. L. Bruening, Chemistry of Materials 12, 1941-1946 (2000).Google Scholar
  26. 26.
    R. G. Nuzzo and D. L. Allara, Journal of the American Chemical Society 105, 4481-4483 (1983).Google Scholar
  27. 27.
    B. Adhikari and S. Majumdar, Progress in Polymer Science 29, 699-766 (2004).Google Scholar
  28. 28.
    J. Janata and M. Josowicz, Nature Materials 2, 19-24 (2003).PubMedGoogle Scholar
  29. 29.
    A. J. Cunningham, Introduction to bioanalytical sensors (Wiley New York, USA 1998).Google Scholar
  30. 30.
    M. Shamsipur, M. Yousefi, and M. R. Ganjali, Analytical Chemistry 72, 2391-2394 (2000).PubMedGoogle Scholar
  31. 31.
    C. R. Lowe and P. D. G. Dean, Affinity Chromatography (John Willey and Sons, New York, USA, 1974).Google Scholar
  32. 32.
    W. H. Scouten, Affinity Chromatography: Bioselective Adsorption on Inert Matrices (John Wiley and Sons, New York, USA, 1981).Google Scholar
  33. 33.
    E. H. Gillis, J. P. Gosling, J. M. Sreenan, and M. Kane, Journal of Immunological Methods 267, 131-138 (2002).PubMedGoogle Scholar
  34. 34.
    K. Mosbach, Trends in Biochemical Sciences 19, 9-14 (1994).PubMedGoogle Scholar
  35. 35.
    K. Mosbach, Scientific American 295, 86-91 (2006).PubMedGoogle Scholar
  36. 36.
    L. I. Andersson, Journal of Chromatography B 739, 163-173 (2000).Google Scholar
  37. 37.
    C. D. Liang, H. Peng, A. H. Zhou, L. H. Nie, and S. Z. Yao, Analytica Chimica Acta 415, 135-141 (2000).Google Scholar
  38. 38.
    F. L. Dickert, P. Forth, P. A. Lieberzeit, and G. Voigt, Fresenius Journal of Analytical Chemistry 366, 802-806 (2000).PubMedGoogle Scholar
  39. 39.
    F. L. Dickert, P. Forth, P. Lieberzeit, and M. Tortschanoff, Fresenius Journal of Analytical Chemistry 360, 759-762 (1998).Google Scholar
  40. 40.
    H. S. Ji, S. McNiven, K. H. Lee, T. Saito, K. Ikebukuro, and I. Karube, Biosensors & Bioelectronics 15, 403-409 (2000).Google Scholar
  41. 41.
    H. S. Ji, S. McNiven, K. Ikebukuro, and I. Karube, Analytica Chimica Acta 390, 93-100 (1999).Google Scholar
  42. 42.
    E. Hedborg, F. Winquist, I. Lundstrom, L. I. Andersson, and K. Mosbach, Sensors and Actuators a-Physical 37-8, 796-799 (1993).Google Scholar
  43. 43.
    D. Kriz and K. Mosbach, Analytica Chimica Acta 300, 71-75 (1995).Google Scholar
  44. 44.
    S. A. Piletsky, E. V. Piletskaya, A. V. Elskaya, R. Levi, K. Yano, and I. Karube, Analytical Letters 30, 445-455 (1997).Google Scholar
  45. 45.
    A. G. MacDiarmid, Synthetic Metals 84, 27-34 (1997).Google Scholar
  46. 46.
    H. S. Nalwa, Handbook of Organic Conductive Materials and Polymers (Wiley, New York, USA 1997).Google Scholar
  47. 47.
    T. A. Skotheim, Handbook of Conducting Polymers, Vols. 1 and 2(Marcel Dekker, New York, USA, 1986).Google Scholar
  48. 48.
    J. C. Chiang and A. G. Macdiarmid, Synthetic Metals 13, 193-205 (1986).Google Scholar
  49. 49.
    A. G. Macdiarmid, J. C. Chiang, A. F. Richter, and A. J. Epstein, Synthetic Metals 18, 285-290 (1987).Google Scholar
  50. 50.
    J. Y. Shimano and A. G. MacDiarmid, Synthetic Metals 123, 251-262 (2001).Google Scholar
  51. 51.
    J. Tanaka, N. Mashita, K. Mizoguchi, and K. Kume, Synthetic Metals 29 (1989).Google Scholar
  52. 52.
    Y. X. Zhou, M. Freitag, J. Hone, C. Staii, A. T. Johnson, N. J. Pinto, and A. G. MacDiarmid, Applied Physics Letters 83, 3800-3802 (2003).Google Scholar
  53. 53.
    J. Doshi and D. H. Reneker, Journal of Electrostatics 35, 151-160 (1995).Google Scholar
  54. 54.
    D. Xie, Y. D. Jiang, W. Pan, D. Li, Z. M. Wu, and Y. R. Li, Sensors and Actuators B-Chemical 81, 158-164 (2002).Google Scholar
  55. 55.
    V. Dixit, S. C. K. Misra, and B. S. Sharma, Sensors and Actuators BChemical 104, 90-93 (2005).Google Scholar
  56. 56.
    W. Q. Cao and Y. X. Duan, Sensors and Actuators B-Chemical 110, 252-259 (2005).Google Scholar
  57. 57.
    E. M. Genies and C. Tsintavis, Journal of Electroanalytical Chemistry 195, 109-128 (1985).Google Scholar
  58. 58.
    A. A. Syed and M. K. Dinesan, Talanta 38, 815-837 (1991).PubMedGoogle Scholar
  59. 59.
    L. Liang, J. Liu, C. F. Windisch, G. J. Exarhos, and Y. H. Lin, Angewandte Chemie-International Edition 41, 3665-3668 (2002).Google Scholar
  60. 60.
    J. Liu, Y. H. Lin, L. Liang, J. A. Voigt, D. L. Huber, Z. R. Tian, E. Coker, B. McKenzie, and M. J. McDermott, Chemistry-a European Journal 9, 605-611 (2003).Google Scholar
  61. 61.
    Y. Cao, A. Andreatta, A. J. Heeger, and P. Smith, Polymer 30, 2305-2311 (1989).Google Scholar
  62. 62.
    A. Pron, F. Genoud, C. Menardo, and M. Nechtschein, Synthetic Metals 24, 193-201 (1988).Google Scholar
  63. 63.
    J. X. Huang, S. Virji, B. H. Weiller, and R. B. Kaner, Journal of the American Chemical Society 125, 314-315 (2003).PubMedGoogle Scholar
  64. 64.
    J. X. Huang and R. B. Kaner, Angewandte Chemie-International Edition 43, 5817-5821 (2004).Google Scholar
  65. 65.
    C. G. Wu and T. Bein, Science 264, 1757-1759 (1994).PubMedGoogle Scholar
  66. 66.
    C. R. Martin, Chemistry of Materials 8, 1739-1746 (1996).Google Scholar
  67. 67.
    E. T. Kang, K. G. Neoh, and K. L. Tan, Progress in Polymer Science 23, 277-324 (1998).Google Scholar
  68. 68.
    J. S. Tang, X. B. Jing, B. C. Wang, and F. S. Wang, Synthetic Metals 24, 231-238 (1988).Google Scholar
  69. 69.
    S. Virji, J. X. Huang, R. B. Kaner, and B. H. Weiller, Nano Letters 4, 491-496 (2004).Google Scholar
  70. 70.
    P. D. Dupoet, S. Miyamoto, T. Murakami, J. Kimura, and I. Karube, Analytica Chimica Acta 235, 255-263 (1990).Google Scholar
  71. 71.
    Q. L. Yang, P. Atanasov, and E. Wilkins, Biosensors & Bioelectronics 14, 203-210 (1999).Google Scholar
  72. 72.
    M. K. Ram, N. S. Sundaresan, and B. D. Malhotra, Journal of Materials Science Letters 13, 1490-1493 (1994).Google Scholar
  73. 73.
    N. C. Foulds and C. R. Lowe, Journal of the Chemical Society-Faraday Transactions I 82, 1259-1264 (1986).Google Scholar
  74. 74.
    J. C. Cooper and E. A. H. Hall, Biosensors & Bioelectronics 7, 473-485 (1992).Google Scholar
  75. 75.
    C. Malitesta, F. Palmisano, L. Torsi, and P. G. Zambonin, Analytical Chemistry 62, 2735-2740 (1990).PubMedGoogle Scholar
  76. 76.
    J. H. Kim, J. H. Cho, G. S. Cha, C. W. Lee, H. B. Kim, and S. H. Paek, Biosensors & Bioelectronics 14, 907-915 (2000).Google Scholar
  77. 77.
    I. Willner, Science 298, 2407-2408 (2002).PubMedGoogle Scholar
  78. 78.
    H. Kawaguchi, Progress in Polymer Science 25, 1171-1210 (2000).Google Scholar
  79. 79.
    M. LaBarbera, Science 289, 1882-1882 (2000).Google Scholar
  80. 80.
    A. R. Mendelsohn and R. Brent, Science 284, 1948-1950 (1999).PubMedGoogle Scholar
  81. 81.
    H. Morgan and D. M. Taylor, Biosensors & Bioelectronics 7, 405-410 (1992).Google Scholar
  82. 82.
    C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, Journal of the American Chemical Society 111, 321-335 (1989).Google Scholar
  83. 83.
    J. Spinke, M. Liley, H. J. Guder, L. Angermaier, and W. Knoll, Langmuir 9, 1821-1825 (1993).Google Scholar
  84. 84.
    S. Lofas, B. Johnsson, A. Edstrom, A. Hansson, G. Lindquist, R. M.M. Hillgren, and L. Stigh, Biosensors & Bioelectronics 10, 813-822 (1995).Google Scholar
  85. 85.
    A. N. Naimushin, S. D. Soelberg, D. K. Nguyen, L. Dunlap, D. Bartholomew, J. Elkind, J. Melendez, and C. E. Furlong, Biosensors & Bioelectronics 17, 573-584 (2002).Google Scholar
  86. 86.
    F. Caruso, E. Rodda, D. F. Furlong, K. Niikura, and Y. Okahata, Analytical Chemistry 69, 2043-2049 (1997).Google Scholar
  87. 87.
    M. Minunni, P. Skladal, and M. Mascini, Analytical Letters 27, 1475-1487 (1994).Google Scholar
  88. 88.
    H. Muramatsu, J. M. Dicks, E. Tamiya, and I. Karube, Analytical Chemistry 59, 2760-2763 (1987).PubMedGoogle Scholar
  89. 89.
    M. Musameh, J. Wang, A. Merkoci, and Y. H. Lin, Electrochemistry Communications 4, 743-746 (2002).Google Scholar
  90. 90.
    Y. H. Lin, F. Lu, Y. Tu, and Z. F. Ren, Nano Letters 4, 191-195 (2004).Google Scholar
  91. 91.
    Y. Astier, H. Bayley, and S. Howorka, Current Opinion in Chemical Biology 9, 576-584 (2005).PubMedGoogle Scholar
  92. 92.
    B. Alberts, D. Bary, K. Hopkin, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Essential Cell Biology (Garland Science, Oxford, UK, 2004).Google Scholar
  93. 93.
    E. A. Padlan, in Antigen Binding Molecules: Antibodies and T-Cell Receptors; Vol. 49 (1996), 57-133.Google Scholar
  94. 94.
    J. A. Berzofsky and A. N. Schechter, Molecular Immunology 18, 751-763 (1981).PubMedGoogle Scholar
  95. 95.
    S. H. Jenkins, W. R. Heineman, and H. B. Halsall, Analytical Biochemistry 168, 292-299 (1988).PubMedGoogle Scholar
  96. 96.
    S. H. Jenkins, H. B. Halsall, and W. J. Heineman, Advances in Biosensors (Vol. 1) (JAI Press, London, UK, 1991).Google Scholar
  97. 97.
    M. Mosbach, in Biosensors 2000, San Diego, CA, USA, 2000 (Elsevier, Oxford), 164-167.Google Scholar
  98. 98.
    A. Shons, J. Najarian, and F. Dorman, Journal of Biomedical Materials Research 6, 565-& (1972).PubMedGoogle Scholar
  99. 99.
    C. K. O’Sullivan and G. G. Guilbault, Biosensors & Bioelectronics 14, 663-670 (1999).Google Scholar
  100. 100.
    G. Sakai, T. Saiki, T. Uda, N. Miura, and N. Yamazoe, Sensors and Actuators B-Chemical 42, 89-94 (1997).Google Scholar
  101. 101.
    K. Yun, E. Kobatake, T. Haruyama, M. L. Laukkanen, K. Keinanen, and M. Aizawa, Analytical Chemistry 70, 260-264 (1998).PubMedGoogle Scholar
  102. 102.
    F. Aberl, H. Wolf, C. Kosslinger, S. Drost, P. Woias, and S. Koch, Sensors and Actuators B-Chemical 18, 271-275 (1994).Google Scholar
  103. 103.
    C. Kosslinger, S. Drost, F. Aberl, H. Wolf, S. Koch, and P. Woias, Biosensors & Bioelectronics 7, 397-404 (1992).Google Scholar
  104. 104.
    G. G. Guilbault, B. Hock, and R. Schmid, Biosensors & Bioelectronics 7, 411-419 (1992).Google Scholar
  105. 105.
    M. Plomer, G. G. Guilbault, and B. Hock, Enzyme and Microbial Technology 14, 230-235 (1992).PubMedGoogle Scholar
  106. 106.
    B. S. Attili and A. A. Suleiman, Microchemical Journal 54, 174-179 (1996).Google Scholar
  107. 107.
    B. S. Attili and A. A. Suleiman, Analytical Letters 28, 2149-2159 (1995).PubMedGoogle Scholar
  108. 108.
    A. L. Ghindilis, P. Atanasov, M. Wilkins, and E. Wilkins, Biosensors & Bioelectronics 13, 113-131 (1998).Google Scholar
  109. 109.
    E. Katz and I. Willner, Electroanalysis 15, 913-947 (2003).Google Scholar
  110. 110.
    A. Brecht, J. Piehler, G. Lang, and G. Gauglitz, Analytica Chimica Acta 311, 289-299 (1995).Google Scholar
  111. 111.
    D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins, Biosensors & Bioelectronics 14, 599-624 (1999).Google Scholar
  112. 112.
    P. B. Luppa, L. J. Sokoll, and D. W. Chan, Clinica Chimica Acta 314, 1-26 (2001).Google Scholar
  113. 113.
    W. Lukosz, Sensors and Actuators B-Chemical 29, 37-50 (1995).Google Scholar
  114. 114.
    J. Homola, Analytical and Bioanalytical Chemistry 377, 528-539 (2003).PubMedGoogle Scholar
  115. 115.
    M. Minunni and M. Mascini, Analytical Letters 26, 1441-1460 (1993).Google Scholar
  116. 116.
    J. Homola, J. Dostalek, S. F. Chen, A. Rasooly, S. Y. Jiang, and S. S.Yee, International Journal of Food Microbiology 75, 61-69 (2002).PubMedGoogle Scholar
  117. 117.
    H. Zhang, K. B. Lee, Z. Li, and C. A. Mirkin, Nanotechnology 14, 1113-1117 (2003).Google Scholar
  118. 118.
    R. Wilson and A. P. F. Turner, Biosensors & Bioelectronics 7, 165-185 (1992).Google Scholar
  119. 119.
    J. G. Zhao, J. P. Odaly, R. W. Henkens, J. Stonehuerner, and A. L. Crumbliss, Biosensors & Bioelectronics 11, 493-502 (1996).Google Scholar
  120. 120.
    C. M. Niemeyer and C. A. Mirkin, Nanobiotechnology: Concepts, Applications and Perspectives (Wiley-VCH, Dortmund, Germany, 2004).Google Scholar
  121. 121.
    M. L. Curri, A. Agostiano, G. Leo, A. Mallardi, P. Cosma, and M. Della Monica, Materials Science & Engineering C-Biomimetic and Supramolecular Systems 22, 449-452 (2002).Google Scholar
  122. 122.
    D. Oliver, D. Z. Z. He, N. Klocker, J. Ludwig, U. Schulte, S. Waldegger, J. P. Ruppersberg, P. Dallos, and B. Fakler, Science 292, 2340-2343 (2001).PubMedGoogle Scholar
  123. 123.
    L. Muhua, N. R. Adames, M. D. Murphy, C. R. Shields, and J. A. Cooper, Nature 393, 487-491 (1998).PubMedGoogle Scholar
  124. 124.
    H. A. Fishman, D. R. Greenwald, and R. N. Zare, Annual Review of Biophysics and Biomolecular Structure 27, 165-198 (1998).PubMedGoogle Scholar
  125. 125.
    H. Bayley, O. Braha, and L. Q. Gu, Advanced Materials 12, 139-142 (2000).Google Scholar
  126. 126.
    H. Bayley and C. R. Martin, Chemical Reviews 100, 2575-2594 (2000).PubMedGoogle Scholar
  127. 127.
    O. P. Hamill, A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth, Pflugers Archiv-European Journal of Physiology 391, 85-100 (1981).PubMedGoogle Scholar
  128. 128.
    E. Neher and B. Sakmann, Nature 260, 799-802 (1976).PubMedGoogle Scholar
  129. 129.
    B. A. Cornell, V. L. B. BraachMaksvytis, L. G. King, P. D. J. Osman, B. Raguse, L. Wieczorek, and R. J. Pace, Nature 387, 580-583 (1997).PubMedGoogle Scholar
  130. 130.
    K. S. Akerfeldt, J. D. Lear, Z. R. Wasserman, L. A. Chung, and W. F. Degrado, Accounts of Chemical Research 26, 191-197 (1993).Google Scholar
  131. 131.
    A. Grove, J. M. Tomich, T. Iwamoto, and M. Montal, Protein Science 2, 1918-1930 (1993).PubMedGoogle Scholar
  132. 132.
    M. Pawlak, U. Meseth, B. Dhanapal, M. Mutter, and H. Vogel, Protein Science 3, 1788-1805 (1994).PubMedGoogle Scholar
  133. 133.
    S. Cheley, G. Braha, X. F. Lu, S. Conlan, and H. Bayley, Protein Science 8, 1257-1267 (1999).PubMedGoogle Scholar
  134. 134.
    A. J. Wallace, T. J. Stillman, A. Atkins, S. J. Jamieson, P. A. Bullough, J. Green, and P. J. Artymiuk, Cell 100, 265-276 (2000).PubMedGoogle Scholar
  135. 135.
    M. J. Heller, Annual Review of Biomedical Engineering 4, 129-153 (2002).PubMedGoogle Scholar
  136. 136.
    G. H. W. Sanders and A. Manz, TRAC-TRENDS IN ANALYTICAL CHEMISTRY 19 364-378 (2000).Google Scholar
  137. 137.
    J. Wang, Chemistry-a European Journal 5, 1681-1685 (1999).Google Scholar
  138. 138.
    H. KorriYoussoufi, F. Garnier, P. Srivastava, P. Godillot, and A. Yassar, Journal of the American Chemical Society 119, 7388-7389 (1997).Google Scholar
  139. 139.
    J. Wang, X. H. Cai, G. Rivas, H. Shiraishi, P. A. M. Farias, and N. Dontha, Analytical Chemistry 68, 2629-2634 (1996).PubMedGoogle Scholar
  140. 140.
    K. Hashimoto, K. Ito, and Y. Ishimori, Analytica Chimica Acta 286, 219-224 (1994).Google Scholar
  141. 141.
    T. S. Snowden and E. V. Anslyn, Current Opinion in Chemical Biology 3, 740-746 (1999).PubMedGoogle Scholar
  142. 142.
    V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, Science 278, 840-843 (1997).PubMedGoogle Scholar
  143. 143.
    P. A. E. Piunno, U. J. Krull, R. H. E. Hudson, M. J. Damha, and H. Cohen, Analytical Chemistry 67, 2635-2643 (1995).PubMedGoogle Scholar
  144. 144.
    S. Tombelli, R. Mascini, L. Braccini, M. Anichini, and A. P. F. Turner, Biosensors & Bioelectronics 15, 363-370 (2000).Google Scholar
  145. 145.
    R. F. Service, Science 298, 2322-2323 (2002).PubMedGoogle Scholar
  146. 146.
    C. M. Niemeyer, Chemistry-a European Journal 7, 3189-3195 (2001).Google Scholar
  147. 147.
    C. M. Niemeyer, M. Adler, B. Pignataro, S. Lenhert, S. Gao, L. F. Chi, H. Fuchs, and D. Blohm, Nucleic Acids Research 27, 4553-4561 (1999).PubMedGoogle Scholar
  148. 148.
    T. Sano, C. L. Smith, and C. R. Cantor, Science 258, 120-122 (1992).PubMedGoogle Scholar
  149. 149.
    C. M. Niemeyer, W. Burger, and R. M. J. Hoedemakers, Bioconjugate Chemistry 9, 168-175 (1998).PubMedGoogle Scholar
  150. 150.
    C. M. Niemeyer, B. Ceyhan, and D. Blohm, Bioconjugate Chemistry 10, 708-719 (1999).PubMedGoogle Scholar
  151. 151.
    C. M. Niemeyer, M. Adler, S. Gao, and L. F. Chi, Angewandte Chemie-International Edition 39, 3055-3059 (2000).Google Scholar
  152. 152.
    C. M. Niemeyer, R. Wacker, and M. Adler, Angewandte Chemie-International Edition 40, 3169-+ (2001).Google Scholar
  153. 153.
    R. F. Service, Science 277, 1036-1037 (1997).PubMedGoogle Scholar
  154. 154.
    R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, Science 277, 1078-1081 (1997).PubMedGoogle Scholar
  155. 155.
    K. A. Williams, P. T. M. Veenhuizen, B. G. de la Torre, R. Eritja, and C. Dekker, Nature 420, 761-761 (2002).PubMedGoogle Scholar
  156. 156.
    K. Hamad-Schifferli, J. J. Schwartz, A. T. Santos, S. G. Zhang, and J. M. Jacobson, Nature 415, 152-155 (2002).PubMedGoogle Scholar
  157. 157.
    L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, Journal of the American Chemical Society 122, 9071-9077 (2000).Google Scholar
  158. 158.
    C. M. Niemeyer, Angewandte Chemie-International Edition 40, 4128-4158 (2001).Google Scholar
  159. 159.
    J. M. Warman, M. P. deHaas, and A. Rupprecht, Chemical Physics Letters 249, 319-322 (1996).Google Scholar
  160. 160.
    S. O. Kelley and J. K. Barton, Science 283, 375-381 (1999).PubMedGoogle Scholar
  161. 161.
    E. Meggers, M. E. Michel-Beyerle, and B. Giese, Journal of the American Chemical Society 120, 12950-12955 (1998).Google Scholar
  162. 162.
    W. Zhang, A. O. Govorov, and S. E. Ulloa, Physical Review B 66 (2002).Google Scholar
  163. 163.
    D. Ramaduraic, Y. Li, T. Yamanakaa, D. Geerpuramc, V. Sankara, M.Vasudevc, D. Alexsona, P. Shic, M. Dutta, M. A. Stroscioa, T.Rajhd, Z. Saponjicd, N. Kotove, Z. Tange, and S. Xuf, in SPIE conference on Quantum Sensing and Nanophotonic Devices III (SPIE, 2006).Google Scholar
  164. 164.
    A. Y. Kasumov, M. Kociak, S. Gueron, B. Reulet, V. T. Volkov, D. V. Klinov, and H. Bouchiat, Science 291, 280-282 (2001).PubMedGoogle Scholar
  165. 165.
    J. H. Xu, J. J. Zhu, Y. L. Zhu, K. Gu, and H. Y. Chen, Analytical Letters 34, 503-512 (2001).Google Scholar
  166. 166.
    C. Y. Tsai, T. L. Chang, C. C. Chen, F. H. Ko, and P. H. Chen, Microelectronic Engineering 78-79, 546-555 (2005).Google Scholar
  167. 167.
    M. Rhee and M. A. Burns, Trends in Biotechnology 25, 174-181 (2007).PubMedGoogle Scholar
  168. 168.
    L. Z. Song, M. R. Hobaugh, C. Shustak, S. Cheley, H. Bayley, and J. E. Gouaux, Science 274, 1859-1866 (1996).PubMedGoogle Scholar
  169. 169.
    M. Akeson, D. Branton, J. J. Kasianowicz, E. Brandin, and D. W. Deamer, Biophysical Journal 77, 3227-3233 (1999).PubMedGoogle Scholar
  170. 170.
    F. Vogtle, S. Gestermann, R. Hesse, H. Schwierz, and B. Windisch, Progress in Polymer Science 25, 987-1041 (2000).Google Scholar
  171. 171.
    K. Inoue, Progress in Polymer Science 25, 453-571 (2000).Google Scholar
  172. 172.
    O. A. Matthews, A. N. Shipway, and J. F. Stoddart, Progress in Polymer Science 23, 1-56 (1998).Google Scholar
  173. 173.
    D. A. Tomalia, Advanced Materials 6, 529-539 (1994).Google Scholar
  174. 174.
    D. C. Tully and J. M. J. Frechet, Chemical Communications, 1229-1239 (2001).Google Scholar
  175. 175.
    N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Mullen, A. Yasuda, and T. Vossmeyer, Nano Letters 2, 551-555 (2002).Google Scholar
  176. 176.
    J. J. Davis, K. S. Coleman, B. R. Azamian, C. B. Bagshaw, and M. L. H. Green, Chemistry-a European Journal 9, 3732-3739 (2003).Google Scholar
  177. 177.
    V. Balzani, P. Ceroni, M. Maestri, C. Saudan, and V. Vicinelli, in Dendrimers V: Functional and Hyperbranched Building Blocks, Photophysical Properties, Applications in Materials and Life Sciences;Vol. 228 (2003), p. 159-191.Google Scholar
  178. 178.
    L. Z. Gong, Q. S. Hu, and L. Pu, Journal of Organic Chemistry 66, 2358-2367 (2001).PubMedGoogle Scholar
  179. 179.
    V. J. Pugh, Q. S. Hu, X. B. Zuo, F. D. Lewis, and L. Pu, Journal of Organic Chemistry 66, 6136-6140 (2001).PubMedGoogle Scholar
  180. 180.
    H. Qian and B. E. Shapiro, Proteins-Structure Function and Genetics 37, 576-581 (1999).Google Scholar
  181. 181.
    M. Guthold, X. S. Zhu, C. Rivetti, G. L. Yang, N. H. Thomson, S. Kasas, H. G. Hansma, B. Smith, P. K. Hansma, and C. Bustamante, Biophysical Journal 77, 2284-2294 (1999).PubMedGoogle Scholar
  182. 182.
    D. Schuler and R. B. Frankel, Applied Microbiology and Biotechnology 52, 464-473 (1999).PubMedGoogle Scholar
  183. 183.
    I. M. Hsing, Y. Xu, and W. T. Zhao, Electroanalysis 19, 755-768 (2007).Google Scholar
  184. 184.
    J. Wang and A. N. Kawde, Electrochemistry Communications 4, 349-352 (2002).Google Scholar
  185. 185.
    J. Wang, D. K. Xu, and R. Polsky, Journal of the American Chemical Society 124, 4208-4209 (2002).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations