Inorganic Nanotechnology Enabled Sensors

When the sizes of materials are reduced in one or more dimensions their physical and chemical properties can change dramatically. These changes affect their electromagnetic (electronic, magnetic, dielectric, etc), mechanical (lattice dynamics, mechanical strength, etc.), thermal (Seebeck coefficient, thermal resistance, etc.), optical (Stokes shift, resonance, etc.) and chemical properties (chemoluminescence, surface funtionalization, etc.). Furthermore, in materials with one or more nanoscale dimensions, these properties can be purposefully engineered, enhancing and tailoring the performance of sensors developed with these novel materials.


Localize Surface Plasmon Resonance Spin Valve Elsevier Publication Sensitive Layer Mass Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. K. Guthrie, T. K. Gaylord, and E. N. Glytsis, Ieee Transactions on Education 39, 465-470 (1996).Google Scholar
  2. 2.
    M. A. Omar, Elemenatary Solid State Physics (Addison Wesley, Massachusetts, USA, 1993 ).Google Scholar
  3. 3.
    C. Kittel, Introduction to Solid State Physics, Eight edition ed. ( John Wiley & Sons, New York, USA, 2005).Google Scholar
  4. 4.
    B. J. Vanwees, H. Vanhouten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. Vandermarel, and C. T. Foxon, Physical Review Letters 60, 848-850 (1988).Google Scholar
  5. 5.
    D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, Journal of Physics C-Solid State Physics 21, L209-L214 (1988).Google Scholar
  6. 6.
    A. R. Leach, Molecular modelling principles & applications (Addison Wesley Publishing Company USA, 1997).Google Scholar
  7. 7.
    Z. M. Du and N. H. de Leeuw, Surface Science 554, 193-210 (2004).Google Scholar
  8. 8.
    Z. L. Wang, Annual Review of Physical Chemistry 55, 159-196 (2004).PubMedGoogle Scholar
  9. 9.
    Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947-1949 (2001).PubMedGoogle Scholar
  10. 10.
    M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, Journal of Physical Chemistry B 107, 659-663 (2003).Google Scholar
  11. 11.
    Y. Cui and C. M. Lieber, Science 291, 851-853 (2001).PubMedGoogle Scholar
  12. 12.
    P. C. Collins, M. S. Arnold, and P. Avouris, Science 292, 706-709 (2001).PubMedGoogle Scholar
  13. 13.
    P. Avouris, Chemical Physics 281, 429-445 (2002).Google Scholar
  14. 14.
    J. T. Hu, O. Y. Min, P. D. Yang, and C. M. Lieber, Nature 399, 48-51 (1999).Google Scholar
  15. 15.
    H. J. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, Nature 384, 147-150 (1996).Google Scholar
  16. 16.
    M. Brandbyge, J. Schiotz, M. R. Sorensen, P. Stoltze, K. W. Jacobsen, J. K. Norskov, L. Olesen, E. Laegsgaard, I. Stensgaard, and F. Besenbacher, Physical Review B 52, 8499-8514 (1995).Google Scholar
  17. 17.
    Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, Applied Physics Letters 85, 6389-6391 (2004).Google Scholar
  18. 18.
    E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan, and Z. L. Wang, Applied Physics Letters 81, 1869-1871 (2002).Google Scholar
  19. 19.
    E. Comini, M. Ferroni, V. Guidi, G. Faglia, G. Martinelli, and G. Sberveglieri, Sensors and Actuators B-Chemical 84, 26-32 (2002).Google Scholar
  20. 20.
    N. Yamazoe and N. Miura, Sensors and Actuators B-Chemical 20, 95-102 (1994).Google Scholar
  21. 21.
    E. Comini, G. Faglia, G. Sberveglieri, D. Calestani, L. Zanotti, and M. Zha, Sensors and Actuators B-Chemical 111, 2-6 (2005).Google Scholar
  22. 22.
    C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, Sensors and Actuators B-Chemical 109, 2-6 (2005).Google Scholar
  23. 23.
    S. J. Ippolito, A. Ponzoni, K. Kalantar-Zadeh, W. Wlodarski, E. Comini, G. Faglia, and G. Sberveglieri, Sensors and Actuators BChemical 117, 442-450 (2006).Google Scholar
  24. 24.
    S. J. Ippolito, S. Kandasamy, K. Kalantar-Zadeh, A. Trinchi, and W. Wlodarski, Sensor Letters 1, 33-36 (2003).Google Scholar
  25. 25.
    W. Y. Chung and J. W. Lim, Current Applied Physics 3, 413-416 (2003).Google Scholar
  26. 26.
    D. S. Lee, Y. T. Kim, J. S. Huh, and D. D. Lee, Thin Solid Films 416, 271-278 (2002).Google Scholar
  27. 27.
    D. S. Lee, J. K. Jung, J. W. Lim, J. S. Huh, and D. D. Lee, Sensors and Actuators B-Chemical 77, 228-236 (2001).Google Scholar
  28. 28.
    G. Korotcenkov, Sensors and Actuators B-Chemical 107, 209-232 (2005).Google Scholar
  29. 29.
    A. Gross, Theoretical Surface Science - A microscopic Perspective (Springer, Berlin, 2002).Google Scholar
  30. 30.
    N. D. Lang and A. R. Williams, Physical Review B 18, 616-636 (1978).Google Scholar
  31. 31.
    W. Gopel and K. D. Schierbaum, Sensors and Actuators B-Chemical 26, 1-12 (1995).Google Scholar
  32. 32.
    N. Barsan and U. Weimar, Journal of Electroceramics 7, 143-167 (2001).Google Scholar
  33. 33.
    N. Barsan, D. Koziej, and U. Weimar, Sensors and Actuators BChemical 121, 18-35 (2007).Google Scholar
  34. 34.
    T. Sahm, A. Gurlo, N. Barsan, and U. Weimar, Sensors and Actuators B-Chemical 118, 78-83 (2006).Google Scholar
  35. 35.
    G. K. Reeves and H. B. Harrison, Electron Device Letters 3, 111-113 (1982).Google Scholar
  36. 36.
    U. Hoefer, K. Steiner, and E. Wagner, Sensors and Actuators BChemical 26, 59-63 (1995).Google Scholar
  37. 37.
    E. Comini, Analytica Chimica Acta 568, 28-40 (2006).PubMedGoogle Scholar
  38. 38.
    V. Brinzari, G. Korotcenkov, and V. Golovanov, Thin Solid Films 391, 167-175 (2001).Google Scholar
  39. 39.
    G. Korotcenkov, A. Cornet, E. Rossinyol, J. Arbiol, V. Brinzari, and Y. Blinov, Thin Solid Films 471, 310-319 (2005).Google Scholar
  40. 40.
    G. Korotcenkov, I. Boris, V. Brinzari, V. Golovanov, Y. Lychkovsky, G. Karkotsky, A. Cornet, E. Rossinyol, J. Rodrigue, and A. Cirera, Sensors and Actuators B-Chemical 103, 13-22 (2004). 108, 263-270 (2003).Google Scholar
  41. 45.
    Y. X. Li, A. Trinchi, W. Wlodarski, K. Galatsis, and K. Kalantarzadeh, Sensors and Actuators B-Chemical 93, 431-434 (2003).Google Scholar
  42. 46.
    K. Galatsis, Y. Li, W. Wlodarski, C. Cantalini, M. Passacantando, and S. Santucci, Journal of Sol-Gel Science and Technology 26, 1097-1101 (2003).Google Scholar
  43. 47.
    Y. X. Li, W. Wlodarski, K. Galatsis, S. H. Moslih, J. Cole, S. Russo, and N. Rockelmann, Sensors and Actuators B-Chemical 83, 160-163 (2002).Google Scholar
  44. 48.
    K. Galatsis, Y. X. Li, W. Wlodarski, E. Comini, G. Sberveglieri, C. Cantalini, S. Santucci, and M. Passacantando, Sensors and Actuators B-Chemical 83, 276-280 (2002).Google Scholar
  45. 49.
    Y. X. Li, K. Galatsis, W. Wlodarski, M. Passacantando, S. Santucci, P. Siciliano, and M. Catalano, Sensors and Actuators B-Chemical 77, 27-34 (2001).Google Scholar
  46. 50.
    K. Galatsis, Y. X. Li, W. Wlodarski, and K. Kalantar-zadeh, Sensors and Actuators B-Chemical 77, 478-483 (2001).Google Scholar
  47. 51.
    E. Comini, G. Faglia, G. Sberveglieri, Y. X. Li, W. Wlodarski, and M. K. Ghantasala, Sensors and Actuators B-Chemical 64, 169-174 (2000).Google Scholar
  48. 52.
    M. Z. Atashbar, H. T. Sun, B. Gong, W. Wlodarski, and R. Lamb, Thin Solid Films 326, 238-244 (1998).Google Scholar
  49. 53.
    H. Gleiter, NanoStructured Materials 1 1-19 (1992 ).Google Scholar
  50. 54.
    D. Szczuko, J. Werner, S. Oswald, G. Behr, and K. Wetzig, Applied Surface Science 179, 301-306 (2001).Google Scholar
  51. 55.
    D. Szczuko, J. Werner, G. Behr, S. Oswald, and K. Wetzig, Surface and Interface Analysis 31, 484-491 (2001).Google Scholar
  52. 56.
    H. Meixner and U. Lampe, Sensors and Actuators B-Chemical 33, 198-202 (1996).Google Scholar
  53. 57.
    W. Fliegel, G. Behr, J. Werner, and G. Krabbes, Sensors and Actuators B-Chemical 19, 474-477 (1994).Google Scholar
  54. 58.
    D. E. Williams and K. F. E. Pratt, Journal of the Chemical Society-Faraday Transactions 94, 3493-3500 (1998).Google Scholar
  55. 59.
    N. Barsan, M. Schweizer-Berberich, and W. Gopel, Fresenius Journal of Analytical Chemistry 365, 287-304 (1999).Google Scholar
  56. 60.
    G. Korotcenkov, V. Macsanov, V. Brinzari, V. Tolstoy, J. Schwank, A. Cornet, and J. Morante, Thin Solid Films 467, 209-214 (2004).Google Scholar
  57. 61.
    G. Korotcenkov, V. Brinzari, Y. Boris, M. Ivanova, J. Schwank, and J. Morante, Thin Solid Films 436, 119-126 (2003).Google Scholar
  58. 62.
    N. Tsud, V. Johanek, I. Stara, K. Veltruska, and V. Matolin, Thin Solid Films 391, 204-208 (2001).Google Scholar
  59. 63.
    J. F. McAleer, P. T. Moseley, J. O. W. Norris, D. E. Williams, and B. C. Tofield, Journal of the Chemical Society-Faraday Transactions I 84, 441-457 (1988).Google Scholar
  60. 64.
    A. El-Azab, S. Gan, and Y. Liang, Surface Science 506, 93-104 (2002).Google Scholar
  61. 65.
    E. A. Symons, Catalytic Gas Sensors (Kluwer Academic Publishers, The Netherlands, 1992).Google Scholar
  62. 66.
    G. Korotcenkov, V. Brinzari, M. Ivanov, A. Cerneavschi, J. Rodriguez, A. Cirera, A. Cornet, and J. Morante, Thin Solid Films 479, 38-51 (2005).Google Scholar
  63. 67.
    A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, Science 275, 187-191 (1997).PubMedGoogle Scholar
  64. 68.
    R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, Chemical Physics Letters 209, 77-82 (1993).Google Scholar
  65. 69.
    K. Barnham and D. Vvedensky, Low Dimensional Semiconductor Structures Fundamentals and Device Applications (Cambridge Univesity Press, Cambridge, UK, 2001).Google Scholar
  66. 70.
    J. Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Ustunel, S. Braig, T. A. Arias, P. W. Brouwer, and P. L. McEuen, Nano Letters 4, 517-520 (2004).Google Scholar
  67. 71.
    C. L. Kane, E. J. Mele, R. S. Lee, J. E. Fischer, P. Petit, H. Dai, A. Thess, R. E. Smalley, A. R. M. Verschueren, S. J. Tans, and C. Dekker, Europhysics Letters 41, 683-688 (1998).Google Scholar
  68. 72.
    Z. Yao, C. L. Kane, and C. Dekker, Physical Review Letters 84, 2941-2944 (2000).PubMedGoogle Scholar
  69. 73.
    M. A. Stroscio, M. Dutta, S. Rufo, and J. Y. Yang, Ieee Transactions on Nanotechnology 3, 32-36 (2004).Google Scholar
  70. 74.
    K. Baernham and D. Vvedensky, Low Dimensional Semiconductor Structures Fundamentals and Device Applications (Cambridge Univesity Press, Cambridge, UK, 2001).Google Scholar
  71. 75.
    D. McKitterick, A. Shik, A. J. Kent, and M. Henini, Physical Review B 49, 2585-2594 (1994).Google Scholar
  72. 76.
    A. G. Kozorezov, T. Miyasato, and J. K. Wigmore, Journal of Physics-Condensed Matter 8, 1-14 (1996).Google Scholar
  73. 77.
    M. Cardona and G. Guntherodt, Light Scattering in Solids V (Springer-Verlag, Heidelberg, 1989).Google Scholar
  74. 78.
    P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. de Heer, Science 283, 1513-1516 (1999).PubMedGoogle Scholar
  75. 79.
    X. D. Wang, J. Zhou, J. H. Song, J. Liu, N. S. Xu, and Z. L. Wang, Nano Letters 6, 2768-2772 (2006).PubMedGoogle Scholar
  76. 80.
    V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, Nature 431, 284-287 (2004).PubMedGoogle Scholar
  77. 81.
    S. Chopra, K. McGuire, N. Gothard, A. M. Rao, and A. Pham, Applied Physics Letters 83, 2280-2282 (2003).Google Scholar
  78. 82.
    M. P. Blencowe, Contemporary Physics 46, 249-264 (2005).Google Scholar
  79. 83.
    M. A. Haque and M. T. A. Saif, Sensors and Actuators a-Physical 97-8, 239-245 (2002).Google Scholar
  80. 84.
    H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, and P. L. McEuen, Nature 407, 57-60 (2000).PubMedGoogle Scholar
  81. 85.
    M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, New York, 1996).Google Scholar
  82. 86.
    R. S. Ruoff and A. P. Hickman, Journal of Physical Chemistry 97, 2494-2496 (1993).Google Scholar
  83. 87.
    C. Y. Li and T. W. Chou, Nanotechnology 15, 1493-1496 (2004).Google Scholar
  84. 88.
    K. L. Ekinci, X. M. H. Huang, and M. L. Roukes, Applied Physics Letters 84, 4469-4471 (2004).Google Scholar
  85. 89.
    A. H. Chokshi, A. Rosen, J. Karch, and H. Gleiter, Scripta Metallurgica 23, 1679-1683 (1989).Google Scholar
  86. 90.
    S. C. Tjong and H. Chen, Materials Science & Engineering R-Reports 45, 1-88 (2004).Google Scholar
  87. 91.
    A. M. Elsherik, U. Erb, G. Palumbo, and K. T. Aust, Scripta Metallurgica Et Materialia 27, 1185-1188 (1992).Google Scholar
  88. 92.
    C. Forster, V. Cimalla, K. Bruckner, M. Hein, J. Pezoldt, and O. Ambacher, Materials Science & Engineering C-Biomimetic and Supramolecular Systems 25, 804-808 (2005).Google Scholar
  89. 93.
    T. Toriyama, Y. Tanimoto, and S. Sugiyama, Journal of Microelectromechanical Systems 11, 605-611 (2002).Google Scholar
  90. 94.
    L. T. Canham, Applied Physics Letters 57, 1046-1048 (1990).Google Scholar
  91. 95.
    J. M. Lauerhaas, G. M. Credo, J. L. Heinrich, and M. J. Sailor, Journal of the American Chemical Society 114, 1911-1912 (1992).Google Scholar
  92. 96.
    J. J. Shi, Y. F. Zhu, X. R. Zhang, W. R. G. Baeyens, and A. M. Garcia-Campana, Trac-Trends in Analytical Chemistry 23, 351-360 (2004).Google Scholar
  93. 97.
    M. S. Butler and J. A. Piper, Applied Physics Letters 45, 707-709 (1984).Google Scholar
  94. 98.
    G. Gauglitz and W. Nahm, Fresenius Journal of Analytical Chemistry 341, 279-283 (1991).Google Scholar
  95. 99.
    V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, Science 278, 840-843 (1997).PubMedGoogle Scholar
  96. 100.
    M. Breysse, B. Claudel, L. Faure, M. Guenin, R. J. J. Williams, and T. Wolkenstein, Journal of Catalysis 45, 137-144 (1976).Google Scholar
  97. 101.
    P. McCord, S. L. Yau, and A. J. Bard, Science 257, 68-69 (1992).PubMedGoogle Scholar
  98. 102.
    P. Bonasewicz, W. Hirschwald, and G. Neumann, Journal of the Electrochemical Society 133, 2270-2278 (1986).Google Scholar
  99. 103.
    G. Mie, Leipzig, Ann. Phys. 330, 377-445 (1908).Google Scholar
  100. 104.
    K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, Journal of Physical Chemistry B 107, 668-677 (2003).Google Scholar
  101. 105.
    P. Mulvaney, Langmuir 12, 788-800 (1996).Google Scholar
  102. 106.
    S. Link and M. A. El-Sayed, Journal of Physical Chemistry B 103, 4212-4217 (1999).Google Scholar
  103. 107.
    U. Kreibig, Journal of Physics F-Metal Physics 4, 999-1014 (1974).Google Scholar
  104. 108.
    B. N. J. Persson, Surface Science 281, 153-162 (1993).Google Scholar
  105. 109.
    J. A. Creighton and D. G. Eadon, Journal of the Chemical Society-Faraday Transactions 87, 3881-3891 (1991).Google Scholar
  106. 110.
    U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters;(Springer, Berlin, Germany, 1995).Google Scholar
  107. 111.
    A. P. Alivisatos, Science 271, 933-937 (1996).Google Scholar
  108. 112.
    J. J. Mock, D. R. Smith, and S. Schultz, Nano Letters 3, 485-491 (2003).Google Scholar
  109. 113.
    A. D. McFarland and R. P. Van Duyne, Nano Letters 3, 1057-1062 (2003).Google Scholar
  110. 114.
    S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488-1495 (2001).PubMedGoogle Scholar
  111. 115.
    S. Parkin, X. Jiang, C. Kaiser, A. Panchula, K. Roche, and M. Samant, Proceedings of the Ieee 91, 661-680 (2003).Google Scholar
  112. 116.
    G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Physical Review B 39, 4828-4830 (1989).Google Scholar
  113. 117.
    M. N. Baibich, J. M. Broto, A. Fert, F. N. Vandau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Physical Review Letters 61, 2472-2475 (1988).PubMedGoogle Scholar
  114. 118.
    S. S. P. Parkin, R. Bhadra, and K. P. Roche, Physical Review Letters 66, 2152-2155 (1991).PubMedGoogle Scholar
  115. 119.
    S. S. P. Parkin, Annual Review of Materials Science 25, 357-388 (1995).Google Scholar
  116. 120.
    N. F. Mott and H. Jones, Theory of the Properties of Metals and Alloys (Oxford University Press, London, UK, 1936).Google Scholar
  117. 121.
    D. M. Edwards, J. Mathon, and R. B. Muniz, Ieee Transactions on Magnetics 27, 3548-3552 (1991).Google Scholar
  118. 122.
    S. S. P. Parkin, Z. G. Li, and D. J. Smith, Applied Physics Letters 58, 2710-2712 (1991).Google Scholar
  119. 123.
    S. S. P. Parkin, Physical Review Letters 71, 1641-1644 (1993).PubMedGoogle Scholar
  120. 124.
    S. S. P. Parkin, A. Modak, and D. J. Smith, Physical Review B 47, 9136-9139 (1993).Google Scholar
  121. 125.
    A. P. Ramirez, R. J. Cava, and J. Krajewski, Nature 386, 156-159 (1997).Google Scholar
  122. 126.
    S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science 264, 413-415 (1994).PubMedGoogle Scholar
  123. 127.
    J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Physical Review Letters 74, 3273-3276 (1995).PubMedGoogle Scholar
  124. 128.
    W. F. Egelhoff, P. J. Chen, C. J. Powell, M. D. Stiles, R. D. McMichael, C. L. Lin, J. M. Sivertsen, J. H. Judy, K. Takano, A. E. Berkowitz, T. C. Anthony, and J. A. Brug, Journal of Applied Physics 79, 5277-5281 (1996).Google Scholar
  125. 129.
    S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O'Sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, Journal of Applied Physics 85, 5828-5833 (1999).Google Scholar
  126. 130.
    M. Julliere, Physics Letters A 54, 225-226 (1975).Google Scholar
  127. 131.
    M. Vazquez and C. GomezPolo, Journal of the Korean Physical Society 31, 471-476 (1997).Google Scholar
  128. 132.
    A. Punnoose, K. M. Reddy, A. Thurber, J. Hays, and M. H. Engelhard, Nanotechnology 18 (2007).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations