Skip to main content

Characterization Techniques for Nanomaterials

  • Chapter
Nanotechnology-Enabled Sensors

In the previous chapter, methods for the synthesis of nanomaterials and the fabrication of the nanotechnology enabled sensors were presented. Along with the synthesis and fabrication processes, the nanomaterials utilized in the sensors need to be characterized to assess their physical and chemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. J. Strickler, in Encyclopedia of Chemical Physics and Physical Chemistry; Vol. 2, edited by J. H. Moore and N. D. Spencer (Inst of Physics Pub Inc, Bristol, UK, 2002).

    Google Scholar 

  2. D. A. Skoog, D. M. West, and F. J. Holler, Fundamentals of Analytical Chemistry,5th ed.(Saunders College Publishing, New York, USA, 1988).

    Google Scholar 

  3. J. Coates, in Encyclopedia of Analytical Chemistry, edited by R. A. Meyers (John Wiley & Sons Ltd., Chichester, UK, 2000), p. 10815-10837.

    Google Scholar 

  4. B. J. Clark, T. Frost, and M. A. Russell, UV spectroscopy: techniques, instrumentation, data handling (Chapman & Hall, London, UK, 1993).

    Google Scholar 

  5. H.-H. Perkampus, UV-VIS spectroscopy and its applications (Springer- Verlag, Berlin, Germany, 1992).

    Google Scholar 

  6. P. W. Atkins and J. de Paula, Atkins’ Physical Chemistry, 7th ed. (Oxford University Press, New York, USA, 2002).

    Google Scholar 

  7. P. W. Atkins and R. S. Friedman, Molecular Quantum Mechanics, 3rd ed. (Oxford University Press, New York, USA, 1997).

    Google Scholar 

  8. C. K. Mann, T. J. Vickers, and W. M. Gulick, Instrumental analysis (Harper & Row, New York, USA, 1974).

    Google Scholar 

  9. X. Michalet, F. Pinaud, T. D. Lacoste, M. Dahan, M. P. Bruchez, A. P. Alivisatos, and S. Weiss, Single Molecules 2, 261-276 (2001).

    CAS  Google Scholar 

  10. A. D. Yoffe, Advances in Physics 50, 1-208 (2001).

    CAS  Google Scholar 

  11. A. P. Alivisatos, Science 271, 933-937 (1996).

    CAS  Google Scholar 

  12. J. H. Park, J. Y. Kim, B. D. Chin, Y. C. Kim, J. K. Kim, and O. O. Park, Nanotechnology 15, 1217-1220 (2004).

    CAS  Google Scholar 

  13. N. Venkatram, D. N. Rao, and M. A. Akundi, Optics Express 13, 867-872 (2005).

    CAS  PubMed  Google Scholar 

  14. R. Viswanatha, S. Sapra, B. Satpati, P. V. Satyam, B. N. Dev, and D. D. Sarma, Journal of Materials Chemistry 14, 661-668 (2004).

    CAS  Google Scholar 

  15. D. A. Skoog and J. J. Leary, Principles of Instrumental Analysis, 4th ed. (Saunders College Publishing, Orlando, USA, 1992).

    Google Scholar 

  16. T. H. Gfroerer, in Encyclopedia of Analytical Chemistry, edited by R. A. Meyers (John Wiley & Sons Ltd., Chichester, UK, 2000), p. 9209-9231.

    Google Scholar 

  17. E. N. Harvey, A History of Luminescence (American Philosophical Society, Philadelphia, USA, 1957).

    Google Scholar 

  18. L. H. Qu and X. G. Peng, Journal of the American Chemical Society 124, 2049-2055 (2002).

    CAS  PubMed  Google Scholar 

  19. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Sci- ence 281, 2013-2016 (1998).

    CAS  Google Scholar 

  20. W. C. W. Chan and S. M. Nie, Science 281, 2016-2018 (1998).

    CAS  PubMed  Google Scholar 

  21. M. A. Hines and P. Guyot-Sionnest, Journal of Physical Chemistry B 102, 3655-3657 (1998).

    CAS  Google Scholar 

  22. A. A. Guzelian, U. Banin, A. V. Kadavanich, X. Peng, and A. P. Alivisatos, Applied Physics Letters 69, 1432-1434 (1996).

    CAS  Google Scholar 

  23. L. Prodi, F. Bolletta, M. Montalti, N. Zaccheroni, P. B. Savage, J. S. Bradshaw, and R. M. Izatt, Tetrahedron Letters 39, 5451-5454 (1998).

    CAS  Google Scholar 

  24. L. Prodi, New Journal of Chemistry 29, 20-31 (2005).

    CAS  Google Scholar 

  25. H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, E. L. Thomas, M. G. Bawendi, and M. F. Rubner, Journal of Applied Physics 83, 7965-7974 (1998).

    CAS  Google Scholar 

  26. L. Prodi, F. Bolletta, M. Montalti, and N. Zaccheroni, Coordination Chemistry Reviews 205, 59-83 (2000).

    CAS  Google Scholar 

  27. D. N. Kendall, Applied infrared spectroscopy (Reinhold Pub. Corp., New York, USA, 1966).

    Google Scholar 

  28. H. W. Siesler and K. Holland-Moritz, Infrared and Raman spectros- copy of polymers (M. Dekker, New York, USA, 1980).

    Google Scholar 

  29. R. A. Shaw and H. H. Mantsch, in Encyclopedia of Analytical Chemis- try, edited by R. A. Meyers (John Wiley & Sons Ltd., Chichester, UK, 2000).

    Google Scholar 

  30. J. R. Ferraro and K. Krishnan, Practical Fourier transform infrared spectroscopy : industrial and laboratory chemical analysis (Academic Press, San Diego, USA, 1990).

    Google Scholar 

  31. H. H. Hausdorff, Analysis of polymers by infrared spectroscopy (Perkin-Elmer Corporation, Norwalk, USA, 1951).

    Google Scholar 

  32. J. H. van der Maas, Basic infrared spectroscopy, 2nd ed. (Heyden & Son, London, UK, 1972).

    Google Scholar 

  33. C.-P. Sherman Hsu, in Handbook of Instrumental Techniques for Ana- lytical Chemistry, edited by F. Settle (Prentice-Hall, 1997).

    Google Scholar 

  34. J. McMurry, Organic Chemistry, 2nd ed. (Brooks/Cole, Pacific Grove, USA, 1988).

    Google Scholar 

  35. B. Schrader, Infrared and Raman spectroscopy: methods and applica- tions (VCH, Weinheim, German, 1994).

    Google Scholar 

  36. M. D. Porter, T. B. Bright, D. L. Allara, and C. E. D. Chidsey, Journal of the American Chemical Society 109, 3559-3568 (1987).

    CAS  Google Scholar 

  37. H. Hoffmann and T. Leitner, in Encyclopedia of Analytical Science, edited by C. F. Poole, A. Townshend, and P. J. Worsfold (Academic Press, New York, USA, 2004).

    Google Scholar 

  38. F. Brouers, J. P. Clerc, G. Giraud, J. M. Laugier, and Z. A. Randriamantany, Physical Review B 47, 666-673 (1993).

    CAS  Google Scholar 

  39. F. L. Leibowitz, W. X. Zheng, M. M. Maye, and C. J. Zhong, Analyti- cal Chemistry 71, 5076-5083 (1999).

    CAS  Google Scholar 

  40. R. W. Darbeau, Applied Spectroscopy Reviews 41, 401-425 (2006).

    CAS  Google Scholar 

  41. A. Abragam, The principles of nuclear magnetism (Clarendon Press, Oxford, UK, 1978).

    Google Scholar 

  42. J. B. Grutzner, in Encyclopedia of Analytical Science, edited by C. F. Poole, A. Townshend, and P. J. Worsfold (Academic Press, New York, USA, 2004).

    Google Scholar 

  43. M. M. Spence, S. M. Rubin, I. E. Dimitrov, E. J. Ruiz, D. E. Wemmer, A. Pines, S. Q. Yao, F. Tian, and P. G. Schultz, Proceedings of the National Academy of Sciences of the United States of America 98, 10654-10657 (2001).

    CAS  PubMed  Google Scholar 

  44. D. Briggs, Handbook of x-ray and ultraviolet photoelectron spectros- copy (Heyden, London, UK, 1977).

    Google Scholar 

  45. T. L. Barr Modern Esca: The Principles and Practice of X-Ray Photo- electron Spectroscopy (CRC Press Inc, Boca Raton, USA, 1994).

    Google Scholar 

  46. D. Briggs and J. T. Grant, Surface analysis by Auger and x-ray photo- electron spectroscopy (SurfaceSpectra Limited, Chichester, UK, 2003).

    Google Scholar 

  47. A. J. Milling, Surface characterization methods: principles, techni- ques, and applications (Marcel Dekker, New York, USA, 1999).

    Google Scholar 

  48. L. C. Feldman and J. W. Mayer, Fundamentals of surface and thin film analysis (North-Holland Publishing, New York, USA, 1986).

    Google Scholar 

  49. A. Gurlo, N. Barsan, M. Ivanovskaya, U. Weimar, and W. Göpel, Sensors and Actuators B 47, 92-99 (1998).

    Google Scholar 

  50. B. O. Dabbousi, J. RodriguezViejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, Journal of Physical Chemistry B 101, 9463-9475 (1997).

    CAS  Google Scholar 

  51. B. E. Warren, X-ray diffraction (Addison-Wesley Pub. Co., Reading, USA, 1969).

    Google Scholar 

  52. D. Keith Bowen and B. K. Tanner, High Resolution X-Ray Diffraction and Topography (Taylor & Francis, London, UK, 1998).

    Google Scholar 

  53. J. Drenth, Principles of Protein X-Ray Crystallography (Springer Verlag, New York, USA, 1999).

    Google Scholar 

  54. B. D. Cullity, Elements of x-ray diffraction (Addison-Wesley Pub. Co., Reading, USA, 1978).

    Google Scholar 

  55. P. Scherrer, in Göttinger Nachrichten (1918).

    Google Scholar 

  56. A. L. Patterson, Physical Review 56, 978-982 (1939).

    MATH  CAS  Google Scholar 

  57. A. A. Guzelian, J. E. B. Katari, A. V. Kadavanich, U. Banin, K. Hamad, E. Juban, A. P. Alivisatos, R. H. Wolters, C. C. Arnold, and J. R. Heath, Journal of Physical Chemistry 100, 7212-7219 (1996).

    CAS  Google Scholar 

  58. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, New York, USA, 1983).

    Google Scholar 

  59. G. Bryant and J. C. Thomas, Langmuir 11, 2480-2485 (1995).

    CAS  Google Scholar 

  60. G. Bryant, C. Abeynayake, and J. C. Thomas, Langmuir 12, 6224- 6228 (1996).

    CAS  Google Scholar 

  61. H. Cölfen and L. M. Qi, Chemistry-A European Journal 7, 106-116 (2001).

    Google Scholar 

  62. W. van Criekinge, P. van der Meeren, J. vanderdeelen, and L. Baert, Particle & Particle Systems Characterization 12, 279-283 (1995).

    Google Scholar 

  63. R. Pecora, Dynamic Light Scattering, Applications of Photon Correla- tion Spectroscopy (Springer, New York USA, 1985).

    Google Scholar 

  64. B. J. Berne and R. Pecore, Dynamic light scattering with applications to chemistry, biology and physics (Wiley-Interscience, New York, USA, 1976).

    Google Scholar 

  65. P. C. Hiemenz and R. Rajagopalan, Principles of colloid and surface chemistry (Marcel Dekker, New York, USA, 1997).

    Google Scholar 

  66. H. Fenniri, B. L. Deng, and A. E. Ribbe, Journal of the American Chemical Society 124, 11064-11072 (2002).

    CAS  PubMed  Google Scholar 

  67. C. Ross and K. T. Carron, in Encyclopedia of Analytical Science, ed- ited by C. F. Poole, A. Townshend, and P. J. Worsfold (Academic Press, New York, USA, 2004).

    Google Scholar 

  68. J. R. Ferraro and K. Nakamoto, Introductory Raman Spectroscopy (Academic Press, San Diego, USA, 1994).

    Google Scholar 

  69. I. De Wolf, C. Jian, and W. M. van Spengen, Optics and Lasers in Engineering 36, 213-223 (2001).

    Google Scholar 

  70. N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to infrared and Raman spectroscopy, 2nd ed. (Academic Press, New York, USA, 1975).

    Google Scholar 

  71. D. A. Long, Raman spectroscopy (McGraw-Hill, New York, USA, 1977).

    Google Scholar 

  72. R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, New York, USA, 2000).

    Google Scholar 

  73. A. Szymanski, Raman spectroscopy: theory and practice (Plenum Press, New York, USA, 1967).

    Google Scholar 

  74. J. A. Koningstein, Introduction to the Theory of the Raman Effect (D. Reidel, 1972).

    Google Scholar 

  75. M. J. Pelletier and C. C. Pelletier, in Encyclopedia of Analytical Sci- ence, edited by C. F. Poole, A. Townshend, and P. J. Worsfold (Academic Press, New York, USA, 2004).

    Google Scholar 

  76. M. J. Pelletier, Analytical applications of Raman spectroscopy (Blackwell Science, Malden, USA, 1999).

    Google Scholar 

  77. T. Vo-Dinh, Trac-Trends in Analytical Chemistry 17, 557-582 (1998).

    CAS  Google Scholar 

  78. R. E. Littleford, D. Graham, W. E. Smith, and I. Khan, in Encyclo- pedia of Analytical Science, edited by C. F. Poole, A. Townshend, and P. J. Worsfold (Academic Press, New York, USA, 2004).

    Google Scholar 

  79. M. Fleischmann, P. J. Hendra, and McQuilla. Aj, Chemical Physics Letters 26, 163-166 (1974).

    CAS  Google Scholar 

  80. D. L. Jeanmaire and R. P. van Duyne, Journal of Electroanalytical Chemistry 84, 1-20 (1977).

    CAS  Google Scholar 

  81. M. Moskovits, in Surface-Enhanced Raman Scattering: Physics and Applications; Vol. 103 (Springer-Verlag, Berlin, 2006), p. 1-17.

    Google Scholar 

  82. A. Tao, F. Kim, C. Hess, J. Goldberger, R. R. He, Y. G. Sun, Y. N. Xia, and P. D. Yang, Nano Letters 3, 1229-1233 (2003).

    CAS  Google Scholar 

  83. D. L. Stokes and T. Vo-Dinh, Sensors and Actuators B-Chemical 69, 28-36 (2000).

    Google Scholar 

  84. M. von Ardenne, in Advances in electronics and electron physics. Sup- plement 16: The beginnings of electron microscopy, edited by P. W. Hawkes (Academic Press, Orlando, USA, 1984).

    Google Scholar 

  85. H.-J. Butt, K. Graf, and M. Kappl, Physics and chemistry of interfaces (Wiley-VCH, Weinheim, Germany, 2003).

    Google Scholar 

  86. S. Amelinckx, D. van Dyck, J. van Landuyt, and G. van Tandeloo, Electron microscopy: principles and fundamentals (Wiley-VCH, Weinheim, Germany, 2003).

    Google Scholar 

  87. A. C. C. Yu, M. Mizuno, Y. Sasaki, M. Inoue, H. Kondo, I. Ohta, D. Djayaprawira, and M. Takahashi, Applied Physics Letters 82, 4352-4354 (2003).

    CAS  Google Scholar 

  88. L. Valentini, I. Armentano, J. M. Kenny, C. Cantalini, L. Lozzi, and S. Santucci, Applied Physics Letters 82, 961-963 (2003).

    CAS  Google Scholar 

  89. F. Caruso, D. N. Furlong, K. Ariga, I. Ichinose, and T. Kunitake, Langmuir 14, 4559-4565 (1998).

    CAS  Google Scholar 

  90. Z. L. Wang, Journal of Physical Chemistry B 104, 1153-1175 (2000).

    CAS  Google Scholar 

  91. L. A. Bendersky and F. W. Gayle, Journal of Research of the National Institute of Standards and Technology 106, 997-1012 (2001).

    CAS  Google Scholar 

  92. Z. R. Dai, J. L. Gole, J. D. Stout, and Z. L. Wang, Journal of Physical Chemistry B 106, 1274-1279 (2002).

    CAS  Google Scholar 

  93. A. Taleb, C. Petit, and M. P. Pileni, Chemistry of Materials 9, 950-959 (1997).

    CAS  Google Scholar 

  94. J. R. Tesmer and M. Nastasi, Handbook of modern ion beam materials analysis (MRS, Pittsburgh, USA, 1995).

    Google Scholar 

  95. G. Binnig and H. Rohrer, Reviews of Modern Physics 59, 615-625 (1987).

    CAS  Google Scholar 

  96. J. Tersoff and D. R. Hamann, Physical Review Letters 50, 1998-2001 (1983).

    CAS  Google Scholar 

  97. J. Golovchenko, Science 232, 48-53 (1986).

    CAS  PubMed  Google Scholar 

  98. T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, Nature 391, 62-64 (1998).

    CAS  Google Scholar 

  99. J. J. Davis, C. M. Halliwell, H. A. O. Hill, G. W. Canters, M. C. van Amsterdam, and M. P. Verbeet, New Journal of Chemistry 22, 1119-1123 (1998).

    CAS  Google Scholar 

  100. D. Losic, J. G. Shapter, and J. J. Gooding, Langmuir 18, 5422-5428 (2002).

    CAS  Google Scholar 

  101. G. Binnig, C. F. Quate, and C. Gerber, Physical Review Letters 56, 930-933 (1986).

    PubMed  Google Scholar 

  102. G. U. Lee, D. A. Kidwell, and R. J. Colton, Langmuir 10, 354-357 (1994).

    CAS  Google Scholar 

  103. T. Nakagawa, K. Ogawa, and T. Kurumizawa, Journal of Vacuum Science & Technology B 12, 2215-2218 (1994).

    CAS  Google Scholar 

  104. E. L. Florin, M. Rief, H. Lehmann, M. Ludwig, C. Dornmair, V. T. Moy, and H. E. Gaub, Biosensors & Bioelectronics 10, 895-901 (1995).

    CAS  Google Scholar 

  105. T. Nakagawa, Japanese Journal of Applied Physics Part 2-Letters 36, L162-L165 (1997).

    Google Scholar 

  106. J. W. Zhao and K. Uosaki, Langmuir 17, 7784-7788 (2001).

    CAS  Google Scholar 

  107. S. J. Ippolito, A. Ponzoni, K. Kalantar-Zadeh, W. Wlodarski, E. Comini, G. Faglia, and G. Sberveglieri, Sensors and Actuators B-Chemical 117, 442-450 (2006).

    Google Scholar 

  108. G. Siuzdak, The Expanding Role of Mass Spectrometry in Biotechnol- ogy (MCC Press, 2003).

    Google Scholar 

  109. E. De Hoffmann and V. Stroobant, Mass Spectrometry: Principles and Applications, 2nd ed. (John Wiley & Sons, New York, USA, 2001).

    Google Scholar 

  110. D. Briggs, Surface and Interface Analysis 9, 391-404 (1986).

    CAS  Google Scholar 

  111. A. D. McNaught and A. Wilkinson, IUPAC compendium of chemical terminology, 2nd ed. (Blackwell Science, Boston, USA, 1997).

    Google Scholar 

  112. M. Karas, D. Bachmann, U. Bahr, and F. Hillenkamp, International Journal of Mass Spectrometry and Ion Processes 78, 53-68 (1987).

    CAS  Google Scholar 

  113. K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida, and T. Matsuo, Rapid Communications in Mass Spectrometry 2, 151-153 (1988).

    CAS  Google Scholar 

  114. W. C. Wiley and I. H. McLaren, Review of Scientific Instruments 26, 1150-1157 (1955).

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Characterization Techniques for Nanomaterials. In: Nanotechnology-Enabled Sensors. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68023-1_5

Download citation

Publish with us

Policies and ethics