Characterization Techniques for Nanomaterials

In the previous chapter, methods for the synthesis of nanomaterials and the fabrication of the nanotechnology enabled sensors were presented. Along with the synthesis and fabrication processes, the nanomaterials utilized in the sensors need to be characterized to assess their physical and chemical properties.


Nuclear Magnetic Resonance Atomic Force Microscope Dynamic Light Scattering Scan Tunneling Microscope Characterization Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. J. Strickler, in Encyclopedia of Chemical Physics and Physical Chemistry; Vol. 2, edited by J. H. Moore and N. D. Spencer (Inst of Physics Pub Inc, Bristol, UK, 2002).Google Scholar
  2. 2.
    D. A. Skoog, D. M. West, and F. J. Holler, Fundamentals of Analytical Chemistry,5th ed.(Saunders College Publishing, New York, USA, 1988).Google Scholar
  3. 3.
    J. Coates, in Encyclopedia of Analytical Chemistry, edited by R. A. Meyers (John Wiley & Sons Ltd., Chichester, UK, 2000), p. 10815-10837.Google Scholar
  4. 4.
    B. J. Clark, T. Frost, and M. A. Russell, UV spectroscopy: techniques, instrumentation, data handling (Chapman & Hall, London, UK, 1993).Google Scholar
  5. 5.
    H.-H. Perkampus, UV-VIS spectroscopy and its applications (Springer- Verlag, Berlin, Germany, 1992).Google Scholar
  6. 6.
    P. W. Atkins and J. de Paula, Atkins’ Physical Chemistry, 7th ed. (Oxford University Press, New York, USA, 2002).Google Scholar
  7. 7.
    P. W. Atkins and R. S. Friedman, Molecular Quantum Mechanics, 3rd ed. (Oxford University Press, New York, USA, 1997).Google Scholar
  8. 8.
    C. K. Mann, T. J. Vickers, and W. M. Gulick, Instrumental analysis (Harper & Row, New York, USA, 1974).Google Scholar
  9. 9.
    X. Michalet, F. Pinaud, T. D. Lacoste, M. Dahan, M. P. Bruchez, A. P. Alivisatos, and S. Weiss, Single Molecules 2, 261-276 (2001).Google Scholar
  10. 10.
    A. D. Yoffe, Advances in Physics 50, 1-208 (2001).Google Scholar
  11. 11.
    A. P. Alivisatos, Science 271, 933-937 (1996).Google Scholar
  12. 12.
    J. H. Park, J. Y. Kim, B. D. Chin, Y. C. Kim, J. K. Kim, and O. O. Park, Nanotechnology 15, 1217-1220 (2004).Google Scholar
  13. 13.
    N. Venkatram, D. N. Rao, and M. A. Akundi, Optics Express 13, 867-872 (2005).PubMedGoogle Scholar
  14. 14.
    R. Viswanatha, S. Sapra, B. Satpati, P. V. Satyam, B. N. Dev, and D. D. Sarma, Journal of Materials Chemistry 14, 661-668 (2004).Google Scholar
  15. 15.
    D. A. Skoog and J. J. Leary, Principles of Instrumental Analysis, 4th ed. (Saunders College Publishing, Orlando, USA, 1992).Google Scholar
  16. 16.
    T. H. Gfroerer, in Encyclopedia of Analytical Chemistry, edited by R. A. Meyers (John Wiley & Sons Ltd., Chichester, UK, 2000), p. 9209-9231.Google Scholar
  17. 17.
    E. N. Harvey, A History of Luminescence (American Philosophical Society, Philadelphia, USA, 1957).Google Scholar
  18. 18.
    L. H. Qu and X. G. Peng, Journal of the American Chemical Society 124, 2049-2055 (2002).PubMedGoogle Scholar
  19. 19.
    M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Sci- ence 281, 2013-2016 (1998).Google Scholar
  20. 20.
    W. C. W. Chan and S. M. Nie, Science 281, 2016-2018 (1998).PubMedGoogle Scholar
  21. 21.
    M. A. Hines and P. Guyot-Sionnest, Journal of Physical Chemistry B 102, 3655-3657 (1998).Google Scholar
  22. 22.
    A. A. Guzelian, U. Banin, A. V. Kadavanich, X. Peng, and A. P. Alivisatos, Applied Physics Letters 69, 1432-1434 (1996).Google Scholar
  23. 23.
    L. Prodi, F. Bolletta, M. Montalti, N. Zaccheroni, P. B. Savage, J. S. Bradshaw, and R. M. Izatt, Tetrahedron Letters 39, 5451-5454 (1998).Google Scholar
  24. 24.
    L. Prodi, New Journal of Chemistry 29, 20-31 (2005).Google Scholar
  25. 25.
    H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, E. L. Thomas, M. G. Bawendi, and M. F. Rubner, Journal of Applied Physics 83, 7965-7974 (1998).Google Scholar
  26. 26.
    L. Prodi, F. Bolletta, M. Montalti, and N. Zaccheroni, Coordination Chemistry Reviews 205, 59-83 (2000).Google Scholar
  27. 27.
    D. N. Kendall, Applied infrared spectroscopy (Reinhold Pub. Corp., New York, USA, 1966).Google Scholar
  28. 28.
    H. W. Siesler and K. Holland-Moritz, Infrared and Raman spectros- copy of polymers (M. Dekker, New York, USA, 1980).Google Scholar
  29. 29.
    R. A. Shaw and H. H. Mantsch, in Encyclopedia of Analytical Chemis- try, edited by R. A. Meyers (John Wiley & Sons Ltd., Chichester, UK, 2000).Google Scholar
  30. 30.
    J. R. Ferraro and K. Krishnan, Practical Fourier transform infrared spectroscopy : industrial and laboratory chemical analysis (Academic Press, San Diego, USA, 1990).Google Scholar
  31. 31.
    H. H. Hausdorff, Analysis of polymers by infrared spectroscopy (Perkin-Elmer Corporation, Norwalk, USA, 1951).Google Scholar
  32. 32.
    J. H. van der Maas, Basic infrared spectroscopy, 2nd ed. (Heyden & Son, London, UK, 1972).Google Scholar
  33. 33.
    C.-P. Sherman Hsu, in Handbook of Instrumental Techniques for Ana- lytical Chemistry, edited by F. Settle (Prentice-Hall, 1997).Google Scholar
  34. 34.
    J. McMurry, Organic Chemistry, 2nd ed. (Brooks/Cole, Pacific Grove, USA, 1988).Google Scholar
  35. 35.
    B. Schrader, Infrared and Raman spectroscopy: methods and applica- tions (VCH, Weinheim, German, 1994).Google Scholar
  36. 36.
    M. D. Porter, T. B. Bright, D. L. Allara, and C. E. D. Chidsey, Journal of the American Chemical Society 109, 3559-3568 (1987).Google Scholar
  37. 37.
    H. Hoffmann and T. Leitner, in Encyclopedia of Analytical Science, edited by C. F. Poole, A. Townshend, and P. J. Worsfold (Academic Press, New York, USA, 2004).Google Scholar
  38. 38.
    F. Brouers, J. P. Clerc, G. Giraud, J. M. Laugier, and Z. A. Randriamantany, Physical Review B 47, 666-673 (1993).Google Scholar
  39. 39.
    F. L. Leibowitz, W. X. Zheng, M. M. Maye, and C. J. Zhong, Analyti- cal Chemistry 71, 5076-5083 (1999).Google Scholar
  40. 40.
    R. W. Darbeau, Applied Spectroscopy Reviews 41, 401-425 (2006).Google Scholar
  41. 41.
    A. Abragam, The principles of nuclear magnetism (Clarendon Press, Oxford, UK, 1978).Google Scholar
  42. 42.
    J. B. Grutzner, in Encyclopedia of Analytical Science, edited by C. F. Poole, A. Townshend, and P. J. Worsfold (Academic Press, New York, USA, 2004).Google Scholar
  43. 43.
    M. M. Spence, S. M. Rubin, I. E. Dimitrov, E. J. Ruiz, D. E. Wemmer, A. Pines, S. Q. Yao, F. Tian, and P. G. Schultz, Proceedings of the National Academy of Sciences of the United States of America 98, 10654-10657 (2001).PubMedGoogle Scholar
  44. 44.
    D. Briggs, Handbook of x-ray and ultraviolet photoelectron spectros- copy (Heyden, London, UK, 1977).Google Scholar
  45. 45.
    T. L. Barr Modern Esca: The Principles and Practice of X-Ray Photo- electron Spectroscopy (CRC Press Inc, Boca Raton, USA, 1994).Google Scholar
  46. 46.
    D. Briggs and J. T. Grant, Surface analysis by Auger and x-ray photo- electron spectroscopy (SurfaceSpectra Limited, Chichester, UK, 2003).Google Scholar
  47. 47.
    A. J. Milling, Surface characterization methods: principles, techni- ques, and applications (Marcel Dekker, New York, USA, 1999).Google Scholar
  48. 48.
    L. C. Feldman and J. W. Mayer, Fundamentals of surface and thin film analysis (North-Holland Publishing, New York, USA, 1986).Google Scholar
  49. 49.
    A. Gurlo, N. Barsan, M. Ivanovskaya, U. Weimar, and W. Göpel, Sensors and Actuators B 47, 92-99 (1998).Google Scholar
  50. 50.
    B. O. Dabbousi, J. RodriguezViejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, Journal of Physical Chemistry B 101, 9463-9475 (1997).Google Scholar
  51. 51.
    B. E. Warren, X-ray diffraction (Addison-Wesley Pub. Co., Reading, USA, 1969).Google Scholar
  52. 52.
    D. Keith Bowen and B. K. Tanner, High Resolution X-Ray Diffraction and Topography (Taylor & Francis, London, UK, 1998).Google Scholar
  53. 53.
    J. Drenth, Principles of Protein X-Ray Crystallography (Springer Verlag, New York, USA, 1999).Google Scholar
  54. 54.
    B. D. Cullity, Elements of x-ray diffraction (Addison-Wesley Pub. Co., Reading, USA, 1978).Google Scholar
  55. 55.
    P. Scherrer, in Göttinger Nachrichten (1918).Google Scholar
  56. 56.
    A. L. Patterson, Physical Review 56, 978-982 (1939).MATHGoogle Scholar
  57. 57.
    A. A. Guzelian, J. E. B. Katari, A. V. Kadavanich, U. Banin, K. Hamad, E. Juban, A. P. Alivisatos, R. H. Wolters, C. C. Arnold, and J. R. Heath, Journal of Physical Chemistry 100, 7212-7219 (1996).Google Scholar
  58. 58.
    C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, New York, USA, 1983).Google Scholar
  59. 59.
    G. Bryant and J. C. Thomas, Langmuir 11, 2480-2485 (1995).Google Scholar
  60. 60.
    G. Bryant, C. Abeynayake, and J. C. Thomas, Langmuir 12, 6224- 6228 (1996).Google Scholar
  61. 61.
    H. Cölfen and L. M. Qi, Chemistry-A European Journal 7, 106-116 (2001).Google Scholar
  62. 62.
    W. van Criekinge, P. van der Meeren, J. vanderdeelen, and L. Baert, Particle & Particle Systems Characterization 12, 279-283 (1995).Google Scholar
  63. 63.
    R. Pecora, Dynamic Light Scattering, Applications of Photon Correla- tion Spectroscopy (Springer, New York USA, 1985).Google Scholar
  64. 64.
    B. J. Berne and R. Pecore, Dynamic light scattering with applications to chemistry, biology and physics (Wiley-Interscience, New York, USA, 1976).Google Scholar
  65. 65.
    P. C. Hiemenz and R. Rajagopalan, Principles of colloid and surface chemistry (Marcel Dekker, New York, USA, 1997).Google Scholar
  66. 66.
    H. Fenniri, B. L. Deng, and A. E. Ribbe, Journal of the American Chemical Society 124, 11064-11072 (2002).PubMedGoogle Scholar
  67. 67.
    C. Ross and K. T. Carron, in Encyclopedia of Analytical Science, ed- ited by C. F. Poole, A. Townshend, and P. J. Worsfold (Academic Press, New York, USA, 2004).Google Scholar
  68. 68.
    J. R. Ferraro and K. Nakamoto, Introductory Raman Spectroscopy (Academic Press, San Diego, USA, 1994).Google Scholar
  69. 69.
    I. De Wolf, C. Jian, and W. M. van Spengen, Optics and Lasers in Engineering 36, 213-223 (2001).Google Scholar
  70. 70.
    N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to infrared and Raman spectroscopy, 2nd ed. (Academic Press, New York, USA, 1975).Google Scholar
  71. 71.
    D. A. Long, Raman spectroscopy (McGraw-Hill, New York, USA, 1977).Google Scholar
  72. 72.
    R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, New York, USA, 2000).Google Scholar
  73. 73.
    A. Szymanski, Raman spectroscopy: theory and practice (Plenum Press, New York, USA, 1967).Google Scholar
  74. 74.
    J. A. Koningstein, Introduction to the Theory of the Raman Effect (D. Reidel, 1972).Google Scholar
  75. 75.
    M. J. Pelletier and C. C. Pelletier, in Encyclopedia of Analytical Sci- ence, edited by C. F. Poole, A. Townshend, and P. J. Worsfold (Academic Press, New York, USA, 2004).Google Scholar
  76. 76.
    M. J. Pelletier, Analytical applications of Raman spectroscopy (Blackwell Science, Malden, USA, 1999).Google Scholar
  77. 77.
    T. Vo-Dinh, Trac-Trends in Analytical Chemistry 17, 557-582 (1998).Google Scholar
  78. 78.
    R. E. Littleford, D. Graham, W. E. Smith, and I. Khan, in Encyclo- pedia of Analytical Science, edited by C. F. Poole, A. Townshend, and P. J. Worsfold (Academic Press, New York, USA, 2004).Google Scholar
  79. 79.
    M. Fleischmann, P. J. Hendra, and McQuilla. Aj, Chemical Physics Letters 26, 163-166 (1974).Google Scholar
  80. 80.
    D. L. Jeanmaire and R. P. van Duyne, Journal of Electroanalytical Chemistry 84, 1-20 (1977).Google Scholar
  81. 81.
    M. Moskovits, in Surface-Enhanced Raman Scattering: Physics and Applications; Vol. 103 (Springer-Verlag, Berlin, 2006), p. 1-17.Google Scholar
  82. 82.
    A. Tao, F. Kim, C. Hess, J. Goldberger, R. R. He, Y. G. Sun, Y. N. Xia, and P. D. Yang, Nano Letters 3, 1229-1233 (2003).Google Scholar
  83. 83.
    D. L. Stokes and T. Vo-Dinh, Sensors and Actuators B-Chemical 69, 28-36 (2000).Google Scholar
  84. 84.
    M. von Ardenne, in Advances in electronics and electron physics. Sup- plement 16: The beginnings of electron microscopy, edited by P. W. Hawkes (Academic Press, Orlando, USA, 1984).Google Scholar
  85. 85.
    H.-J. Butt, K. Graf, and M. Kappl, Physics and chemistry of interfaces (Wiley-VCH, Weinheim, Germany, 2003).Google Scholar
  86. 86.
    S. Amelinckx, D. van Dyck, J. van Landuyt, and G. van Tandeloo, Electron microscopy: principles and fundamentals (Wiley-VCH, Weinheim, Germany, 2003).Google Scholar
  87. 87.
    A. C. C. Yu, M. Mizuno, Y. Sasaki, M. Inoue, H. Kondo, I. Ohta, D. Djayaprawira, and M. Takahashi, Applied Physics Letters 82, 4352-4354 (2003).Google Scholar
  88. 88.
    L. Valentini, I. Armentano, J. M. Kenny, C. Cantalini, L. Lozzi, and S. Santucci, Applied Physics Letters 82, 961-963 (2003).Google Scholar
  89. 89.
    F. Caruso, D. N. Furlong, K. Ariga, I. Ichinose, and T. Kunitake, Langmuir 14, 4559-4565 (1998).Google Scholar
  90. 90.
    Z. L. Wang, Journal of Physical Chemistry B 104, 1153-1175 (2000).Google Scholar
  91. 91.
    L. A. Bendersky and F. W. Gayle, Journal of Research of the National Institute of Standards and Technology 106, 997-1012 (2001).Google Scholar
  92. 92.
    Z. R. Dai, J. L. Gole, J. D. Stout, and Z. L. Wang, Journal of Physical Chemistry B 106, 1274-1279 (2002).Google Scholar
  93. 93.
    A. Taleb, C. Petit, and M. P. Pileni, Chemistry of Materials 9, 950-959 (1997).Google Scholar
  94. 94.
    J. R. Tesmer and M. Nastasi, Handbook of modern ion beam materials analysis (MRS, Pittsburgh, USA, 1995).Google Scholar
  95. 95.
    G. Binnig and H. Rohrer, Reviews of Modern Physics 59, 615-625 (1987).Google Scholar
  96. 96.
    J. Tersoff and D. R. Hamann, Physical Review Letters 50, 1998-2001 (1983).Google Scholar
  97. 97.
    J. Golovchenko, Science 232, 48-53 (1986).PubMedGoogle Scholar
  98. 98.
    T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, Nature 391, 62-64 (1998).Google Scholar
  99. 99.
    J. J. Davis, C. M. Halliwell, H. A. O. Hill, G. W. Canters, M. C. van Amsterdam, and M. P. Verbeet, New Journal of Chemistry 22, 1119-1123 (1998).Google Scholar
  100. 100.
    D. Losic, J. G. Shapter, and J. J. Gooding, Langmuir 18, 5422-5428 (2002).Google Scholar
  101. 101.
    G. Binnig, C. F. Quate, and C. Gerber, Physical Review Letters 56, 930-933 (1986).PubMedGoogle Scholar
  102. 102.
    G. U. Lee, D. A. Kidwell, and R. J. Colton, Langmuir 10, 354-357 (1994).Google Scholar
  103. 103.
    T. Nakagawa, K. Ogawa, and T. Kurumizawa, Journal of Vacuum Science & Technology B 12, 2215-2218 (1994).Google Scholar
  104. 104.
    E. L. Florin, M. Rief, H. Lehmann, M. Ludwig, C. Dornmair, V. T. Moy, and H. E. Gaub, Biosensors & Bioelectronics 10, 895-901 (1995).Google Scholar
  105. 105.
    T. Nakagawa, Japanese Journal of Applied Physics Part 2-Letters 36, L162-L165 (1997).Google Scholar
  106. 106.
    J. W. Zhao and K. Uosaki, Langmuir 17, 7784-7788 (2001).Google Scholar
  107. 107.
    S. J. Ippolito, A. Ponzoni, K. Kalantar-Zadeh, W. Wlodarski, E. Comini, G. Faglia, and G. Sberveglieri, Sensors and Actuators B-Chemical 117, 442-450 (2006).Google Scholar
  108. 108.
    G. Siuzdak, The Expanding Role of Mass Spectrometry in Biotechnol- ogy (MCC Press, 2003).Google Scholar
  109. 109.
    E. De Hoffmann and V. Stroobant, Mass Spectrometry: Principles and Applications, 2nd ed. (John Wiley & Sons, New York, USA, 2001).Google Scholar
  110. 110.
    D. Briggs, Surface and Interface Analysis 9, 391-404 (1986).Google Scholar
  111. 111.
    A. D. McNaught and A. Wilkinson, IUPAC compendium of chemical terminology, 2nd ed. (Blackwell Science, Boston, USA, 1997).Google Scholar
  112. 112.
    M. Karas, D. Bachmann, U. Bahr, and F. Hillenkamp, International Journal of Mass Spectrometry and Ion Processes 78, 53-68 (1987).Google Scholar
  113. 113.
    K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida, and T. Matsuo, Rapid Communications in Mass Spectrometry 2, 151-153 (1988).Google Scholar
  114. 114.
    W. C. Wiley and I. H. McLaren, Review of Scientific Instruments 26, 1150-1157 (1955).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations