Advertisement

Nano Fabrication and Patterning Techniques

Nanotechnology enabled sensors are fabricated from nanoparticles, one dimensional nanomaterials, thin films of nanoscale thicknesses and/or thin films comprised of nanostructures. These nanostructures can be used both in the fabrication of the sensing layers and/or the fabrication of the transducer structures.1 Some of the micro/nano fabrication technologies are very mature and widely used, such as photo-lithography, whilst others are in their infancy falling into niche applications.

Keywords

Chemical Vapor Deposition Physical Vapor Deposition Chemical Bath Deposition Chemical Vapor Deposition Process Nanoimprint Lithography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. I. Brauman and P. Szuromi, Science 273, 855-855 (1996).CrossRefGoogle Scholar
  2. 2.
    A. P. Alivisatos, Science 271, 933-937 (1996).CrossRefGoogle Scholar
  3. 3.
    Y. G. Sun and Y. N. Xia, Science 298, 2176-2179 (2002).CrossRefPubMedGoogle Scholar
  4. 4.
    T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, and M. A. El- Sayed, Science 272, 1924-1926 (1996).CrossRefPubMedGoogle Scholar
  5. 5.
    M. C. Daniel and D. Astruc, Chemical Reviews 104, 293-346 (2004).CrossRefPubMedGoogle Scholar
  6. 6.
    K. Grieve, P. Mulvaney, and F. Grieser, Current Opinion in Colloid & Interface Science 5, 168-172 (2000).CrossRefGoogle Scholar
  7. 7.
    R. H. Kodama, J. Am. Chem. Soc., 122 8581-8582 (2000).CrossRefGoogle Scholar
  8. 8.
    M. L. Steigerwald, A. P. Alivisatos, J. M. Gibson, T. D. Harris, R. Kortan, A. J. Muller, A. M. Thayer, T. M. Duncan, D. C. Doug- lass, and L. E. Brus, Journal of the American Chemical Society 110, 3046-3050 (1988).CrossRefGoogle Scholar
  9. 9.
    G. Schmid, Journal of Materials Chemistry 12, 1231-1238 (2002).CrossRefGoogle Scholar
  10. 10.
    F. E. Kruis, H. Fissan, and A. Peled, Journal of Aerosol Science 29, 511-535 (1998).CrossRefGoogle Scholar
  11. 11.
    L. Madler, H. K. Kammler, R. Mueller, and S. E. Pratsinis, Journal of Aerosol Science 33, 369-389 (2002).CrossRefGoogle Scholar
  12. 12.
    T. W. Smith, D. Wychick, Journal of Physical Chemistry B 84, 1621-1629 (1980).CrossRefGoogle Scholar
  13. 13.
    K. S. Suslick, M. M. Fang, and T. Hyeon, Journal of the American Chemical Society 118 11960-11961 (1996).CrossRefGoogle Scholar
  14. 14.
    S. H. Sun and C. B. Murray, Journal of Applied Physics 85 4325-4330 (1999).CrossRefGoogle Scholar
  15. 15.
    C. Petit, A. Taleb, and M. P. Pileni, Journal of Physical Cheistry B 103 1805-1810 (1999).CrossRefGoogle Scholar
  16. 16.
    G. Schmid, Chemical Reviews 92, 1709-1727 (1992).CrossRefGoogle Scholar
  17. 17.
    M. Brust and C. J. Kiely, Colloids and Surfaces A-Physicochemical and Engineering Aspects 202, 175-186 (2002).CrossRefGoogle Scholar
  18. 18.
    J. Turkevich, P. C. Stevenson, and J. Hillier, Discussions of the Fara- day Society 11, 55-75 (1951).CrossRefGoogle Scholar
  19. 19.
    G. Frens, Nature 241, 20-22 (1973).Google Scholar
  20. 20.
    T. Yonezawa and T. Kunitake, Colloids and Surfaces a- Physicochemical and Engineering Aspects 149, 193-199 (1999).CrossRefGoogle Scholar
  21. 21.
    R. M. Crooks, M. Q. Zhao, L. Sun, V. Chechik, and L. K. Yeung, Ac- counts of Chemical Research 34, 181-190 (2001).CrossRefGoogle Scholar
  22. 22.
    M. Q. Zhao and R. M. Crooks, Advanced Materials 11, 217-+ (1999).CrossRefGoogle Scholar
  23. 23.
    D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, and P. Smith, Polymer Journal 17, 117-132 (1985).CrossRefGoogle Scholar
  24. 24.
    H. G. Lang, S. Maldonado, K. J. Stevenson, and B. D. Chandler, Jour- nal of the American Chemical Society 126, 12949-12956 (2004).CrossRefGoogle Scholar
  25. 25.
    M. Volmer and A. Weber, Zeitschrift Für Physikalische Chemie 119, 277-301 (1926).Google Scholar
  26. 26.
    I. N. Stranski and L. S. Kr’stanov, Akad. Wiss. Wien, Math.-naturw. Klasse, Abt. IIb 146, 797-810 (1938).Google Scholar
  27. 27.
    F. C. Frank and J. H. van der Merwe, Proceedings of the Royal Society of London: Series A, Mathematical and Physical Sciences 198, 205-216 (1949).MATHCrossRefGoogle Scholar
  28. 28.
    G. Guozhong, Nanostructures & Nanomaterials, Synthesis, properties & Applications (IImperial college press, London, 2004).Google Scholar
  29. 29.
    P. P. Hartman and W. G. Perdok, Acta Crystallographica 8, 525-529 (1955).CrossRefGoogle Scholar
  30. 30.
    E. I. Givargizov and D. Reidel, Highly Anisotropic Crystals (Dordrecht, The Netherlands 1987).Google Scholar
  31. 31.
    W. Dittmar and K. Neumann, Growth and Perfection of Crystals, (New York, 1958).Google Scholar
  32. 32.
    G. W. Sears, Acta Metallurgica 3, 361-366 (1955).CrossRefGoogle Scholar
  33. 33.
    Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947-1949 (2001).CrossRefPubMedGoogle Scholar
  34. 34.
    Z. L. Wang, Annual Review of Physical Chemistry 55,159-196 (2004).CrossRefPubMedGoogle Scholar
  35. 35.
    R. S. Wagner and W. C. Ellis, Applied Physics Letters 233, 1053-& (1964).Google Scholar
  36. 36.
    M. S. Gudiksen, J. F. Wang, and C. M. Lieiber, Journal of Physical Chemistry B 105, 4062-4064 (2001).CrossRefGoogle Scholar
  37. 37.
    M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, Nature 415, 617-620 (2002).CrossRefPubMedGoogle Scholar
  38. 38.
    S. A. Campbell, The Science and Engineering of Microelectronic Fab- rication,2nd ed. (Oxford University Press, New York, USA, 2001).Google Scholar
  39. 39.
    A. Cho and J. Arthur, Progress in Solid State Chemistry 10 (1975).Google Scholar
  40. 40.
    A. Y. Cho, Journal of Vacuum Science & Technology 8, S31 (1971).CrossRefGoogle Scholar
  41. 41.
    W. S. Knodle and R. Chow in Handbook of thin-film deposition proc- esses and techniques: principles, methods, equipment, and appli-cations, 2nd ed. (Noyes Publications, Park Ridge, USA., 2002).Google Scholar
  42. 42.
    A. Ichimiya and P. I. Cohen, Reflection High-Energy Electron Diffrac- tion (Cambridge University Press, London, UK, 2004).Google Scholar
  43. 43.
    H. S. Nalwa, Experimental Methods in the Physics Sciences, Vol. 38 Advances in Surface Science (Academic Press, New York, USA, 2001).Google Scholar
  44. 44.
    K. Wasa, Thin film materials technology: sputtering of compound ma- terials (Springer, Norwich, USA, 2004).Google Scholar
  45. 45.
    R. A. Fischer, Precursor Chemistry of Advanced Materials: CVD, ALD and Nanoparticles (Springer, Berlin, Germany, 2005).CrossRefGoogle Scholar
  46. 46.
    C. A. Moore, Z. -q. Yu, L. R. Thompson, and G. J. Collins, in Hand- book of thin-film deposition processes and techniques: principles, methods, equipment, and applications, 2nd ed., edited by K. Seshan (Noyes Publications, Park Ridge, USA, 2002).Google Scholar
  47. 47.
    J. L. Zilko, in Handbook of thin-film deposition processes and tech- niques: principles, methods, equipment, and applications, 2nd ed. (Noyes Publications, Park Ridge, USA, 2002).Google Scholar
  48. 48.
    M. J. Ludowise, Journal of Applied Physics 58, R31-R55 (1985).CrossRefGoogle Scholar
  49. 49.
    M. S. Kabir, R. E. Morjan, O. A. Nerushev, P. Lundgren, S. Bengtsson, P. Enokson, and E. E. B. Campbell, Nanotechnology 16, 458-466 (2005).CrossRefGoogle Scholar
  50. 50.
    K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. Pirio, P. Legagneux, F. Wyczisk, J. Olivier, and D. Pribat, Journal of Vacuum Science & Technology B 20, 116-121 (2002).CrossRefGoogle Scholar
  51. 51.
    K. B. K. Teo, S. B. Lee, M. Chhowalla, V. Semet, V. T. Binh, O. Gro- ening, M. Castignolles, A. Loiseau, G. Pirio, P. Legagneux, D. Pribat, D. G. Hasko, H. Ahmed, G. A. J. Amaratunga, and W. I. Milne, Nanotechnology 14, 204-211 (2003).CrossRefGoogle Scholar
  52. 52.
    H. Curtins, N. Wyrsch, and A. V. Shah, Electronics Letters 23, 228-230 (1987).CrossRefGoogle Scholar
  53. 53.
    T. Sharda, T. Soga, T. Jimbo, and M. Umeno, Diamond and Related Materials 10, 1592-1596 (2001).CrossRefGoogle Scholar
  54. 54.
    C. H. Lin, H. L. Chang, C. M. Hsu, A. Y. Lo, and C. T. Kuo, Diamond and Related Materials 12, 1851-1857 (2003).CrossRefGoogle Scholar
  55. 55.
    T. P. Niesen and M. R. De Guire, Solid State Ionics 151, 61-68 (2002).CrossRefGoogle Scholar
  56. 56.
    T. P. Niesen and M. R. De Guire, Journal of Electroceramics 6, 169-207 (2001).CrossRefGoogle Scholar
  57. 57.
    A. Hishinuma, T. Goda, M. Kitaoka, S. Hayashi, and H. Kawahara, Applied Surface Science 48-9, 405-408 (1991).CrossRefGoogle Scholar
  58. 58.
    T. Hamaguchi, N. Yabuki, M. Uno, S. Yamanaka, M. Egashira, Y. Shimizu, and T. Hyodo, Sensors and Actuators B-Chemical 113, 852-856 (2006).CrossRefGoogle Scholar
  59. 59.
    R. B. Peterson, C. L. Fields, and B. A. Gregg, Langmuir 20, 5114-5118 (2004).CrossRefPubMedGoogle Scholar
  60. 60.
    I. R. Peterson, Journal of Physics D-Applied Physics 23, 379-395 (1990).CrossRefGoogle Scholar
  61. 61.
    V. V. Tsukruk, Progress in Polymer Science 22, 247-311 (1997).CrossRefGoogle Scholar
  62. 62.
    A. N. Shipway, E. Katz, and I. Willner, Chemphyschem 1, 18-52 (2000).CrossRefGoogle Scholar
  63. 63.
    Y. Gimeno, A. H. Creus, P. Carro, S. Gonzalez, R. C. Salvarezza, and A. J. Arvia, Journal of Physical Chemistry B 106, 4232-4244 (2002).CrossRefGoogle Scholar
  64. 64.
    F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, Sci- ence 293, 2227-2231 (2001).Google Scholar
  65. 65.
    Y. Gimeno, A. H. Creus, S. Gonzalez, R. C. Salverezza, and A. J. Ar- via, Chemistry of Materials 13, 1857-1864 (2001).CrossRefGoogle Scholar
  66. 66.
    M. P. Zach, K. H. Ng, and R. M. Penner, Science 290, 2120-2123 (2000).CrossRefPubMedGoogle Scholar
  67. 67.
    D. Meyerhofer, Journal of Applied Physics 49, 3993-3997 (1978).CrossRefGoogle Scholar
  68. 68.
    B. D. Fabes, B. J. Zelinski, and D. R. Uhlmann, in Ceramic films and Coatings, edited by J. B. Wachtman and R. A. Haber (Noyes Pub- lications, New Jersey, USA, 1993).Google Scholar
  69. 69.
    C. J. Brinker and G. W. Scherer, Sol-gel science - the physics and chemistry of sol-gel processing(Academic Press, New York, USA, 1990).Google Scholar
  70. 70.
    L. E. Scriven, Materials Research Society, 717-729 (1988).Google Scholar
  71. 71.
    H. J. Kim, C. H. Lee, and S. Y. Hwang, Surface & Coatings Technol- ogy 191, 335-340 (2005).CrossRefGoogle Scholar
  72. 72.
    I. M. Thomas, in Sol-Gel Technology for thin films, fibres, preforms, electronics and specialty shapes, edited by L. C. Klein (Noyes Publications, New Jersey, USA, 1988).Google Scholar
  73. 73.
    C. Cantalini, W. Wlodarski, H. T. Sun, M. Z. Atashbar, M. Passacan- tando, and S. Santucci, Sensors and Actuators B 65, 101-104 (2000).CrossRefGoogle Scholar
  74. 74.
    M. McCallum, G. Fuller, and S. Owa, Microelectronic Engineering 83, 667-671 (2006).CrossRefGoogle Scholar
  75. 75.
    J. Markoff, New York Times February 20 (2006).Google Scholar
  76. 76.
    Y. Kim and C. M. Lieber, Science 257, 375-377 (1992).CrossRefPubMedGoogle Scholar
  77. 77.
    D. M. Eigler and E. K. Schweizer, Nature 344, 524-526 (1990).CrossRefGoogle Scholar
  78. 78.
    R. F. Service, Science 286, 389-+ (1999).CrossRefGoogle Scholar
  79. 79.
    R. D. Piner, J. Zhu, F. Xu, S. H. Hong, and C. A. Mirkin, Science 283, 661-663 (1999).CrossRefPubMedGoogle Scholar
  80. 80.
    S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Applied Physics Letters 67, 3114-3116 (1995).CrossRefGoogle Scholar
  81. 81.
    S. Y. Chou, P. R. Krauss, W. Zhang, L. J. Guo, and L. Zhuang, Journal of Vacuum Science & Technology B 15, 2897-2904 (1997).CrossRefGoogle Scholar
  82. 210Chapter 4: Nano Fabrication and Patterning TechniquesGoogle Scholar
  83. 82.
    B. D. Gates, Q. B. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, Chemical Reviews 105, 1171-1196 (2005).CrossRefPubMedGoogle Scholar
  84. 83.
    R. G. Jones and P. C. M. Tate, Advanced Materials for Optics and Electronics 4, 139-153 (1994).CrossRefGoogle Scholar
  85. 84.
    A. V. Crewe, J. Wall, and J. Langmore, Science 168, 1338 (1970).CrossRefPubMedGoogle Scholar
  86. 85.
    A. V. Crewe and J. Wall, Journal of Molecular Biology 48, 375 (1970).CrossRefPubMedGoogle Scholar
  87. 86.
    A. N. Broers, A. C. F. Hoole, and J. M. Ryan, Microelectronic Engi- neering 32, 131-142 (1996).CrossRefGoogle Scholar
  88. 87.
    S. Reyntjens and R. Puers, Journal of Micromechanics and Microengi- neering 11, 287-300 (2001).CrossRefGoogle Scholar
  89. 88.
    J. Kapsa, Y. Robach, G. Hollinger, M. Gendry, J. Gierak, and D. Mailly, Applied Surface Science 226, 31-35 (2004).CrossRefGoogle Scholar
  90. 89.
    D. L. Spears and H. I. Smith, Electronics Letters 8, 102 (1972).CrossRefGoogle Scholar
  91. 90.
    Y. Chen and A. Pepin, Electrophoresis 22, 187-207 (2001).CrossRefPubMedGoogle Scholar
  92. 91.
    H. Becker and L. E. Locascio, Talanta 56, 267-287 (2002).CrossRefPubMedGoogle Scholar
  93. 92.
    R. K. Kupka, F. Bouamrane, C. Cremers, and S. Megtert, Applied Sur- face Science 164, 97-110 (2000).CrossRefGoogle Scholar
  94. 93.
    E. W. Becker, W. Ehrfeld, D. Munchmeyer, H. Betz, A. Heuberger, S. Pongratz, W. Glashauser, H. J. Michel, and R. Vonsiemens, Naturwissenschaften 69, 520-523 (1982).CrossRefGoogle Scholar
  95. 94.
    H. H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, Applied Physics Letters 75, 2328-2330 (1999).CrossRefGoogle Scholar
  96. 95.
    S. O. Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. de Pablo, and P. F. Nealey, Nature 424, 411-414 (2003).CrossRefPubMedGoogle Scholar
  97. 96.
    D. N. Jamieson, C. Yang, T. Hopf, S. M. Hearne, C. I. Pakes, S. Prawer, M. Mitic, E. Gauja, S. E. Andresen, F. E. Hudson, A. S. Dzurak, and R. G. Clark, Applied Physics Letters 86 (2005).Google Scholar
  98. 97.
    N. Maluf, An Introduction to Microelectromechanical Systems Engi- neering (Artech house publisher, Boston, USA,, 2004).Google Scholar
  99. 98.
    M. Gad-el-Hak, Mems: Design and Fabrication (CRC Press Inc, Lon- don, UK, 2005).Google Scholar
  100. 99.
    C. R. Helms and B. E. Deal, Journal of Vacuum Science & Technol- ogy A 10, 806-811 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations