In this chapter, some of the major transduction platforms utilized in sensing are presented. The focus is on platforms which are fabricated utilizing micro/nano-fabrication processes. Integrating them with nanomaterials for sensing applications can enhance their performance and consequently lead to increased sensitivity towards measurands. The transduction platforms, presented in this chapter, include: conductometric and capacitive, optical, electrochemical, solid state, and acoustic wave based. In Chaps. 6 and 7, examples of integrating nanomaterials based sensitive layers to such platforms, along with various sensing examples will be presented.


Surface Plasmon Resonance Surface Acoustic Wave Optical Waveguide Quartz Crystal Microbalance Schottky Diode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. M. Cukrov, P. G. McCormick, K. Galatsis, and W. Wlodarski, Sensors and Actuators B-Chemical 77, 491-495 (2001).CrossRefGoogle Scholar
  2. 2.
    M. N. O. Sadiku, Elements of Electromagnetics (Saunder College Publishing, New York, USA, 1989).Google Scholar
  3. 3.
    W. Lukosz, Biosensors & Bioelectronics 6, 215-225 (1991).CrossRefGoogle Scholar
  4. 4.
    R. G. Heideman, R. P. H. Kooyman, and J. Greve, Sensors and Actuators Bl 10, 209-217 (1993).CrossRefGoogle Scholar
  5. 5.
    J. Homola, S. S. Yee, and G. Gauglitz, Sensors and Actuators B- Chemical 54, 3-15 (1999).CrossRefGoogle Scholar
  6. 6.
    Kretschm. E, Zeitschrift Fur Physik 241, 313 (1971).CrossRefGoogle Scholar
  7. 7.
    R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, Biomaterials 21, 1823-1835 (2000).CrossRefPubMedGoogle Scholar
  8. 8.
    D. C. Harris, Harris’ Quantitative Chemical Analysis, 7th ed. (W H Freeman & Co, New York, USA, 2006).Google Scholar
  9. 9.
    D. A. Skoog, D. M. West, and F. J. Holler, Fundamentals of Analytical Chemistry,5th ed.(Saunders College Publishing, New York, USA, 1988).Google Scholar
  10. 10.
    R. H. Petrucci, F. G. Herring, W. S. Harwood, and J. D. Madura, General Chemistry: Principles and Modern Applications,9th ed. (Prentice Hall, Upper Saddle River, USA, 2006).Google Scholar
  11. 11.
    R. A. Macur, Miniature multifunctional electrochemical sensor for simultaneous carbon dioxide-pH measurements (United States Patent 3957613).Google Scholar
  12. 12.
    F. G. Thomas and G. Henze, Introduction to voltammetric analysis: theory and practice (CSIRO Publishing, Melbourne, Australia, 2001).Google Scholar
  13. 13.
    R. S. Nicholson, Analytical Chemistry 37, 1351-1355 (1965).CrossRefGoogle Scholar
  14. 14.
    F. G. Cottrell, Zeitschrift Für Physikalische Chemie 42, 385-431 (1903).Google Scholar
  15. 15.
    J. Heyrovsky and J. Kuta, Principles of Polarography (Academic. Press, New York, USA, 1966).Google Scholar
  16. 16.
    R. C. Kapoor and B. S. Aggarwal, Principles of polarography (Wiley, New York, USA, 1991).Google Scholar
  17. 17.
    K. Kalantar-Zadeh and G. H. Lee, Clinical Journal of the American Society of Nephrology 1, S9-S18 (2006).CrossRefPubMedGoogle Scholar
  18. 18.
    X. F. Yu, Y. X. Li, N. F. Zhu, Q. B. Yang, and K. Kalantar-zadeh, Nanotechnology 18 (2007).Google Scholar
  19. 19.
    T. M. Florence, Journal of Electroanalytical Chemistry 27, 273 (1970).CrossRefGoogle Scholar
  20. 20.
    S. M. Sze, Physics of semiconductor devices, 2nd ed. (Wiley, New York, USA, 1981).Google Scholar
  21. 21.
    J. Rius and J. Figueras, Journal of Electronic Testing-Theory and Applications 9, 295-310 (1996).CrossRefGoogle Scholar
  22. 22.
    R. M. Mihalcea, D. S. Baer, and R. K. Hanson, Applied Optics 36, 8745-8752 (1997).CrossRefPubMedGoogle Scholar
  23. 23.
    A. M. Cowley and S. M. Sze, Journal of Applied Physics 36, 3212-3220 (1965).CrossRefGoogle Scholar
  24. 24.
    K. D. Schierbaum, U. Weimar, W. Göpel, and R. Kowalkowski, Sensors and Actuators B 3, 205-214 (1991).CrossRefGoogle Scholar
  25. 25.
    K. D. Wise, J. B. Angell, and A. Starr, IEEE Transactions on Biomedical Engineering BM 17, 238-& (1970).CrossRefGoogle Scholar
  26. 26.
    P. Bergveld, IEEE Transactions on Biomedical Engineering BM 17, 70-71 (1970).CrossRefGoogle Scholar
  27. 27.
    P. Bergveld, Sensors and Actuators B 88, 1-20 (2003).CrossRefGoogle Scholar
  28. 28.
    L. Bousse, N. F. Derooij, and P. Bergveld, IEEE Transactions on Electron Devices 30, 1263-1270 (1983).CrossRefGoogle Scholar
  29. 29.
    R. E. G. van Hal, J. C. T. Eijkel, and P. Bergveld, Advances in Colloid and Interface Science 69, 31-62 (1996).CrossRefGoogle Scholar
  30. 30.
    R. E. G. van hal, J. C. T. Eijkel, and P. Bergveld, Sensors and Actuators B-Chemical 24, 201-205 (1995).CrossRefGoogle Scholar
  31. 31.
    S. Caras and J. Janata, Analytical Chemistry 52, 1935-1937 (1980).CrossRefGoogle Scholar
  32. 32.
    K. Y. Park, S. B. Choi, M. Lee, B. K. Sohn, and S. Y. Choi, Sensors and Actuators B-Chemical 83, 90-97 (2002).CrossRefGoogle Scholar
  33. 33.
    L. T. Yin, J. C. Chou, W. Y. Chung, T. P. Sun, K. P. Hsiung, and S. K. Hsiung, Sensors and Actuators B-Chemical 76, 187-192 (2001).CrossRefGoogle Scholar
  34. 34.
    J. G. Liu, L. Liang, G. X. Li, R. S. Han, and K. M. Chen, Biosensors & Bioelectronics 13, 1023-1028 (1998).CrossRefGoogle Scholar
  35. 35.
    V. Volotovsky and N. Kim, Analytica Chimica Acta 359, 143-148 (1998).CrossRefGoogle Scholar
  36. 36.
    A. S. Poghossian, Sensors and Actuators B-Chemical 44, 361-364 (1997).CrossRefGoogle Scholar
  37. 37.
    S. V. Dzyadevich, Y. I. Korpan, V. N. Arkhipova, M. Y. Alesina, C. Martelet, A. V. El’Skaya, and A. P. Soldatkin, Biosensors & Bioelectronics 14, 283-287 (1999).CrossRefGoogle Scholar
  38. 38.
    V. Volotovsky and N. Kim, Biosensors & Bioelectronics 13, 1029-1033 (1998).CrossRefGoogle Scholar
  39. 39.
    C. Jiménez, J. Bartrol, N. F. deRooij, and M. KoudelkaHep, Analytica Chimica Acta 351, 169-176 (1997).CrossRefGoogle Scholar
  40. 40.
    A. P. Soldatkin, D. V. Gorchkov, C. Martelet, and N. JaffrezicRenault, Materials Science & Engineering C-Biomimetic Materials Sensors and Systems 5, 35-40 (1997).Google Scholar
  41. 41.
    V. Volotovsky, A. P. Soldatkin, A. A. Shulga, V. K. Rossokhaty, V. I. Strikha, and A. V. Elskaya, Analytica Chimica Acta 322, 77-81 (1996).CrossRefGoogle Scholar
  42. 42.
    C. Puig-Lleixa, C. Jimenez, J. Alonso, and J. Bartroli, Analytica Chimica Acta 389, 179-188 (1999).CrossRefGoogle Scholar
  43. 43.
    J. Munoz, C. Jimenez, A. Bratov, J. Bartroli, S. Alegret, and C. Dominguez, Biosensors & Bioelectronics 12, 577-585 (1997).CrossRefGoogle Scholar
  44. 44.
    A. Ballato, in Piezoelectricity: history and new thrusts, 1996, p. 575-583.Google Scholar
  45. 45.
    G. Z. Sauerbrey, Zeitschrift für Physik 155, 206-222 (1959).CrossRefGoogle Scholar
  46. 46.
    W. H. King Jr., Analytical Chemistry 36, 1735-1739 (1964).CrossRefGoogle Scholar
  47. 47.
    G. G. Guilbault, Analytical Chemistry 55, 1682-1684 (1983).CrossRefGoogle Scholar
  48. 48.
    G. G. Guilbault and J. M. Jordan, Crc Critical Reviews in Analytical Chemistry 19, 1-28 (1988).Google Scholar
  49. 49.
    J. Q. Hu, F. R. Zhu, J. Zhang, and H. Gong, Sensors and Actuators B- Chemical 93, 175-180 (2003).CrossRefGoogle Scholar
  50. 50.
    J. W. Grate, S. J. Martin, and R. M. White, Analytical Chemistry 65, A987-A996 (1993).CrossRefGoogle Scholar
  51. 51.
    J. W. Grate, S. J. Martin, and R. M. White, Analytical Chemistry 65, A940-A948 (1993).CrossRefGoogle Scholar
  52. 52.
    T. Nomura and M. Okuhara, Analytica Chimica Acta 142, 281-284 (1982).CrossRefGoogle Scholar
  53. 53.
    H. Zhang and E. S. Kim, in Air-backed Al/ZnO/Al film bulk acoustic resonator without any support layer, 2002, p. 20-26.Google Scholar
  54. 54.
    H. Zhang and E. S. Kim, Journal of Microelectromechanical Systems 14, 699-706 (2005).CrossRefGoogle Scholar
  55. 55.
    P. Lostis,38, 1 (1959).Google Scholar
  56. 56.
    M. Benetti, D. Cannata, F. Di Pietrantonio, V. Foglietti, and E. Verona, Applied Physics Letters 87, 1735041-1735043 (2005).Google Scholar
  57. 57.
    C. S. Lu and O. Lewis, Journal of Applied Physics 43, 4385-& (1972).CrossRefGoogle Scholar
  58. 58.
    J. K. Gimzewski, C. Gerber, E. Meyer, and R. R. Schlittler, Chemical Physics Letters 217, 589-594 (1994).CrossRefGoogle Scholar
  59. 59.
    P. I. Oden, G. Y. Chen, R. A. Steele, R. J. Warmack, and T. Thundat, Applied Physics Letters 68, 3814-3816 (1996).CrossRefGoogle Scholar
  60. 60.
    R. Raiteri, M. Grattarola, H. J. Butt, and P. Skladal, Sensors and Actuators B 79, 115-126 (2001).CrossRefGoogle Scholar
  61. 61.
    P. I. Oden, Sensors and Actuators B-Chemical 53, 191-196 (1998).CrossRefGoogle Scholar
  62. 62.
    H. J. Butt, P. Siedle, K. Seifert, K. Fendler, T. Seeger, E. Bamberg, A. L. Weisenhorn, K. Goldie, and A. Engel, Journal of Micros- copy-Oxford 169, 75-84 (1993).Google Scholar
  63. 63.
    R. M. White and F. W. Voltmer, Applied Physics Letters 12, 314-& (1965).CrossRefGoogle Scholar
  64. 64.
    D. S. Ballantine and H. Wohltjen, Analytical Chemistry 61, A704-& (1989).CrossRefGoogle Scholar
  65. 65.
    A. J. Ricco, S. J. Martin, and T. E. Zipperian, Sensors and Actuators 8, 319-333 (1985).CrossRefGoogle Scholar
  66. 66.
    F. Josse and Z. Shana, Journal of the Acoustical Society of America 84, 978-984 (1988).CrossRefGoogle Scholar
  67. 67.
    M. J. Vellekoop, Ultrasonics 36, 7-14 (1998).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations