Sensor Characteristics and Physical Effects

The potential of nanotechnology enabled sensors was highlighted in the previous chapter. In this chapter, the fundamental characteristics and terminologies associated with transducers and sensors are introduced. Furthermore, some of the major effects that are utilized in sensing for the conversion of energy from a measurand (the physical parameter being quantified by a measurement) to a measurable signal are described. These effects illustrate the relationship between different physical and chemical phenomena that can be measured using sensors. This will be a prelude to Chap. 3, which focuses on major transduction platforms.


Physical Effect Seebeck Coefficient Sensor Characteristic Negative Temperature Coefficient Bismuth Telluride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Göpel, J. Hesse, and J. N. Zemel, Sensors: A Comprehensive Survey (VCH, Weinheim, Germany, 1991).Google Scholar
  2. 2.
    M. J. Usher and D. A. Keating, Sensors and transducers: characteristics, applications, instrumentation, interfacing (Macmillan, London, UK, 1996).Google Scholar
  3. 3.
    R. Pallas-Areny and J. G. Webster, Sensors and Signal Conditioning (Wiley, New York, USA, 1991).Google Scholar
  4. 4.
    H. Lin, T. Jin, A. Dmytruk, M. Saito, and T. Yazawa, Journal of Photochemistry and Photobiology a-Chemistry 164, 173-177 (2004).CrossRefGoogle Scholar
  5. 5.
    J. Daintith, A Dictionary of Physics. (Oxford University Press, London, UK, 2000).Google Scholar
  6. 6.
    R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. V. Hart, T. Stoica, and H. Luth, Nano Letters 5, 981-984 (2005).CrossRefPubMedGoogle Scholar
  7. 7.
    M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, Nano Letters 2, 983-987 (2002).CrossRefGoogle Scholar
  8. 8.
    F. A. Hegmann, R. R. Tykwinski, K. P. H. Lui, J. E. Bullock, and J. E. Anthony, Physical Review Letters 89 (2002).Google Scholar
  9. 9.
    R. W. Miles, K. M. Hynes, and I. Forbes, Progress in Crystal Growth and Characterization of Materials 51, 1-42 (2005).CrossRefGoogle Scholar
  10. 10.
    A. S. Achoyan, A. E. Yesayan, E. M. Kazaryan, and S. G. Petrosyan, Semiconductors 36, 903-907 (2002).CrossRefGoogle Scholar
  11. 11.
    N. Tsutsui, V. Ryzhii, I. Khmyrova, P. O. Vaccaro, H. Taniyama, and T. Aida, Ieee Journal of Quantum Electronics 37, 830-836 (2001).CrossRefGoogle Scholar
  12. 12.
    V. M. Aroutionian, S. G. Petrosyan, and A. E. Yesayan, Thin Solid Films 451-52, 389-392 (2004).CrossRefGoogle Scholar
  13. 13.
    R. P. Raffaelle, B. J. Landi, J. D. Harris, S. G. Bailey, and A. F. Hepp, Materials Science and Engineering B-Solid State Materials for Advanced Technology 116, 233-243 (2005).Google Scholar
  14. 14.
    T. J. Bukowski and J. H. Simmons, Critical Reviews in Solid State and Materials Sciences 27, 119-142 (2002).CrossRefGoogle Scholar
  15. 15.
    G. Khrypunov, A. Romeo, F. Kurdesau, D. L. Batzner, H. Zogg, and A. N. Tiwari, Solar Energy Materials and Solar Cells 90, 664-677 (2006).CrossRefGoogle Scholar
  16. 16.
    J. R. Sites and X. X. Liu, Solar Energy Materials and Solar Cells 41-2, 373-379 (1996).CrossRefGoogle Scholar
  17. 17.
    F. Kessler, D. Herrmann, and M. Powalla, Thin Solid Films 480, 491-498 (2005).CrossRefGoogle Scholar
  18. 18.
    A. G. MacDiarmid, Synthetic Metals 125, 11-22 (2001).CrossRefGoogle Scholar
  19. 19.
    A. G. MacDiarmid, Reviews of Modern Physics 73, 701-712 (2001).CrossRefGoogle Scholar
  20. 20.
    A. G. MacDiarmid and A. J. Epstein, Makromolekulare Chemie- Macromolecular Symposia 51, 11-28 (1991).Google Scholar
  21. 21.
    W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science 295, 2425-2427 (2002).CrossRefPubMedGoogle Scholar
  22. 22.
    B. Oregan and M. Gratzel, Nature 353, 737-740 (1991).CrossRefGoogle Scholar
  23. 23.
    C. B. Cohen and S. G. Weber, Analytical Chemistry 65, 169-175 (1993).CrossRefGoogle Scholar
  24. 24.
    J. P. Spoonhower, Photographic Science and Engineering 24, 130 (1980).Google Scholar
  25. 25.
    R. Janes, M. Edge, J. Robinson, J. Rigby, and N. Allen, Journal of Photochemistry and Photobiology a-Chemistry 127, 111-115 (1999).CrossRefGoogle Scholar
  26. 26.
    E. N. Harvey, A History of Luminescence (American Philosophical Society, Philadelphia, USA, 1957).Google Scholar
  27. 27.
    B. J. Clark, T. Frost, and M. A. Russell, UV spectroscopy : techniques, instrumentation, data handling (Chapman & Hall, London, UK, 1993).Google Scholar
  28. 28.
    N. W. Barnett and P. S. Francis, in Encyclopedia of Analytical Science, edited by C. F. Poole, A. Townshend, and P. J. Worsfold (Academic Press, New York, USA, 2004), p. 305-315.Google Scholar
  29. 29.
    G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer- Verlag, New York, USA, 1995).Google Scholar
  30. 30.
    T. H. Gfroerer, in Encyclopedia of Analytical Chemistry, edited by R. A. Meyers (John Wiley & Sons Ltd., Chichester, UK, 2000), p. 9209-9231.Google Scholar
  31. 31.
    R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, Nature Biotechnology 17, 375-378 (1999).CrossRefPubMedGoogle Scholar
  32. 32.
    A. P. Alivisatos, Science 271, 933-937 (1996).CrossRefGoogle Scholar
  33. 33.
    P. N. Prasad, Introduction to Biophotonics, (Wiley Interscience, Hoboken, USA, 2003).CrossRefGoogle Scholar
  34. 34.
    C. Seydel, Science 300, 80-81 (2003).CrossRefPubMedGoogle Scholar
  35. 35.
    W. C. W. Chan and S. M. Nie, Science 281, 2016-2018 (1998).CrossRefPubMedGoogle Scholar
  36. 36.
    G. Destriau, Journal de Chemie Physique 33, 587-625 (1936).Google Scholar
  37. 37.
    S. K. Poznyak and A. I. Kulak, Talanta 43, 1607-1613 (1996).CrossRefPubMedGoogle Scholar
  38. 38.
    D. Huang, M. A. Reshchikov, and H. Morkoc, in Quantum Dots, edited by E. Borovitskaya and M. S. Shur (World Scientific, Singapore, 2002), p. 79.Google Scholar
  39. 39.
    E. Borovitskaya and M. S. Shur, in Quantum Dots, edited by E. Borovitskaya and M. S. Shur (World Scientific, Singapore, 2002), p. 1.Google Scholar
  40. 40.
    G. B. Stringfellow, in High brightness light emitting diodes (Academic Press, San Diego, USA, 1997).Google Scholar
  41. 41.
    Y. Huang, X. F. Duan, and C. M. Lieber, Small 1, 142-147 (2005).CrossRefPubMedGoogle Scholar
  42. 42.
    P. H. Zhang, V. H. Crespi, E. Chang, S. G. Louie, and M. L. Cohen, Nature 409, 69-71 (2001).CrossRefPubMedGoogle Scholar
  43. 43.
    S. K. Poznyak, D. V. Talapin, E. V. Shevchenko, and H. Weller, Nano Letters 4, 693-698 (2004).CrossRefGoogle Scholar
  44. 44.
    H. Cui, Z. F. Zhang, and M. J. Shi, Journal of Physical Chemistry B 109, 3099-3103 (2005).CrossRefGoogle Scholar
  45. 45.
    G.-F. Jie, B. Liu, J.-J. Miao, and J.-J. Zhu, Talanta (2006).Google Scholar
  46. 46.
    P. J. Chantry, Journal of Chemical Physics 55, 2746 (1971).CrossRefGoogle Scholar
  47. 47.
    E. S. Polzik, J. Carri, and H. J. Kimble, Physical Review Letters 68, 3020-3023 (1992).CrossRefPubMedGoogle Scholar
  48. 48.
    A. Zhukov, J. Gonzalez, J. M. Blanco, M. Vazquez, and V. Larin, Journal of Materials Research 15, 2107-2113 (2000).CrossRefGoogle Scholar
  49. 49.
    F. N. Van Dau, A. Schuhl, J. R. Childress, and M. Sussiau, Sensors and Actuators A 53, 256-260 (1996).CrossRefGoogle Scholar
  50. 50.
    L. Ejsing, M. F. Hansen, A. K. Menon, H. A. Ferreira, D. L. Graham, and P. P. Freitas, Journal of Magnetism and Magnetic Materials 293, 677-684 (2005).CrossRefGoogle Scholar
  51. 51.
    L. Ejsing, M. F. Hansen, A. K. Menon, H. A. Ferreira, D. L. Graham, and P. P. Freitas, Applied Physics Letters 84, 4729-4731 (2004).CrossRefGoogle Scholar
  52. 52.
    M. I. Dyakonov and V. I. Perel, Physical Letters A 35, 459-460 (1971).CrossRefGoogle Scholar
  53. 53.
    A. Gerber, A. Milner, J. Tuaillon-Combes, M. Negrier, O. Boisron, P. Melinon, and A. Perez, Journal of Magnetism and Magnetic Materials 241, 340-344 (2002).CrossRefGoogle Scholar
  54. 54.
    M. W. Zemansky and R. H. Dittman, Heat and thermodynamics: an intermediate textbook, 6th ed. (McGraw-Hill, New York, USA, 1981).Google Scholar
  55. 55.
    H. Baltes, O. Paul, and O. Brand, Proceedings of the IEEE 86, 1660-1678 (1998).CrossRefGoogle Scholar
  56. 56.
    H. J. Goldsmid, Thermoelectric Refrigeration (Plenum, New York, USA, 1964).Google Scholar
  57. 57.
    H. J. Goldsmid and G. S. Nolas, in A review of the New Thermoelectric Materials, 2001, p. 1-6.Google Scholar
  58. 58.
    L. D. Hicks and M. S. Dresselhaus, Physical Review B 47, 12727-12731 (1993).CrossRefGoogle Scholar
  59. 59.
    A. R. Abramson, W. C. Kim, S. T. Huxtable, H. Q. Yan, Y. Y. Wu, A. Majumdar, C. L. Tien, and P. D. Yang, Journal of Microelectromechanical Systems 13, 505-513 (2004).CrossRefGoogle Scholar
  60. 60.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Nature 413, 597-602 (2001).CrossRefPubMedGoogle Scholar
  61. 61.
    D. Saha, A. D. Sharma, A. Sen, and H. S. Maiti, MATERIALS LETTERS 55, 403-406 (2002).CrossRefGoogle Scholar
  62. 62.
    J. C. Kim, G. H. Park, S. J. Suh, Y. K. Lee, S. J. Lee, S. J. Lee, and J. D. Nam, Polymer Korea 26, 367-374 (2002).Google Scholar
  63. 63.
    C. S. Smith, Physical Review 94, 42-49 (1954).CrossRefGoogle Scholar
  64. 64.
    G. Gerlach and R. Werthschutzky, Tm-Technisches Messen 72, 53-76 (2005).CrossRefGoogle Scholar
  65. 65.
    S. M. Sze, Physics of semiconductor devices, 2nd ed. (Wiley, New York, USA, 1981).Google Scholar
  66. 66.
    H. Jensenius, J. Thaysen, A. A. Rasmussen, L. H. Veje, O. Hansen, and A. Boisen, Applied Physics Letters 76, 2615-2617 (2000).CrossRefGoogle Scholar
  67. 67.
    C. Stampfer, T. Helbling, D. Obergfell, B. Schoberle, M. K. Tripp, A. Jungen, S. Roth, V. M. Bright, and C. Hierold, Nano Letters 6, 233-237 (2006).CrossRefPubMedGoogle Scholar
  68. 68.
    B. Naranjo, J. K. Gimzewski, and S. Putterman, Nature 434, 1115-1117 (2005).CrossRefPubMedGoogle Scholar
  69. 69.
    R. Kohler, N. Neumann, N. Hess, R. Bruchhaus, W. Wersing, and M. Simon, Ferroelectrics 201, 83-92 (1997).CrossRefGoogle Scholar
  70. 70.
    J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannell, Measurement Science & Technology 14, 916-922 (2003).CrossRefGoogle Scholar
  71. 71.
    Q. Q. Zhang, H. L. W. Chan, and C. L. Choy, Computers part A- Applied Science and Manufacturing 30, 163-167 (1999).CrossRefGoogle Scholar
  72. 72.
    L. Liang, Z. Liangying, and Y. Xi, Ceramics International 30, 1843-1846 (2004).CrossRefGoogle Scholar
  73. 73.
    A. E. Clark and H. S. Belson, Physical Review B 5, 3642-3644 (1972).CrossRefGoogle Scholar
  74. 74.
    M. Vazquez, M. Knobel, M. L. Sanchez, R. Valenzuela, and A. P. Zhukov, Sensors and Actuators A 59, 20-29 (1997).CrossRefGoogle Scholar
  75. 75.
    T. R. McGuire and R. I. Potter, Ieee Transactions on Magnetics 11, 1018-1038 (1975).CrossRefGoogle Scholar
  76. 76.
    M. N. Baibich, J. M. Broto, A. Fert, F. N. Vandau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Physical Review Letters 61, 2472-2475 (1988).CrossRefPubMedGoogle Scholar
  77. 77.
    G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Physical Review B 39, 4828-4830 (1989).CrossRefGoogle Scholar
  78. 78.
    G. A. Prinz, Journal of Magnetism and Magnetic Materials 200, 57-68 (1999).CrossRefGoogle Scholar
  79. 79.
    A. M. Fennimore, T. D. Yuzvinsky, W. Q. Han, M. S. Fuhrer, J. Cumings, and A. Zettl, Nature 424, 408-410 (2003).CrossRefPubMedGoogle Scholar
  80. 80.
    K. Kurosawa, S. Yoshida, and K. Sakamoto, Journal of Lightwave Technology 13, 1378-1384 (1995).CrossRefGoogle Scholar
  81. 81.
    D. M. Le Vine and S. Abraham, Ieee Transactions on Geoscience and Remote Sensing 40, 771-782 (2002).CrossRefGoogle Scholar
  82. 82.
    J. Lenz and A. S. Edelstein, IEEE Sensors Journal 6, 631-649 (2006).CrossRefGoogle Scholar
  83. 83.
    C. Hunt and S. Sahu, The IRM Quarterly 2, 1-8 (1992).Google Scholar
  84. 84.
    Z. Q. Qiu and S. D. Bader, Review of Scientific Instruments 71, 1243-1255 (2000).CrossRefGoogle Scholar
  85. 85.
    Z. Q. Qiu and S. D. Bader, Journal of Magnetism and Magnetic Materials 200, 664-678 (1999).CrossRefGoogle Scholar
  86. 86.
    W. J. Karl, A. L. Powell, R. Watts, M. R. J. Gibbs, and C. R. White-house, Sensors and Actuators a-Physical 81, 137-141 (2000).CrossRefGoogle Scholar
  87. 87.
    F. Tang, D. L. Liu, D. X. Ye, T. M. Lu, and G. C. Wang, Journal of Magnetism and Magnetic Materials 283, 65-70 (2004).CrossRefGoogle Scholar
  88. 88.
    A. Yariv, Optical electronics (Oxford University Press, New York, USA, 1991).Google Scholar
  89. 89.
    K. Hidaka, IEEE Electrical Insulation Magazine 12, 17-23. 28 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations