Skip to main content

Equations Reducible to Pell’s Type Equations

  • Chapter
Book cover Quadratic Diophantine Equations

Part of the book series: Developments in Mathematics ((DEVM,volume 40))

  • 2015 Accesses

Abstract

An interesting problem concerning the Pell’s equation \(u^{2} - Dv^{2} = 1\) is to study when the second component of a solution (u, v) is a perfect square.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alder, H.L.: n and n + 1 consecutive integers with equal sums of squares. Am. Math. Mon. 69, 282–285 (1962)

    Google Scholar 

  2. Alder, H.L., Alfred, U.: n and n + k consecutive integers with equal sums of squares. Am. Math. Mon. 71, 749–754 (1964)

    Google Scholar 

  3. Alfred, B.U.: n and n + 1 consecutive integers with equal sums of squares. Math. Mag. 35, 155–164 (1962)

    Google Scholar 

  4. Alfred, B.U.: Consecutive integers whose sum of squares is a perfect square. Math. Mag. 37, 19–32 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  5. Andreescu, T.: Test Problem No. 3. USA Mathematical Olympiad Summer Program (2000)

    Google Scholar 

  6. Andreescu, T.: A note on the equation (x + y + z)2 = xyz. Gen. Math. 10(3–4), 17–22 (2002)

    Google Scholar 

  7. Andreescu, T.: Solutions to the Diophantine equation (x + y + z + t)2 = xyzt. Studia Univ. “Babeş-Bolyai” Math. 48(2), 3–7 (2003)

    Google Scholar 

  8. Andreescu, T.: On integer solutions to the equation x 3 + y 3 + z 3 + t 3 = n. Matematika Plus 34, 19–20 (2002)

    Google Scholar 

  9. Andreescu, T., Andrica, D.: Ecuaţia lui Pell şi aplicaţii (Romanian). în “Teme şi probleme pentru pregătirea olimpiadelor de matematică” (T. Albu, col.), pp. 33–42. Piatra Neamţ (1984)

    Google Scholar 

  10. Andreescu, T., Feng, Z.: Mathematical Olympiads 1999–2000. Problems and Solutions from Around the World. Mathematical Association of America, Washington, DC (2001)

    Google Scholar 

  11. Andreescu, T., Gelca, R.: Mathematical Olympiad Challenges. Birkhäuser, Boston (2000)

    Book  MATH  Google Scholar 

  12. Andreescu, T., Kedlaya, K.: Mathematical Contests 1995–1996. Mathematical Association of America, Washington, DC (1997)

    Google Scholar 

  13. Anning, N.: A cubic equation of Newton’s. Am. Math. Mon. 33, 211–212 (1926)

    Article  MATH  MathSciNet  Google Scholar 

  14. Banea, H.: Probleme de matematică traduse din revista sovietică KVANT (Romanian). Ed. Did. Ped. Bucureşti (1983)

    Google Scholar 

  15. Barnett, I.A.: A Diophantine equation characterizing the law of cosines. Am. Math. Mon. 62, 251–252 (1955)

    Article  MATH  Google Scholar 

  16. Bennett, M.A., Walsh, P.G.: The Diophantine equation b 2 X 4dY 2 = 1. Proc. AMS 127, 3481–3491 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Bumby, R.T.: The Diophantine equation 3x 4 − 2y 2 = 1. Math. Scand. 21, 144–148 (1967)

    MATH  MathSciNet  Google Scholar 

  18. Carmichael, R.D.: The theory of numbers and Diophantine analysis. Dover, New York (1959)

    MATH  Google Scholar 

  19. Chao, K., Chi, S.: On the Diophantine equation x 4Dy 2 = 1, II. Chin. Ann. Math. Ser. A 1, 83–88 (1980)

    MATH  Google Scholar 

  20. Cohn, J.H.E.: The Diophantine equation x 4Dy 2 = 1 (II). Acta Arith. 78, 401–403 (1997)

    MATH  MathSciNet  Google Scholar 

  21. Erdös, P.: On a Diophantine equation. J. Lond. Math. Soc. 26, 176–178 (1951)

    Article  MATH  Google Scholar 

  22. Gopalan, M.A., Vidhyalakshmi, S., Kavitha, A.: Observations on (x + y + z)2 = xyz. Int. J. Math. Sci. Appl. 3(1), 59–62 (2013)

    Google Scholar 

  23. Gopalan, M.A., Vidhyalakshmi, S., Kavitha, A.: Integral solutions to the biquadratic equation with four unknowns (x + y + z + w)2 = xyzw + 1. IOSR J. Math. 7(4), 11–13 (2013)

    Article  Google Scholar 

  24. Guy, R.K.: Unsolved Problems in Number Theory. Springer, New York (1994)

    Book  MATH  Google Scholar 

  25. Herschfeld, A.: Problem E1457. Am. Math. Mon. 68 930–931 (1961)

    Article  MathSciNet  Google Scholar 

  26. Ljunggren, W.: Einige Eigenschaften der Einheiten reel Quadratischer und rein- biquadratischen Zahlkorper. Skr. Norske Vid. Akad. Oslo (I) 1936(12)

    Google Scholar 

  27. Ljunggren, W.: Zur Theorie der Gleichung x 2 = Dy 4. Avh. Norske Vid. Akad. Oslo (I) 1942(5)

    Google Scholar 

  28. Ljunggren, W.: Some remarks on the Diophantine equations x 2Dy 4 = 1 and x 4Dy 2 = 1. J. Lond. Math. Soc. 41, 542–544 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ljunggren, W.: Some theorems on indeterminate equations of the form (x n − 1)∕(x − 1) = y q. Norsk Mat. Tidsskr. 25, 17–20 (1943)

    MATH  MathSciNet  Google Scholar 

  30. Luca, F.: A generalization of the Schinzel-Sierpinski system of equations. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 41(89/3), 181–195 (1998)

    Google Scholar 

  31. Luca, F., Togbe, A.: On the Diophantine equation x 4q 4 = py 3. Rocky Mountain J. Math. 40(3), 995–108 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. Maohua, L.: A note on the Diophantine equation x 2pDy 2 = 1. Proc. AMS 107(1), 27–34 (1989)

    Article  MATH  Google Scholar 

  33. Mignotte, M.: A note on the equation x 2 − 1 = y 2(z 2 − 1). C. R. Math. Rep. Acad. Sci. Canada 13(4), 157–160 (1991)

    MATH  MathSciNet  Google Scholar 

  34. Mordell, L.J.: On the integer solutions of the equation \(x^{2} + y^{2} + z^{2} + 2xyz = n\). J. Lond. Math. Soc. 28, 500–510 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  35. Mordell, L.J.: Corrigendum: integer solutions of the equation \(x^{2} + y^{2} + z^{2} + 2xyz = n\). J. Lond. Math. Soc. 32, 383 (1957)

    Google Scholar 

  36. Mordell, L.J.: Diophantine equations. Academic, London (1969)

    MATH  Google Scholar 

  37. Oppenheim, A.: On the Diophantine equation \(x^{2} + y^{2} + z^{2} + 2xyz = 1\). Am. Math. Mon. 64, 101–103 (1957)

    Article  MathSciNet  Google Scholar 

  38. Parker, W.V.: Problem 4511. Am. Math. Mon. 61, 130–131 (1954)

    Article  Google Scholar 

  39. Savin, D.: On some Diophantine equations (I). An. Şt. Univ. Ovidius Constanţa Ser. Mat. 10(1), 121–134 (2002)

    MATH  MathSciNet  Google Scholar 

  40. Savin, D.: On some Diophantine equation \(x^{4} - q^{4} = py^{3}\), in the special conditions. An. Şt. Univ. Ovidius Constanţa Ser. Mat. 12(1), 81–90 (2004)

    MATH  MathSciNet  Google Scholar 

  41. Sándor, J., Berger, G.: Aufgabe 1025. Elem. Math. 45(1), 28 (1990)

    Google Scholar 

  42. Starker, E.P.: Problem E2151. Am. Math. Mon. 76, 1140 (1969)

    Article  Google Scholar 

  43. Venkatachalam, I.: Problem 4674. Am. Math. Mon. 63, 126 (1956)

    Article  MathSciNet  Google Scholar 

  44. ver der Waall, R.W.: On the Diophantine equations x 2 + x + 1 = 3v 2, x 3 − 1 = 2y 2, x 2 + 1 = 2y 2. Simon Stevin 46, 39–51 (1972/1973)

    Google Scholar 

  45. Walsh, G.: A note on a theorem of Ljunggren and the Diophantine equations x 2kxy 2 + y 4 = 1, 4. Arch. Math. 73, 119–125 (1999)

    Article  MATH  Google Scholar 

  46. Wang, Y.B.: On the Diophantine equation (x 2 − 1)(y 2 − 1) = (z 2 − 1)2. Heilongjiang Daxue Ziran Kexue Xuebao (4), 84–85 (1989)

    Google Scholar 

  47. Wojtacha, J.: On integral solution of a Diophantine equation. Fasc. Math. 8, 105–108 (1074/1975)

    Google Scholar 

  48. Wu, H., Le, M.: A note on the Diophantine equation \((x^{2} - 1)(y^{2} - 1) = (z^{2} - 1)^{2}\). Colloq. Math. 71(1), 133–136 (1996)

    MATH  MathSciNet  Google Scholar 

  49. Wulczyn, G.: Problem E2158. Am. Math. Mon. 76, 1144–1146 (1969)

    Article  MathSciNet  Google Scholar 

  50. Zhenfu, C.: On the Diophantine equations x 2 + 1 = 2y 2 and x 2 − 1 = 2Dz 2. J. Math. (Wuhan) 3, 227–235 (1983)

    Google Scholar 

  51. Zhenfu, C.: On the Diophantine equation x 2nDy 2 = 1. Proc. AMS 98(1), 11–16 (1986)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Andreescu, T., Andrica, D. (2015). Equations Reducible to Pell’s Type Equations. In: Quadratic Diophantine Equations. Developments in Mathematics, vol 40. Springer, New York, NY. https://doi.org/10.1007/978-0-387-54109-9_5

Download citation

Publish with us

Policies and ethics