Advertisement

The Dynamical Response of Proteins Under Force

  • Kirstine L. Anderson
  • Sheena E. Radford
  • D. Alastair Smith
  • David J. Brockwell

At the macroscopic level, it is well understood that ordered assemblies of proteins are used extensively throughout biology to provide structures that are mechanically strong and yet not brittle. Examples include the triple coiled coil of collagen, the β-sheets of silk, and the coiled coil rods of keratin, a protein found in nails, claws, and skin tissue. More recently, it has been realised that at a cellular and subcellular level, there are also many proteins whose function requires them to resist mechanical deformation. Indeed at the subcellular (nanoscale) level, force is ubiquitous and is not only important in systems with a clear mechanical function such as processive motors that run on tracks (e.g., myosin-actin and kinesin-microtubules) but is also thought to play a role in mechano-signalling1, fibrillogenesis1, and protein degradation2. At this length scale, many protein systems that react to force are either monomeric or are expressed as tandem arrays of domains with closely related topologies.

Keywords

Energy Landscape Contour Length Steer Molecular Dynamic Speed Dependence Bovine Carbonic Anhydrase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Janmey, P. A.; Weitz, D. A., Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem. Sci. 2004, 29, (7), 364–370.CrossRefGoogle Scholar
  2. 2.
    Hanson, P. I.; Whiteheart, S. W., AAA+ proteins: have engine, will work. Nat. Rev. Mol. Cell. Biol. 2005, 6, (7), 519–529.CrossRefGoogle Scholar
  3. 3.
    Clarke, J.; Cota, E.; Fowler, S. B.; Hamill, S. J., Folding studies of immunoglobulin-like beta-sandwich proteins suggest that they share a common folding pathway. Struct. Fold. Des. 1999, 7, (9), 1145–1153.CrossRefGoogle Scholar
  4. 4.
    Rief, M.; Fernandez, J. M.; Gaub, H. E., Elastically coupled two-level systems as a model for biopolymer extensibility. Phys. Rev. Lett. 1998, 81, (21), 4764–4767.ADSCrossRefGoogle Scholar
  5. 5.
    Engel, A.; Gaub, H. E.; Muller, D. J., Atomic force microscopy: a forceful way with single molecules. Curr. Biol. 1999, 9, (4), R133–R136.CrossRefGoogle Scholar
  6. 6.
    Cecconi, R.; Shank, E.; Bustamante, C.; Marqusee, S., Direct observation of the three-state folding of a single protein molecule. Science 2005, 309, 2057–2060.ADSCrossRefGoogle Scholar
  7. 7.
    Seidel, R.; van Noort, J.; van der Scheer, C.; Bloom, J. G. P.; Dekker, N. H.; Dutta, C. F.; Blundell, A.; Robinson, T.; Firman, K.; Dekker, C., Real-time observation of DNA translocation by the type I restriction modification enzyme EcoR124I. Nat. Struct. Mol. Biol. 2004, 11, (9), 838–843.CrossRefGoogle Scholar
  8. 8.
    Merkel, R.; Nassoy, P.; Leung, A.; Ritchie, K.; Evans, E., Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 1999, 397, (6714), 50–53.ADSCrossRefGoogle Scholar
  9. 9.
    Moller, W.; Nemoto, I.; Matsuzaki, T.; Hofer, T.; Heyder, J., Magnetic phagosome motion in J774A.1 macrophages: Influence of cytoskeletal drugs. Biophys. J. 2000, 79, (2), 720–730.CrossRefGoogle Scholar
  10. 10.
    Evans, E.; Leung, A.; Heinrich, V.; Zhu, C., Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond. Proc. Natl. Acad. Sci. USA 2004, 101, (31), 11281–11286.ADSCrossRefGoogle Scholar
  11. 11.
    Evans, E.; Leung, A.; Hammer, D.; Simon, S., Chemically distinct transition states govern rapid dissociation of single L-selectin bonds under force. Proc. Natl. Acad. Sci. USA 2001, 98, (7), 3784–3789.ADSCrossRefGoogle Scholar
  12. 12.
    Marszalek, P. E.; Li, H. B.; Oberhauser, A. F.; Fernandez, J. M., Chair-boat transitions in single polysaccharide molecules observed with force-ramp AFM. Proc. Natl. Acad. Sci. USA 2002, 99, (7), 4278–4283.ADSCrossRefGoogle Scholar
  13. 13.
    Kawakami, M.; Byrne, K.; Khatri, B.; McLeish, T. C. B.; Radford, S. E.; Smith, D. A., Viscoelastic properties of single polysaccharide molecules determined by analysis of thermally driven oscillations of an atomic force microscope cantilever. Langmuir 2004, 20, (21), 9299–9303.CrossRefGoogle Scholar
  14. 14.
    Kawakami, M.; Byrne, K.; Khatri, B. S.; McLeish, T. C. B.; Radford, S. E.; Smith, D. A., Viscoelastic measurements of single molecules on a millisecond time scale by magnetically driven oscillation of an atomic force microscope cantilever. Langmuir 2005, 21, (10), 4765–4772.CrossRefGoogle Scholar
  15. 15.
    Clausen-Schaumann, H.; Rief, M.; Tolksdorf, C.; Gaub, H. E., Mechanical stability of single DNA molecules. Biophys. J. 2000, 78, (4), 1997–2007.CrossRefGoogle Scholar
  16. 16.
    Florin, E. L.; Rief, M.; Lehmann, H.; Ludwig, M.; Dornmair, C.; Moy, V. T.; Gaub, H. E., Sensing specific molecular-interactions with the atomic-force microscope. Biosens. Bioelectron. 1995, 10, (9–10), 895–901.CrossRefGoogle Scholar
  17. 17.
    Allen, S.; Chen, X. Y.; Davies, J.; Davies, M. C.; Dawkes, A. C.; Edwards, J. C.; Roberts, C. J.; Sefton, J.; Tendler, S. J. B.; Williams, P. M., Detection of antigen-antibody binding events with the atomic force microscope. Biochemistry 1997, 36, (24), 7457–7463.CrossRefGoogle Scholar
  18. 18.
    Dammer, U.; Hegner, M.; Anselmetti, D.; Wagner, P.; Dreier, M.; Huber, W.; Guntherodt, H. J., Specific antigen/antibody interactions measured by force microscopy. Biophys. J. 1996, 70, (5), 2437–2441.ADSCrossRefGoogle Scholar
  19. 19.
    Green, N. H.; Williams, P. M.; Wahab, O.; Davies, M. C.; Roberts, C. J.; Tendler, S. J. B.; Allen, S., Single-molecule investigations of RNA dissociation. Biophys. J. 2004, 86, (6), 3811–3821.CrossRefGoogle Scholar
  20. 20.
    Krautbauer, R.; Rief, M.; Gaub, H. E., Unzipping DNA oligomers. Nano Letters 2003, 3, (4), 493–496.ADSCrossRefGoogle Scholar
  21. 21.
    Binnig, G.; Quate, C. F.; Gerber, C., Atomic force microscope. Phys. Rev. Lett. 1986, 56, (9), 930–933.ADSCrossRefGoogle Scholar
  22. 22.
    Burnham, N. A.; Colton, R. J., Measuring The nanomechanical properties and surface forces of materials using an atomic force microscope. J. Vac. Technol. A 1989, 7, (4), 2906–2913.ADSCrossRefGoogle Scholar
  23. 23.
    Hutter, J. L.; Bechhoefer, J., Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 1993, 64, (7), 1868–1873.ADSCrossRefGoogle Scholar
  24. 24.
    Kedrov, A.; Krieg, M.; Ziegler, C.; Kuhlbrandt, W.; Muller, D. J., Locating ligand binding and activation of a single antiporter. EMBO Rep. 2005, 6, (7), 668–674.CrossRefGoogle Scholar
  25. 25.
    Cisneros, D. A.; Oesterhelt, D.; Muller, D. J., Probing origins of molecular interactions stabilizing the membrane proteins halorhodopsin and bacteriorhodopsin. Struct. Fold. Des. 2005, 13, (2), 235–242.CrossRefGoogle Scholar
  26. 26.
    Janovjak, H.; Kessler, M.; Oesterhelt, D.; Gaub, H.; Muller, D. J., Unfolding pathways of native bacteriorhodopsin depend on temperature. EMBO J. 2003, 22, (19), 5220–5229.CrossRefGoogle Scholar
  27. 27.
    Oesterhelt, F.; Oesterhelt, D.; Pfeiffer, M.; Engel, A.; Gaub, H. E.; Muller, D. J., Unfolding pathways of individual bacteriorhodopsins. Science 2000, 288, (5463), 143–146.ADSCrossRefGoogle Scholar
  28. 28.
    Kedrov, A.; Ziegler, C.; Janovjak, H.; Kuhlbrandt, W.; Muller, D. J., Controlled unfolding and refolding of a single sodium-proton antiporter using atomic force microscopy. J. Mol. Biol. 2004, 340, (5), 1143–1152.CrossRefGoogle Scholar
  29. 29.
    Kedrov, A.; Janovjak, H.; Ziegler, C.; Kuhlbrandt, W.; Muller, D. J., Observing folding pathways and kinetics of a single sodium-proton antiporter from Escherichia coli. J. Mol. Biol. 2006, 355, (1), 2–8.CrossRefGoogle Scholar
  30. 30.
    Muller, D. J.; Janovjak, H.; Lehto, T.; Kuerschner, L.; Anderson, K., Observing structure, function and assembly of single proteins by AFM. Prog. Biophys. Mol. Biol. 2002, 79, (1-3), 1–43.CrossRefGoogle Scholar
  31. 31.
    Frederix, P.; Akiyama, T.; Staufer, U.; Gerber, C.; Fotiadis, D.; Muller, D. J.; Engel, A., Atomic force bio-analytics. Curr. Opin. Chem. Biol. 2003, 7, (5), 641–647.CrossRefGoogle Scholar
  32. 32.
    Tokunaga, M.; Aoki, T.; Hiroshima, M.; Kitamura, K.; Yanagida, T., Subpiconewton intermolecular force microscopy. Biochem. Biophys. Res. Commun. 1997, 231, (3), 566–569.CrossRefGoogle Scholar
  33. 33.
    Ashby, P. D.; Chen, L. W.; Lieber, C. M., Probing intermolecular forces and potentials with magnetic feedback chemical force microscopy. J. Am. Chem. Soc. 2000, 122, (39), 9467–9472.CrossRefGoogle Scholar
  34. 34.
    Mitsui, K.; Hara, M.; Ikai, A., Mechanical unfolding of alpha(2)-macroglobulin molecules with atomic force microscope. FEBS Lett. 1996, 385, (1–2), 29–33.CrossRefGoogle Scholar
  35. 35.
    Rief, M.; Gautel, M.; Oesterhelt, F.; Fernandez, J. M.; Gaub, H. E., Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 1997, 276, (5315), 1109–1112.CrossRefGoogle Scholar
  36. 36.
    Oberhauser, A. F.; Marszalek, P. E.; Erickson, H. P.; Fernandez, J. M., The molecular elasticity of the extracellular matrix protein tenascin. Nature 1998, 393, (6681), 181–185.ADSCrossRefGoogle Scholar
  37. 37.
    Labeit, S.; Kolmerer, B., Titins - Giant Proteins In Charge Of Muscle Ultrastructure And Elasticity. Science 1995, 270, (5234), 293–296.ADSCrossRefGoogle Scholar
  38. 38.
    Schoenauer, R.; Bertoncini, P.; Machaidze, G.; Aebi, U.; Perriard, J. C.; Hegner, M.; Agarkova, I., Myomesin is a molecular spring with adaptable elasticity. J. Mol. Biol. 2005, 349, (2), 367–379.CrossRefGoogle Scholar
  39. 39.
    Bertoncini, P.; Schoenauer, R.; Agarkova, I.; Hegner, M.; Perriard, J. C.; Guntherodt, H. J., Study of the mechanical properties of myomesin proteins using dynamic force spectroscopy. J. Mol. Biol. 2005, 348, (5), 1127–1137.CrossRefGoogle Scholar
  40. 40.
    Best, R. B.; Li, B.; Steward, A.; Daggett, V.; Clarke, J., Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation. Biophys. J. 2001, 81, (4), 2344–2356.CrossRefGoogle Scholar
  41. 41.
    Oberhauser, A. F.; Badilla-Fernandez, C.; Carrion-Vazquez, M.; Fernandez, J. M., The mechanical hierarchies of fibronectin observed with single- molecule AFM. J. Mol. Biol. 2002, 319, (2), 433–447.CrossRefGoogle Scholar
  42. 42.
    Rounsevell, R. W. S.; Steward, A.; Clarke, J., Biophysical investigations of engineered polyproteins: implications for force data. Biophys. J. 2005, 88, (3), 2022–2029.CrossRefGoogle Scholar
  43. 43.
    Best, R. B.; Brockwell, D. J.; Toca-Herrera, J. L.; Blake, A. W.; Smith, D. A.; Radford, S. E.; Clarke, J., Force mode atomic force microscopy as a tool for protein folding studies. Anal. Chim. Acta 2003, 479, (1), 87–105.CrossRefGoogle Scholar
  44. 44.
    Brockwell, D. J.; Beddard, G. S.; Clarkson, J.; Zinober, R. C.; Blake, A. W.; Trinick, J.; Olmsted, P. D.; Smith, D. A.; Radford, S. E., The effect of core destabilization on the mechanical resistance of I27. Biophys. J. 2002, 83, (1), 458–472.CrossRefGoogle Scholar
  45. 45.
    Steward, A.; Toca-Herrera, J. L.; Clarke, J., Versatile cloning system for construction of multimeric proteins for use in atomic force microscopy. Protein Sci. 2002, 11, (9), 2179–2183.CrossRefGoogle Scholar
  46. 46.
    Forman, J. R.; Qamar, S.; Paci, E.; Sandford, R. N.; Clarke, J., The remarkable mechanical strength of polycystin-1 supports a direct role in mechanotransduction. J. Mol. Biol. 2005, 349, (4), 861–871.CrossRefGoogle Scholar
  47. 47.
    Carrion-Vazquez, M.; Oberhauser, A. F.; Fowler, S. B.; Marszalek, P. E.; Broedel, S. E.; Clarke, J.; Fernandez, J. M., Mechanical and chemical unfolding of a single protein: A comparison. Proc. Natl. Acad. Sci. USA 1999, 96, (7), 3694–3699.ADSCrossRefGoogle Scholar
  48. 48.
    Marko, J. F.; Siggia, E. D., Stretching DNA. Macromolecules 1995, 28, (26), 8759–8770.ADSCrossRefGoogle Scholar
  49. 49.
    Bustamante, C.; Marko, J. F.; Siggia, E. D.; Smith, S., Entropic elasticity of lambda-phage DNA. Science 1994, 265, (5178), 1599–1600.ADSCrossRefGoogle Scholar
  50. 50.
    Dietz, H.; Rief, M., Exploring the energy landscape of GFP by single-molecule mechanical experiments. Proc. Natl. Acad. Sci. USA 2004, 101, (46), 16192–16197.ADSCrossRefGoogle Scholar
  51. 51.
    Chyan, C. L.; Lin, F. C.; Peng, H.; Yuan, J. M.; Chang, C. H.; Lin, S. H.; Yang, G., Reversible mechanical unfolding of single ubiquitin molecules. Biophys. J. 2004, 87, (6), 3995–4006.CrossRefGoogle Scholar
  52. 52.
    Carrion-Vazquez, M.; Oberhauser, A. F.; Fisher, T. E.; Marszalek, P. E.; Li, H. B.; Fernandez, J. M., Mechanical design of proteins-studied by single-molecule force spectroscopy and protein engineering. Prog. Biophys. Mol. Biol. 2000, 74, (1-2), 63–91.CrossRefGoogle Scholar
  53. 53.
    Evans, E.; Ritchie, K., Dynamic strength of molecular adhesion bonds. Biophys. J. 1997, 72, (4), 1541–1555.CrossRefGoogle Scholar
  54. 54.
    Brockwell, D. J.; Beddard, G. S.; Paci, E.; West, D. K.; Olmsted, P. D.; Smith, D. A.; Radford, S. E., Mechanically unfolding the small, topologically simple protein L. Biophys. J. 2005, 89, (1), 506–519.CrossRefGoogle Scholar
  55. 55.
    Schlierf, M.; Rief, M., Temperature softening of a protein in single-molecule experiments. J. Mol. Biol. 2005, 354, 497–503.CrossRefGoogle Scholar
  56. 56.
    Rounsevell, R.; Forman, J. R.; Clarke, J., Atomic force microscopy: mechanical unfolding of proteins. Methods 2004, 34, (1), 100–111.CrossRefGoogle Scholar
  57. 57.
    Best, R. B.; Fowler, S. B.; Toca-Herrera, J. L.; Clarke, J., A simple method for probing the mechanical unfolding pathway of proteins in detail. Proc. Natl. Acad. Sci. USA 2002, 99, (19), 12143–12148.ADSCrossRefGoogle Scholar
  58. 58.
    Williams, P. M.; Evans, E., Dynamic force spectroscopy II: multiple bonds. In Les Houches-Ecole d’Ete de Physique Theorique., Flyvbjerg, H.; Julicher, F.; Ormos, P.; David, F., Eds. Springer-Verlag GmbH: Heidelberg, 2002; Vol. 75.Google Scholar
  59. 59.
    Oberhauser, A. F.; Hansma, P. K.; Carrion-Vazquez, M.; Fernandez, J. M., Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc. Natl. Acad. Sci. USA 2001, 98, (2), 468–472.ADSCrossRefGoogle Scholar
  60. 60.
    Schlierf, M.; Li, H. B.; Fernandez, J. M., The unfolding kinetics of ubiquitin captured with single- molecule force-clamp techniques. Proc. Natl. Acad. Sci. USA 2004, 101, (19), 7299–7304.ADSCrossRefGoogle Scholar
  61. 61.
    Carrion-Vazquez, M.; Li, H. B.; Lu, H.; Marszalek, P. E.; Oberhauser, A. F.; Fernandez, J. M., The mechanical stability of ubiquitin is linkage dependent. Nat. Struct. Biol. 2003, 10, (9), 738–743.CrossRefGoogle Scholar
  62. 62.
    Isralewitz, B.; Gao, M.; Schulten, K., Steered molecular dynamics and mechanical functions of proteins. Curr. Opin. Struct. Biol. 2001, 11, (2), 224–230.CrossRefGoogle Scholar
  63. 63.
    Ortiz, V.; Nielsen, S. O.; Klein, M. L.; Discher, D. E., Unfolding a linker between helical repeats. J. Mol. Biol. 2005, 349, (3), 638–647.CrossRefGoogle Scholar
  64. 64.
    Law, R.; Carl, P.; Harper, S.; Dalhaimer, P.; Speicher, D. W.; Discher, D. E., Cooperativity in forced unfolding of tandem spectrin repeats. Biophys. J. 2003, 84, (1), 533–544.ADSCrossRefGoogle Scholar
  65. 65.
    Ng, S. P.; Rounsevell, R. W. S.; Steward, A.; Geierhaas, C. D.; Williams, P. M.; Paci, E.; Clarke, J., Mechanical unfolding of TNfn3: the unfolding pathway of a fnIII domain probed by protein engineering, AFM and MD simulation. J. Mol. Biol. 2005, 350, (4), 776–789.CrossRefGoogle Scholar
  66. 66.
    Lu, H.; Isralewitz, B.; Krammer, A.; Vogel, V.; Schulten, K., Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J. 1998, 75, (2), 662–671.ADSCrossRefGoogle Scholar
  67. 67.
    Lu, H.; Schulten, K., Steered molecular dynamics simulations of force-induced protein domain unfolding. Proteins: Struct., Funct., Genet. 1999, 35, (4), 453–463.CrossRefGoogle Scholar
  68. 68.
    Lu, H.; Schulten, K., The key event in force-induced unfolding of titin’s immunoglobulin domains. Biophys. J. 2000, 79, (1), 51–65.CrossRefGoogle Scholar
  69. 69.
    Alam, M. T.; Yamada, T.; Carlsson, U.; Ikai, A., The importance of being knotted: effects of the C-terminal knot structure on enzymatic and mechanical properties of bovine carbonic anhydrase II. FEBS Lett. 2002, 519, (1–3), 35–40.CrossRefGoogle Scholar
  70. 70.
    Ohta, S.; Alam, M. T.; Arakawa, H.; Ikai, A., Origin of mechanical strength of bovine carbonic anhydrase studied by molecular dynamics simulation. Biophys. J. 2004, 87, (6), 4007–4020.CrossRefGoogle Scholar
  71. 71.
    Afrin, R.; Okazaki, S.; Ikai, A., Force spectroscopy of covalent bond rupture versus protein extraction. Appl. Surf. Sci. 2004, 238, (1–4), 47–50.ADSCrossRefGoogle Scholar
  72. 72.
    Krammer, A.; Lu, H.; Isralewitz, B.; Schulten, K.; Vogel, V., Forced unfolding of the fibronectin type III module reveals a tensile molecular recognition switch. Proc. Natl. Acad. Sci. USA 1999, 96, (4), 1351–1356.ADSCrossRefGoogle Scholar
  73. 73.
    Li, P. C.; Makarov, D. E., Theoretical studies of the mechanical unfolding of the muscle protein titin: Bridging the time-scale gap between simulation and experiment. J. Chem. Phys. 2003, 119, (17), 9260–9268.ADSCrossRefGoogle Scholar
  74. 74.
    Li, P. C.; Makarov, D. E., Simulation of the mechanical unfolding of ubiquitin: probing different unfolding reaction coordinates by changing the pulling geometry. J. Chem. Phys. 2004, 121, (10), 4826–4832.ADSCrossRefGoogle Scholar
  75. 75.
    Izrailev, S.; Stepaniants, S.; Balsera, M.; Oono, Y.; Schulten, K., Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys. J. 1997, 72, (4), 1568–1581.CrossRefGoogle Scholar
  76. 76.
    West, D. K.; Brockwell, D. J.; Olmsted, P. D.; Radford, S. E.; Paci, E., Mechanical resistance of proteins explained using simple molecular models. Biophys. J. 2006, 90, (1), 287–297.ADSCrossRefGoogle Scholar
  77. 77.
    Cieplak, M.; Hoang, T. X.; Robbins, M. O., Thermal folding and mechanical unfolding pathways of protein secondary structures. Proteins: Struct., Funct., Genet. 2002, 49, (1), 104–113.CrossRefGoogle Scholar
  78. 78.
    Matouschek, A.; Fersht, A. R., Protein engineering in analysis of protein folding pathways and stability. Methods Enzymol. 1991, 202, 82–112.CrossRefGoogle Scholar
  79. 79.
    Serrano, L.; Matouschek, A.; Fersht, A. R., The folding of an enzyme.3. Structure of the transition-state for unfolding of barnase analyzed by a protein engineering procedure. J. Mol. Biol. 1992, 224, (3), 805–818.CrossRefGoogle Scholar
  80. 80.
    Best, R. B.; Fowler, S. B.; Herrera, J. L. T.; Steward, A.; Paci, E.; Clarke, J., Mechanical unfolding of a titin Ig domain: structure of transition state revealed by combining atomic force microscopy, protein engineering and molecular dynamics simulations. J. Mol. Biol. 2003, 330, (4), 867–877.CrossRefGoogle Scholar
  81. 81.
    Cecconi, C.; Shank, E. A.; Bustamante, C.; Marqusee, S., Direct observation of the three-state folding of a single protein molecule. Science 2005, 309, (5743), 2057–2060.ADSCrossRefGoogle Scholar
  82. 82.
    Lenne, P. F.; Raae, A. J.; Altmann, S. M.; Saraste, M.; Horber, J. K. H., States and transitions during forced unfolding of a single spectrin repeat. FEBS Lett. 2000, 476, (3), 124–128.CrossRefGoogle Scholar
  83. 83.
    Altmann, S. M.; Grunberg, R. G.; Lenne, P. F.; Ylanne, J.; Raae, A.; Herbert, K.; Saraste, M.; Nilges, M.; Horber, J. K. H., Pathways and intermediates in forced unfolding of spectrin repeats. Struct. Fold. Des. 2002, 10, (8), 1085–1096.CrossRefGoogle Scholar
  84. 84.
    Marszalek, P. E.; Lu, H.; Li, H. B.; Carrion-Vazquez, M.; Oberhauser, A. F.; Schulten, K.; Fernandez, J. M., Mechanical unfolding intermediates in titin modules. Nature 1999, 402, (6757), 100–103.ADSCrossRefGoogle Scholar
  85. 85.
    Li, H. B.; Carrion-Vazquez, M.; Oberhauser, A. F.; Marszalek, P. E.; Fernandez, J. M., Point mutations alter the mechanical stability of immunoglobulin modules. Nat. Struct. Biol. 2000, 7, (12), 1117–1120.CrossRefGoogle Scholar
  86. 86.
    Carrion-Vazquez, M.; Marszalek, P. E.; Oberhauser, A. F.; Fernandez, J. M., Atomic force microscopy captures length phenotypes in single proteins. Proc. Natl. Acad. Sci. USA 1999, 96, (20), 11288–11292.ADSCrossRefGoogle Scholar
  87. 87.
    Fowler, S. B.; Best, R. B.; Herrera, J. L. T.; Rutherford, T. J.; Steward, A.; Paci, E.; Karplus, M.; Clarke, J., Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering. J. Mol. Biol. 2002, 322, (4), 841–849.CrossRefGoogle Scholar
  88. 88.
    Klimov, D. K.; Thirumalai, D., Native topology determines force-induced unfolding pathways in globular proteins. Proc. Natl. Acad. Sci. USA 2000, 97, (13), 7254–7259.ADSCrossRefGoogle Scholar
  89. 89.
    Zinober, R. C.; Brockwell, D. J.; Beddard, G. S.; Blake, A. W.; Olmsted, P. D.; Radford, S. E.; Smith, D. A., Mechanically unfolding proteins: The effect of unfolding history and the supramolecular scaffold. Protein Sci. 2002, 11, (12), 2759–2765.CrossRefGoogle Scholar
  90. 90.
    Li, H. B.; Oberhauser, A. F.; Redick, S. D.; Carrion-Vazquez, M.; Erickson, H. P.; Fernandez, J. M., Multiple conformations of PEVK proteins detected by single- molecule techniques. Proc. Natl. Acad. Sci. USA 2001, 98, (19), 10682–10686.ADSCrossRefGoogle Scholar
  91. 91.
    Patel, A. B.; Allen, S.; Davies, M. C.; Roberts, C. J.; Tendler, S. J. B.; Williams, P. M., Influence of architecture on the kinetic stability of molecular assemblies. J. Am. Chem. Soc. 2004, 126, (5), 1318–1319.CrossRefGoogle Scholar
  92. 92.
    Williams, P. M.; Fowler, S. B.; Best, R. B.; Toca-Herrera, J. L.; Scott, K. A.; Steward, A.; Clarke, J., Hidden complexity in the mechanical properties of titin. Nature 2003, 422, (6930), 446–449.ADSCrossRefGoogle Scholar
  93. 93.
    Rief, M.; Oesterhelt, F.; Heymann, B.; Gaub, H. E., Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 1997, 275, (5304), 1295–1297.CrossRefGoogle Scholar
  94. 94.
    Schwaiger, I.; Sattler, C.; Hostetter, D. R.; Rief, M., The myosin coiled-coil is a truly elastic protein structure. Nat. Mater. 2002, 1, (4), 232–235.ADSCrossRefGoogle Scholar
  95. 95.
    Smith, B. L.; Schaffer, T. E.; Viani, M.; Thompson, J. B.; Frederick, N. A.; Kindt, J.; Belcher, A.; Stucky, G. D.; Morse, D. E.; Hansma, P. K., Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 1999, 399, (6738), 761–763.ADSCrossRefGoogle Scholar
  96. 96.
    Li, H. B.; Linke, W. A.; Oberhauser, A. F.; Carrion-Vazquez, M.; Kerkviliet, J. G.; Lu, H.; Marszalek, P. E.; Fernandez, J. M., Reverse engineering of the giant muscle protein titin. Nature 2002, 418, (6901), 998–1002.ADSCrossRefGoogle Scholar
  97. 97.
    Li, L.; Huang, H. H.; Badilla, C. L.; Fernandez, J. M., Mechanical unfolding intermediates observed by single-molecule force spectroscopy in a fibronectin type III module. J. Mol. Biol. 2005, 345, (4), 817–26.CrossRefGoogle Scholar
  98. 98.
    Schwaiger, I.; Kardinal, A.; Schleicher, M.; Noegel, A. A.; Rief, M., A mechanical unfolding intermediate in an actin-crosslinking protein. Nat. Struct. Mol. Biol. 2004, 11, (1), 81–85.CrossRefGoogle Scholar
  99. 99.
    Carl, P.; Kwok, C. H.; Manderson, G.; Speicher, D. W.; Discher, D. E., Forced unfolding modulated by disulfide bonds in the Ig domains of a cell adhesion molecule. Proc. Natl. Acad. Sci. USA 2001, 98, (4), 1565–1570.ADSCrossRefGoogle Scholar
  100. 100.
    Oberdorfer, Y.; Fuchs, H.; Janshoff, A., Conformational analysis of native fibronectin by means of force spectroscopy. Langmuir 2000, 16, (26), 9955–9958.CrossRefGoogle Scholar
  101. 101.
    Furuike, S.; Ito, T.; Yamazaki, M., Mechanical unfolding of single filamin A (ABP-280) molecules detected by atomic force microscopy. FEBS Lett. 2001, 498, (1), 72–75.CrossRefGoogle Scholar
  102. 102.
    Rief, M.; Pascual, J.; Saraste, M.; Gaub, H. E., Single molecule force spectroscopy of spectrin repeats: Low unfolding forces in helix bundles. J. Mol. Biol. 1999, 286, (2), 553–561.CrossRefGoogle Scholar
  103. 103.
    Wilcox, A. J.; Choy, J.; Bustamante, C.; Matouschek, A., Effect of protein structure on mitochondrial import. Proc. Natl. Acad. Sci. USA 2005, 102, (43), 15435–15440.ADSCrossRefGoogle Scholar
  104. 104.
    Rohs, R.; Etchebest, C.; Lavery, R., Unraveling proteins: A molecular mechanics study. Biophys. J. 1999, 76, (5), 2760–2768.CrossRefGoogle Scholar
  105. 105.
    Brockwell, D. J.; Paci, E.; Zinober, R. C.; Beddard, G. S.; Olmsted, P. D.; Smith, D. A.; Perham, R. N.; Radford, S. E., Pulling geometry defines the mechanical resistance of a beta-sheet protein. Nat. Struct. Biol. 2003, 10, (9), 731–737.CrossRefGoogle Scholar
  106. 106.
    Wiborg, O.; Pedersen, M. S.; Wind, A.; Berglund, L. E.; Marcker, K. A.; Vuust, J., The Human Ubiquitin Multigene Family - Some Genes Contain Multiple Directly Repeated Ubiquitin Coding Sequences. EMBO J. 1985, 4, (3), 755–759.Google Scholar
  107. 107.
    Pickart, C. M.; Fushman, D., Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol. 2004, 8, (6), 610–616.CrossRefGoogle Scholar
  108. 108.
    Murzin, A. G.; Brenner, S. E.; Hubbard, T.; Chothia, C., Scop - a Structural Classification of Proteins Database for the Investigation of Sequences and Structures. J. Mol. Biol. 1995, 247, (4), 536–540.Google Scholar
  109. 109.
    Schwaiger, I.; Schleicher, M.; Noegel, A. A.; Rief, M., The folding pathway of a fast-folding immunoglobulin domain revealed by single-molecule mechanical experiments. EMBO Rep. 2005, 6, (1), 46–51.CrossRefGoogle Scholar
  110. 110.
    Fernandez, J. M.; Li, H. B., Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 2004, 303, (5664), 1674–1678.ADSCrossRefGoogle Scholar
  111. 111.
    Best, R. B.; Hummer, G., Comment on “Force-clamp spectroscopy monitors the folding trajectory of a single protein”. Science 2005, 308, (5721).Google Scholar
  112. 112.
    Nevo, R.; Brumfeld, V.; Kapon, R.; Hinterdorfer, P.; Reich, Z., Direct measurement of protein energy landscape roughness. EMBO Rep. 2005, 6, (5), 482–486.CrossRefGoogle Scholar
  113. 113.
    Zwanzig, R., Diffusion In A Rough Potential. Proc. Natl. Acad. Sci. USA 1988, 85, (7), 2029–2030.ADSMathSciNetCrossRefGoogle Scholar
  114. 114.
    Hyeon, C. B.; Thirumalai, D., Can energy landscape roughness of proteins and RNA be measured by using mechanical unfolding experiments? Proc. Natl. Acad. Sci. USA 2003, 100, (18), 10249–10253.ADSCrossRefGoogle Scholar
  115. 115.
    Humphris, A. D. L.; Antognozzi, M.; McMaster, T. J.; Miles, M. J., Transverse dynamic force spectroscopy: A novel approach to determining the complex stiffness of a single molecule. Langmuir 2002, 18, (5), 1729–1733.CrossRefGoogle Scholar
  116. 116.
    Humphris, A. D. L.; Tamayo, J.; Miles, M. J., Active quality factor control in liquids for force spectroscopy. Langmuir 2000, 16, (21), 7891–7894.CrossRefGoogle Scholar
  117. 117.
    Janovjak, H.; Muller, D. J.; Humphris, A. D. L., Molecular force modulation spectroscopy revealing the dynamic response of single bacteriorhodopsins. Biophys. J. 2005, 88, (2), 1423–1431.CrossRefGoogle Scholar
  118. 118.
    Okajima, T.; Arakawa, H.; Alam, M. T.; Sekiguchi, H.; Ikai, A., Dynamics of a partially stretched protein molecule studied using an atomic force microscope. Biophys. Chem. 2004, 107, (1), 51–61.CrossRefGoogle Scholar
  119. 119.
    Best, R. B.; Clarke, J., What can atomic force microscopy tell us about protein folding? Chem. Commun. 2002, (3), 183–192.Google Scholar
  120. 120.
    Zinober-Moore, R. Elasticity and mechanical unfolding of globular protein domains. PhD thesis 2005, University of Leeds, Leeds,.Google Scholar
  121. 121.
    Sobolev, V.; Sorokine, A.; Prilusky, J.; Abola, E. E.; Edelman, M., Automated analysis of interatomic contacts in proteins. Bioinformatics 1999, 15, (4), 327–332.CrossRefGoogle Scholar
  122. 122.
    Friel, C. T.; Capaldi, A. P.; Radford, S. E., Structural analysis of the rate-limiting transition states in the folding of lm7 and lm9: similarities and differences in the folding of homologous proteins. J. Mol. Biol. 2003, 326, 293–305.CrossRefGoogle Scholar
  123. 123.
    Scott, K. A.; Clarke, J., Spectrin R16: broad energy barrier or sequential transition states? Protein Sci. 2005, 14, 1617–1629.CrossRefGoogle Scholar
  124. 124.
    Hamill, S. J.; Meekhof, A. E.; Clarke, J., The effect of boundary selection on the stability and folding of the third fibronectin type III domain from human tenascin. Biochemistry 1998, 37, 8071–8079.CrossRefGoogle Scholar
  125. 125.
    Maxwell, K. L.; Wildes, D.; Zarrine-Afsar, A.; De Los Rios, M. A.; Brown, A. G.; Friel, C. T.; Hedberg, L.; Horng, J. C.; Bona, D.; Miller, E. J.; Vallee-Belisle, A.; Main, E. R.; Bemporad, F.; Qiu, L.; Teilum, K.; Vu, N. D.; Edwards, A. M.; Ruczinski, I.; Poulsen, F. M.; Kragelund, B. B.; Michnick, S. W.; Chiti, F.; Bai, Y.; Hagen, S. J.; Serrano, L.; Oliveberg, M.; Raleigh, D. P.; Wittung-Stafshede, P.; Radford, S. E.; Jackson, S. E.; Sosnick, T. R.; Marqusee, S.; Davidson, A. R.; Plaxco, K. W., Protein folding: Defining a “standard” set of experimental conditions and a preliminary kinetic data set of two-state proteins. Protein Sci. 2005, 14, 602–616.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Kirstine L. Anderson
    • 1
  • Sheena E. Radford
    • 2
  • D. Alastair Smith
    • 3
  • David J. Brockwell
    • 4
  1. 1.Astbury Centre for Structural Molecular Biology, University of Leeds, Garstang BuildingUniversity of LeedsLeedsUK
  2. 2.Astbury Centre for Structural Molecular Biology, University of Leeds, Garstang BuildingUniversity of LeedsLeedsUK
  3. 3.Chief Executive, Avacta Group plcYork Biocentre, Innovation Way, York Science ParkHeslingtonUK
  4. 4.Astbury Centre for Structural Molecular BiologyUniversity of Leeds, Garstang Building, University of LeedsLeedsUK

Personalised recommendations