Advertisement

Simulation in Force Spectroscopy

  • David L. Patrick

Simulation has played an important role in the study of molecular-scale forces since the 1970s, almost from the time such forces could first be measured experimentally. Over the past three decades, as experimental probes have grown in sophistication and sensitivity, the scope and accuracy of computer modeling have developed in step. Today simulation and experiment are so closely linked in the field of force spectroscopy that it seems hardly possible to consider one without the other.

Keywords

Atomic Force Microscopy Monte Carlo Force Curve Force Spectroscopy Free Energy Landscape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, for example, Phillip Walsh, Andrey Omeltchenko, Kalia, R. K.; Nakano, A.; Vashishta, P.; Saini, S., Appl. Phys. Lett. 2003, 82, 118; (b) Abraham, F. F.; Schneider, D.; Land, B.; Lifka, D.; Skovira, J.; Gerner, J.; Rosenkrantz, M., J. Mech. Phys. Solids 1997, 45, 1461; (c) Omeltchenko, A.; Bachlechner, M. E.; Nakano, A.; Kalia, R. K.; Vashishta, P.; Ebbsjo, I.; Madhukar, A.; Messina, P., Phys. Rev. Lett. 2000, 84, 318; (d) Bachlechner, M. E.; Omeltchenko, A.; Nakano, A.; Kalia, R. K.; Vashishta, P., Appl. Phys. Lett. 1998, 72, 1969.Google Scholar
  2. 2.
    (a) Understanding Molecular Simulation From Algorithms to Applications, Frenel, D.; Smit, B., Academic Press, San Diego, 2002; (b) Molecular Dynamics Simulation Elementary Methods, Haile, J. M., John Wiley and Sons, New York, 1992; (c) Computer Simulation of Liquids, Allen, M. P.; Tildesley, D. J., Oxford university Press, Oxford, 1987.Google Scholar
  3. 3.
    (a) Simulation and the Monte Carlo Method, Rubinstein, R. Y., John Wiley and Sons, New York, 1981; (b) Monte Carlo Concepts Algorithms and Applications, Fishman, G. S., Springer Verlag, 1996.Google Scholar
  4. 4.
    (a) Fermi, E.; Pasta, J.; Ulam, S., Los Alamos Report LA 1940, 1955, “Studies in nonlinear problems”; (b) Alder, B. J.; Wainwright, T. E., J. Chem. Phys. 1957, 27, 1208.Google Scholar
  5. 5.
    (a) Molecular Mechanics Energy Functions, Murrell, J. N.; Carter, S.; Farantos, S. C.; Huxley, P. (eds.) John Wiley and Sons, New York, 1984; (b) Erkoc, S., Phys. Rep. 1997, 278, 79; (b) Engler, E. M.; Andose, J. D.; Schleyer, P. v. R., J. Am. Chem. Soc. 1973, 95, 8005; (c) Hall, D.; Pavitt, N., J. Comp. Chem. 1984, 5, 441; (e) Halgren, T. A.; Nachbar, R. B., J. Comput. Chem., 1996, 17, 587.Google Scholar
  6. 6.
    Weiner, S. J.; Kollman, P. A,; Case, D. A,; Singh, U. C.; Ghio, C.; Alagona, G.; Profeta, S., Jr., Weiner, P. J. Am. Chem. Soc. 1984, 106, 765.CrossRefGoogle Scholar
  7. 7.
    Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983, 4, 187.CrossRefGoogle Scholar
  8. 8.
    Halgren, T. A., J. Comput. Chem., 1996, 17, 490; (b) ibid 1996, 17, 520; (c) ibid 1996, 17, 553; (d) ibid, 1996, 17, 616.Google Scholar
  9. 9.
    (a) Finnis, M.膗W.; Sinclair, J. E., Philos. Mag. A, 1984, 50, 45; (b) Sutton, A.膗P.; Chen, J., Philos. Mag. Lett., 1990, 61, 139; (c) Daw, M.S.; Baskes, M. I., Phys. Rev. B 1984, 29, 6443.Google Scholar
  10. 10.
    Stillinger, F. H.; Weber, T.A., Phys. Rev. B, 1985, 31, 5262.CrossRefADSGoogle Scholar
  11. 11.
    (a) Tersoff, J., Phys. Rev. B, 1988, 38, 9902; (b) Tersoff, J., J. Phys. Rev. B, 1988, 38, 9902.Google Scholar
  12. 12.
    (a) Steele, W. A., Surf. Sci. 1973, 36, 317; (b) Steele, W. A.; Vernov, A. V.; Tildesley, D. J. Carbon 1987, 25, 7.Google Scholar
  13. 13.
    (a) Jorgensen, W. L., J. Chem. Phys. 1982, 77, 4156; (b) Jorgensen, W. L.; Chandresekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L., J. Chem. Phys., 1983, 79, 926.Google Scholar
  14. 14.
    Berendsen, H.J.C; Postma, J.P.M.; van Gunsteren, W.F.; Hermans, J., Intermolecular Forces, Pullman, B., (ed.), Reidel, Dordrecht, Holland 1981, 331.Google Scholar
  15. 15.
    (a) Engler, E. M.; Andose, J. D.; Schleyer, P. v. R., J. Am. Chem. Soc. 1973, 95, 8005; (b) Gundertofte, K.; Palm, J.; Pettersson, I.; Stamvik, A., J. Comp. Chem. 1991, 12, 200; (c) Gundertofte, K.; Liljefors, T.; Norrby, P-O; Pattesson, I., J. Comp. Chem. 1996, 17, 429Google Scholar
  16. 16.
    Carlsson, A. E., Solid State Phys., 1990, 43, 1.CrossRefGoogle Scholar
  17. 17.
    Erkoc, S., Phys. Rep. 1997, 278, 79.CrossRefADSGoogle Scholar
  18. 18.
    Ercolessi, F.; Tosatti, E.; Parrinello, M., Phys. Rev. Lett, 1986, 57, 719.CrossRefADSGoogle Scholar
  19. 19.
    See, for example, Computational methods for Protein Folding, Friesner, R. A.; Prigogine, I. (Eds.), John Wiley and Sons, New York, 2002.Google Scholar
  20. 20.
    See, for example, the review of experimental and computational measurements of elasticity in carbon nanotubes reported by: Gupta, S.; Dharamvir, K.; Jindal, V. K., Phys. Rev. B 2005, 72, 165428.Google Scholar
  21. 21.
    Car, R.; Parrinello, M., Phys. Rev. Lett. 1985, 55, 2471.CrossRefADSGoogle Scholar
  22. 22.
    See, for example, Sherwood, P., Modern Methods and Algorithms of Quantum Chemistry, Proc. 2nd Ed., Grotendorst, J. (Ed.), John von Neumann Inst. For Computing, Julich, 2000.Google Scholar
  23. 23.
    Uhlherr, A.; Theodorou, D.N., Curr. Opin. Solid State and Mat. Sci.1998, 3, 544.Google Scholar
  24. 24.
    (a) Tabor, D.; Winterton, R. H. S. Proc. R. Soc. London A 1969, 312, 435; (b) Israelachvili, J. N.; Tabor, D. Proc. R. Soc. London A 1972, 331, 19.Google Scholar
  25. 25.
    Binnig, G.; Quate, C. F.; Gerber, G., Phys. Rev. Lett. 1986, 56, 930.CrossRefADSGoogle Scholar
  26. 26.
    A. Ashkin, Dziedzic, J. M., Science 1987, 235, 1517.Google Scholar
  27. 27.
    Evans, E.; Ritchie, K.; Merkel, R., Biophys. J. 1995, 68, 2580.CrossRefGoogle Scholar
  28. 28.
    (a) Chen, Y. L.; Helm, C. A.; Israelachvili, J. N., J. Phys. Chem. 1991, 95, 10736. (b) Joyce, S. R.; Michalske, R. A.; Crooks, R. M., Phys. Rev. Lett. 1992, 68, 2790.Google Scholar
  29. 29.
    Blackman, G. S.; Mate, C. M.; Philpott, M. R., Phys. Rev. Lett. 1990, 65, 2270.CrossRefADSGoogle Scholar
  30. 30.
    Bell, G. I., Science 1978, 200, 618.CrossRefADSGoogle Scholar
  31. 31.
    Marshall, B. T.; Long, M.; Piper, J. W.; Yago, T.; McEver, R. P.; Zhu, C., Nature 2003, 423, 190.CrossRefADSGoogle Scholar
  32. 32.
    See, for example, Seifert, U., Phys. Rev. Lett. 2000, 84, 2750.Google Scholar
  33. 33.
    Evans, E.; Ritchie, K., Biophys. J. 1997, 72, 1541.CrossRefGoogle Scholar
  34. 34.
    Heymann, B.; Grubmüller, H., Chem. Phys. Lett. 1999, 303, 1.CrossRefADSGoogle Scholar
  35. 35.
    Heymann, B.; Grubmüller, H., Biophys. J. 2001, 81, 1295.CrossRefGoogle Scholar
  36. 36.
    Grubmüller, H.; Heymann, B.; Tavan, P., Science 1996, 271, 997.CrossRefADSGoogle Scholar
  37. 37.
    Izrailev, S.; Stepaniants, S.; Balsera, M.; Oono, Y.; Schulten, K., Biophys. J., 1997, 72, 1568.CrossRefGoogle Scholar
  38. 38.
    (a) Bartolo, D.; Derenyi, I.; Ajdari, A., Phys. Rev. E., 2002, 65, 051910; (b) Derenyi, I.; Bartolo, D.; Ajdari, A., Biophys. J. 2004, 86, 1263.Google Scholar
  39. 39.
    Carrion-Vazquez, M.; Li, H.; Lu, H.; Marszalek, P. E.; Oberhauser, A. F.; Fernandez, J. M., Nature Struct. Biol. 2003, 10, 738.CrossRefGoogle Scholar
  40. 40.
    (a) Paci, E.; Karplus, M., J. Mol. Biol., 1999, 288, 441; (b) Paci, E.; Caflisch, A.; Pluckthun, A.; Karplus, M., J. Mol. Biol. 2001, 314, 589.Google Scholar
  41. 41.
    Tuckerman, M. E.; Berne, B. J.; Martyna, G. J., J. Chem. Phys., 1992, 97, 1990.CrossRefADSGoogle Scholar
  42. 42.
    (A) Leng, Y. S.; Jiang, S. J. Chem. Phys. 2000, 113, 8800; (b) Leng, Y. S.; Jiang, S. Phys. Rev. B 2001, 63, 193406; (c) Leng, Y. S.; Jiang, S. Tribol. Lett. 2001, 11, 111; (d) Zhang, L.; Leng, Y.; Jiang, S., Langmuir 2003, 19, 9742.Google Scholar
  43. 43.
    Leng, Y.; Jiang, S., J. Am. Chem. Soc. 2002, 124, 11764.CrossRefGoogle Scholar
  44. 44.
    Chan, H. S.; Dill, K. A., Physics Today, 1993, 46, 24.CrossRefGoogle Scholar
  45. 45.
    Beyond The Molecular Frontier Challenges For Chemistry And Chemical Engineering, Committee on Challenges for the Chemical Sciences in the 21st Century, US National Academies Press, 2003.Google Scholar
  46. 46.
    See, for example, Ruiz-Montero, (a) Bolhuis, P. G.; Dellago, C.; Chandler, D., Faraday Discuss., 1998, 110, 421; (b) M. J.; Frenkel, D.; Brey, J. J., Mol. Phys. 1997, 90, 925.Google Scholar
  47. 47.
    Erickson, H.P. Proc. Natl. Acad. Sci. USA, 1994, 91, 10114.CrossRefADSGoogle Scholar
  48. 48.
    (a) Smith, S.B.; Cui, Y.; Bustamante, C., Science 1996 271, 795; (b) Rief, M.; Oesterhelt, F.; Heymann, B.; Gaub, H.E., Science 1997, 275, 1295.Google Scholar
  49. 49.
    Marszalek P.E.; Li, H.; Oberhauser, A. F.; Fernandez, J. M., Proc. Natl. Acad. Sci USA, 2002, 99, 4278.CrossRefADSGoogle Scholar
  50. 50.
    Marszalek, P. E.; Li, H.; Fernandez, J. M., Nature Biotech. 2001, 19, 258.CrossRefGoogle Scholar
  51. 51.
    Konrad, M. W.; Bolonick, J. I., J. Am. Chem. Soc. 1996, 118, 10989.CrossRefGoogle Scholar
  52. 52.
    Kosikov, K. M.; Gorin, A., Zhurkin, V. B.; Olson, W. K., J. Mol. Biol. 1999, 289, 1301.CrossRefGoogle Scholar
  53. 53.
    Labrun, A.; Lavery, R., Nucleic Acids Res. 1996, 42, 383.Google Scholar
  54. 54.
    Cizeau, P.; Viovy, J.-L., Biopolymers, 1997, 24, 2260.Google Scholar
  55. 55.
    Florin, E.-L.; Moy, V. T.; Gaub, H. E., Science 1996, 271, 997.CrossRefGoogle Scholar
  56. 56.
    Shen, L.; Shen, J.; Luo, X.; Cheng, F.; Xu, Y.; Chen, K.; Arnold, E.; Ding, J.; Jiang, H., Biophys. J., 2003, 84, 3547.CrossRefGoogle Scholar
  57. 57.
    Izrailev, S.; Stepaniants, S.; Balsera, M.; Oono, Y.; Schulten, K., Biophys. J., 1997, 72, 1568.CrossRefGoogle Scholar
  58. 58.
    Kosztin, D.; Izrailev, S.; Schulten, K., Biophys. J., 1999, 76, 188.CrossRefGoogle Scholar
  59. 59.
    (a) Müller, D.J.; Baumeister, W.; Engel, A., Proc. Natl. Acad. Sci. USA 1999, 96, 13170; (b) Engel, A.; Müller, D.J. Nature Struct. Biol. 2000, 7, 715.Google Scholar
  60. 60.
    Marrink, S.-J.; Berger, O.; Tieleman, P.; Jahnig, F., Biophys. J., 1998, 74, 931.CrossRefADSGoogle Scholar
  61. 61.
    (a) Rowley, L. A.; Nicholson, D.; Parsonage. N. G., Mol. Phys. 1976, 31, 365; (b) Abraham, F. A., J. Chem. Phys. 1978, 68, 3713.Google Scholar
  62. 62.
    Israelachvili, J. N.; Adams, G. E., J. Chem. Phys. Faraday Trans. I, 1978, 74, 975.CrossRefGoogle Scholar
  63. 63.
    (a) O’Shea, S. J.; Welland, M. E.; Rayment, T., Appl. Phys. Lett. 1992, 60, 2356; (b) O’Shea, S. J.; Welland, M. E.; Pethica, J. B., Chem. Phys. Lett. 1994, 223, 336; (c) Han, W.; Lindsay, S. M., Appl. Phys. Lett. 1998, 72, 1656.Google Scholar
  64. 64.
    Hansen, J. P.; McDonald, I. R., Theory of Simple Liquids, Academic Press, London (1976).Google Scholar
  65. 65.
    Gelb, L. D.; Lynden-Bell, R. M., Chem. Phys. Lett., 1993, 211, 328.CrossRefADSGoogle Scholar
  66. 66.
    Gelb, L. D.; Lynden-Bell, R. M., Phys. Rev. B 1994, 49, 2058.CrossRefADSGoogle Scholar
  67. 67.
    Patrick, D. L.; Lynden-Bell, R. M., Surf. Sci. 1997, 380, 224.CrossRefADSGoogle Scholar
  68. 68.
    Magda, J; Tirrell, M.; Davis, H. T.; J. Chem. Phys. 1985, 83, 1888; (b) Douglas, L. J.; Lupkowski, M.; Dodd, T. L.; van Swol, F., Langmuir, 1993, 9, 1442.Google Scholar
  69. 69.
    Henderson, D.; Plischke, M., J. Chem. Phys. 1992, 97, 7822.CrossRefADSGoogle Scholar
  70. 70.
    (a) Grest, G. S., Phys. Rev. Lett. 1996, 76, 4979; (b) Glosli, J. N.; McClelland, G. M., Phys. Rev. Lett. 1993, 70, 1960; (c) Bonner, T.; Baratoff, A., Surf. Sci. 1997, 377–379, 1082.Google Scholar
  71. 71.
    Sumpter, B. G.; Getino, C.; Noid, D. W.; Wunderlich, B., Makromol. Chem., Theory Simul. 1993, 2, 55.CrossRefGoogle Scholar
  72. 72.
    (a) Katagiri, M.; Patrick, D. L.; Lynden-Bell, R. M., Surf. Sci., 1999, 431, 260; (b) Landman, U.; Luedtke, W. D.; Nitzan, A., Surf. Sci. 1989, 210, L177; (c) Landman, U.; Luedtke, Gao, J., Langmuir, 1996, 12, 4514.Google Scholar
  73. 73.
    Shluger, A. L.; Wilson, R. M.; Williams, R. T., Phys. Rev. B., 1994, 49, 4915.CrossRefADSGoogle Scholar
  74. 74.
    (a) Gao, J.; Luedtke, W.D.; Landman, U., J. Chem. Phys. 1997, 106, 4309; (b) Gao, J.; Luedtke, W.D.; Landman, U., J. Phys. Chem. B 1997, 101, 4013; (c) Gao, J.; Luedtke, W.D. Landman, U., Phys. Rev. Lett., 1997, 79, 705.Google Scholar
  75. 75.
    For reviews see: (a) Bhushan, B.; Israelachvili, J.N.; Landman, U., Nature, 1995, 374, 607; (b) Robbins, M.O.; Muser, M.H. in: Handbook of Modern Tribology, ed. B. Bhushan (CRC Press, Boca Raton, 2000); (c) Landman, U.; Luedtke, W. D.; Ringer, W. M., Wear, 1992, 153, 3.Google Scholar
  76. 76.
    Johnson, K. L.; Kendall, K.; Roberts, A. D., Proc. R. Soc. London, A 1971, 324, 301.CrossRefADSGoogle Scholar
  77. 77.
    Derjaguin, B. V.; Muller, V. M.; Toporov, P., J. Colloid Interf. Sci. 1975, 53, 314.CrossRefGoogle Scholar
  78. 78.
    Patrick, D. L.; Flanagan IV, J.; Lynden-Bell, R. M., J. Am. Chem. Soc. 2003, 125, 6762.Google Scholar
  79. 79.
    Thomas, R. C.; Houston, J. E.; Crooks, R. M.; Kim, T.; Michalske, T. A., J. Am. Chem. Soc. 1995, 117, 3830.CrossRefGoogle Scholar
  80. 80.
    Poulin, P.; Raghunathan, V. A.; Richetti, P.; Roux, D., J. Phys. II 1994, 4, 1557.CrossRefGoogle Scholar
  81. 81.
    Poulin, P.; Stark, H.; Lubensky, T. C.; Weitz, D. A., Science, 1997, 275, 1770.CrossRefGoogle Scholar
  82. 82.
    (a) Stark, H., Phys. Rep. 2001, 351, 387; (b) Stark, H.; Ventzki, D.; Reichert, M., J. Phys.: Condens. Matter 2003, 15, S191.Google Scholar
  83. 83.
    Loudet, J. C.; Poulin, P., Phys. Rev. Lett. 2001, 87, 165503.CrossRefADSGoogle Scholar
  84. 84.
    Poulin, P.; Cabuil, V.; Weitz, D. A., Phys. Rev. Lett. 1997, 79, 4862.CrossRefADSGoogle Scholar
  85. 85.
    Gay, J. G.; Berne, B. J., J. Chem. Phys. 1981, 74, 3316.CrossRefADSGoogle Scholar
  86. 86.
    Andrienko, D.; Tasinkevych, M.; Patricio, P.; Allen, M. P.; Telo da Gama, M. M., Phys. Rev. E, 2002, 68, 051702.CrossRefADSGoogle Scholar
  87. 87.
    Stark, H.; Stelzer, J.; Bernhard, R., Eur. Phys. J. B 1998, 10, 515.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • David L. Patrick
    • 1
  1. 1.Advanced Materials Science & Engineering. Center, Department of ChemistryWestern Washington UniversityBellinghamUSA

Personalised recommendations